Outline

- An Intro to LiDAR
- The Wet Areas Mapping Concept
- Data Inputs & Outputs
- Data Visualization & Interpretation
- Data Format & Storage
- Data Usage (Office & Field)
Wet Areas Maps: An Into to LiDAR

Light Detection And Ranging
Wet Areas Maps: An Into to LiDAR

Distance = (Speed) x (Time)
Distance = (Speed) x (Time)

-The time it takes for a laser pulse to be sent from the sensor, reflect off an object and return to the sensor.
Distance = (Speed) x (Time)

- The time it takes for a laser pulse to be sent from the sensor, reflect off an object and return to the sensor.

- The flying height and position of the aircraft are then used to determine elevation and location of objects.
Wet Areas Maps: An Into to LiDAR

Distance = (Speed) x (Time)

- The time it takes for a laser pulse to be sent from the sensor, reflect off an object and return to the sensor.

- The flying height and position of the aircraft are then used to determine elevation and location of objects.
Wet Areas Maps: An Into to LiDAR

Distance = (Speed) x (Time)

- The time it takes for a laser pulse to be sent from the sensor, reflect off an object and return to the sensor.

- The flying height and position of the aircraft are then used to determine elevation and location of objects.

- Post-processing creates highly accurate “bare earth” Digital Elevation Models (DEMs)
Wet Areas Maps: The Concept

1. Prepare DEM Surface
Wet Areas Maps: The Concept

1. Prepare DEM Surface

2. Predict locations of potential stream channels
Wet Areas Maps: The Concept

1. Prepare DEM Surface

2. Predict locations of potential stream channels

3. Use the Wet Areas algorithms to predict potential cartographic wetness across the landscape.
Wet Areas Maps: Data Inputs

Full-Feature LiDAR:
Wet Areas Maps: Data Inputs

Full-Feature LiDAR:

- Captures trees, buildings, bridges, etc.
Wet Areas Maps: Data Inputs

Full-Feature LiDAR:

- Captures trees, buildings, bridges, etc.

- These structures inhibit proper modeling of hydrographic flow across the landscape
Wet Areas Maps: Data Inputs

Full-Feature LiDAR:

-Captures trees, buildings, bridges, etc.

-These structures inhibit proper modeling of hydrographic flow across the landscape

-They must be removed
Wet Areas Maps: Data Inputs

Full-Feature LiDAR:

- Captures trees, buildings, bridges, etc.
- These structures inhibit proper modeling of hydrographic flow across the landscape
- They must be removed
Wet Areas Maps: Data Inputs

Bare Earth LiDAR:
Wet Areas Maps: Data Inputs

Bare Earth LiDAR:

-Software is used to classify LiDAR returns
Wet Areas Maps: Data Inputs

Bare Earth LiDAR:

-Software is used to classify LiDAR returns

-Only the likely “bare ground” returns are used to create the surface.
Wet Areas Maps: Data Inputs

Bare Earth LiDAR:

-Software is used to classify LiDAR returns

-Only the likely “bare ground” returns are used to create the surface.

-Greatly improves modeling of hydrographic flow
Wet Areas Maps: Data Inputs

Bare Earth LiDAR:

- Software is used to classify LiDAR returns

 - Only the likely “bare ground” returns are used to create the surface.

 - Greatly improves modeling of hydrographic flow

BUT, there’s one more step.
Wet Areas Maps: Data Inputs

Bare Earth LiDAR:

- Software is used to classify LiDAR returns

- Only the likely “bare ground” returns are used to create the surface.

- Greatly improves modeling of hydrographic flow

BUT, there’s one more step.
Wet Areas Maps: Data Inputs

Bare Earth LiDAR:

- Laser pulses aren’t x-ray pulses
Bare Earth LiDAR:

- Laser pulses aren’t x-ray pulses

- The road acts like an artificial “dam”, even though we know there is a culvert
Bare Earth LiDAR:

- Laser pulses aren’t x-ray pulses

- The road acts like an artificial “dam”, even though we know there is a culvert

- Well, do we know that there is a culvert?
Wet Areas Maps: Data Inputs

Bare Earth LiDAR:

-Laser pulses aren’t x-ray pulses

-The road acts like an artificial “dam”, even though we know there is a culvert

-Well, do we know that there is a culvert?

-That is why culvert data is helpful
Culvert Points:

- Algorithms are used to determine the appropriate angle and length of “virtual culvert” to breach the road.
Culvert Points:

- Algorithms are used to determine the appropriate angle and length of “virtual culvert” to breach the road

- DEM elevation values are reduced along the line to allow flow across the road
Wet Areas Maps: Data Inputs

Culvert Points:

- Algorithms are used to determine the appropriate angle and length of “virtual culvert” to breach the road

- DEM elevation values are reduced along the line to allow flow across the road

- Flow network connectivity is maintained
Wet Areas Maps: Data Inputs

Culvert Points:

- Algorithms are used to determine the appropriate angle and length of “virtual culvert” to breach the road

- DEM elevation values are reduced along the line to allow flow across the road

- Flow network connectivity is maintained
Wet Areas Maps: Data Inputs

1. **Bare Earth LiDAR Surface**
 - High resolution DEM
 - Accurate “bare earth”

X Roads may act as artificial dams
Wet Areas Maps: Data Inputs

1. **Bare Earth LiDAR Surface**
 - High resolution DEM
 - Accurate “bare earth”
 - X Roads may act as artificial dams

2. **Mapped Culvert Data**
 - Allows for road breaching
 - Map accuracy is improved with mapped culvert data
Wet Areas Maps: Data Outputs
1. **Predicted Stream Channels**
 - intermediate output
 - used within the model to determine a basic flow network
Wet Areas Maps: Data Outputs

1. **Predicted Stream Channels**
 - Intermediate output
 - Used within the model to determine a basic flow network

2. **Predictive Wet Areas Map**
 - “Cartographic”
 - Map-based
 - Topography-driven
 - No soil data component
Wet Areas Maps: Data Visualization
Wet Areas Maps: Data Visualization

- Maps are symbolized from dark blue (more wet) to light blue (less wet)
Wet Areas Maps: Data Visualization

- Maps are symbolized from dark blue (more wet) to light blue (less wet)
- Symbology can be altered to suit user’s needs
 - different colors
 - different value ranges
Wet Areas Maps: Data Interpretation
Wet Areas Maps: Data Interpretation

Index Value

Wet Areas
- 0 (Potential Surface Water)
- 0 - 0.25 (More Wet)
- 0.25 - 0.5
- 0.5 - 1.5
- 1.5 - 3
- 3 - 4 (Less Wet)
- 4+
Wet Areas Maps: Data Interpretation

Zones of Potential Wetness

Index Value

Wet Areas

- 0 (Potential Surface Water)
- 0 - 0.25 (More Wet)
- 0.25 - 0.5
- 0.5 - 1.5
- 1.5 - 3
- 3 - 4 (Less Wet)
- 4+
Wet Areas Maps: Data Interpretation

Zones of Potential Wetness

Index Value

- Wet Areas
 - 0 (Potential Surface Water)
 - 0 - 0.25 (More Wet)
 - 0.25 - 0.5
 - 0.5 - 1.5
 - 1.5 - 3
 - 3 - 4 (Less Wet)
 - 4+

- Dry Areas
 - 0 - 10
 - 10 - 25 (Less Dry)
 - 25 - 50
 - 50 - 100
 - 100 - 200
 - 200+ (More Dry)
Wet Areas Maps: Data Interpretation

Zones of Potential Wetness

Zones of Potential Dryness
Since the model output predicts "wetness" it also predicts "dryness"
Wet Areas Maps: Data Interpretation

Since the model output predicts “wetness” it also predicts “dryness”

The same model output, symbolized differently will show something completely different.
Wet Areas Maps: Data Interpretation

High-resolution “dry” areas mapping:
- potential habitat mapping
- potential sites of historic settlements
- Fire-risk maps
- Soil erosion/disturbance potential
- Trafficability modeling
High-resolution “dry” areas mapping:
- potential habitat mapping
- potential sites of historic settlements
- Fire-risk maps
- Soil erosion/disturbance potential
- Trafficability modeling

The symbology for “dry areas” is included in the mapping package.
Combining these two mapping products can provide a great interpretation of predicted topographic moisture gradients in the landscape.
Wet Areas Maps: Data Format

Model output is a floating point ESRI Raster

- Native Grid format for ESRI’s ArcGIS (ie. ArcMap)

- One floating point (decimal) value for every 1 m² cell in the landscape
Wet Areas Maps: Data Format

Model output is a floating point ESRI Raster

- Native Grid format for ESRI’s ArcGIS (ie. ArcMap)

- One floating point (decimal) value for every 1 m² cell in the landscape

<table>
<thead>
<tr>
<th>0.32</th>
<th>0.05</th>
<th>0.33</th>
<th>1.67</th>
<th>1.65</th>
<th>1.52</th>
<th>1.54</th>
<th>1.55</th>
<th>2.03</th>
<th>1.67</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37</td>
<td>0.08</td>
<td>0.39</td>
<td>0.56</td>
<td>1.47</td>
<td>1.48</td>
<td>1.55</td>
<td>1.89</td>
<td>2.10</td>
<td>0.88</td>
</tr>
<tr>
<td>0.41</td>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>1.37</td>
<td>1.44</td>
<td>1.33</td>
<td>1.28</td>
<td>0.49</td>
<td>0.32</td>
</tr>
<tr>
<td>0.44</td>
<td>0.22</td>
<td>0.22</td>
<td>0.21</td>
<td>1.22</td>
<td>1.36</td>
<td>1.32</td>
<td>0.49</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>0.48</td>
<td>0.26</td>
<td>0.41</td>
<td>0.19</td>
<td>0.14</td>
<td>0.48</td>
<td>0.33</td>
<td>0.28</td>
<td>0.35</td>
<td>0.47</td>
</tr>
<tr>
<td>1.34</td>
<td>0.32</td>
<td>0.44</td>
<td>0.33</td>
<td>0.14</td>
<td>1.44</td>
<td>0.22</td>
<td>0.38</td>
<td>0.35</td>
<td>0.56</td>
</tr>
<tr>
<td>1.86</td>
<td>0.84</td>
<td>0.57</td>
<td>0.36</td>
<td>0.14</td>
<td>0.24</td>
<td>0.35</td>
<td>0.39</td>
<td>0.55</td>
<td>1.55</td>
</tr>
<tr>
<td>1.67</td>
<td>1.51</td>
<td>0.68</td>
<td>0.44</td>
<td>0.12</td>
<td>0.26</td>
<td>0.37</td>
<td>0.99</td>
<td>0.59</td>
<td>1.52</td>
</tr>
<tr>
<td>1.82</td>
<td>1.54</td>
<td>0.99</td>
<td>0.46</td>
<td>0.25</td>
<td>0.22</td>
<td>0.38</td>
<td>0.97</td>
<td>1.51</td>
<td>1.54</td>
</tr>
<tr>
<td>2.44</td>
<td>1.71</td>
<td>1.53</td>
<td>1.92</td>
<td>0.30</td>
<td>0.21</td>
<td>0.37</td>
<td>0.44</td>
<td>1.55</td>
<td>1.56</td>
</tr>
</tbody>
</table>
Wet Areas Maps: Data Format

Model output is a **floating point ESRI Raster**

- Native Grid format for ESRI’s ArcGIS (ie. ArcMap)
- One floating point (decimal) value for every 1 m2 cell in the landscape

<table>
<thead>
<tr>
<th>0.32</th>
<th>0.05</th>
<th>0.33</th>
<th>1.67</th>
<th>1.65</th>
<th>1.52</th>
<th>1.54</th>
<th>1.55</th>
<th>2.03</th>
<th>1.67</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37</td>
<td>0.08</td>
<td>0.39</td>
<td>0.56</td>
<td>1.47</td>
<td>1.48</td>
<td>1.55</td>
<td>1.89</td>
<td>2.10</td>
<td>0.88</td>
</tr>
<tr>
<td>0.41</td>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>1.37</td>
<td>1.44</td>
<td>1.33</td>
<td>1.28</td>
<td>0.49</td>
<td>0.32</td>
</tr>
<tr>
<td>0.44</td>
<td>0.22</td>
<td>0.22</td>
<td>0.21</td>
<td>1.22</td>
<td>1.36</td>
<td>1.32</td>
<td>0.49</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>0.48</td>
<td>0.26</td>
<td>0.41</td>
<td>0.19</td>
<td>1.40</td>
<td>0.48</td>
<td>0.33</td>
<td>0.28</td>
<td>0.35</td>
<td>0.47</td>
</tr>
<tr>
<td>1.34</td>
<td>0.32</td>
<td>0.44</td>
<td>0.33</td>
<td>0.14</td>
<td>1.44</td>
<td>0.22</td>
<td>0.38</td>
<td>0.35</td>
<td>0.56</td>
</tr>
<tr>
<td>1.86</td>
<td>0.84</td>
<td>0.57</td>
<td>0.36</td>
<td>0.14</td>
<td>0.24</td>
<td>0.35</td>
<td>0.39</td>
<td>0.55</td>
<td>1.55</td>
</tr>
<tr>
<td>1.67</td>
<td>1.51</td>
<td>0.68</td>
<td>0.44</td>
<td>0.12</td>
<td>0.26</td>
<td>0.37</td>
<td>0.99</td>
<td>0.59</td>
<td>1.52</td>
</tr>
<tr>
<td>1.82</td>
<td>1.56</td>
<td>0.99</td>
<td>0.46</td>
<td>0.25</td>
<td>0.22</td>
<td>0.38</td>
<td>0.97</td>
<td>1.51</td>
<td>1.54</td>
</tr>
<tr>
<td>2.44</td>
<td>1.71</td>
<td>1.53</td>
<td>1.92</td>
<td>0.30</td>
<td>0.21</td>
<td>0.37</td>
<td>0.44</td>
<td>1.55</td>
<td>1.59</td>
</tr>
</tbody>
</table>

Symbology

- 0 – 0.1
- 0.1 – 0.25
- 0.25 – 0.5
- 0.5 - 1
- 1+ (transparent)
Wet Areas Maps: Data Format

Model output is a floating point ESRI Raster

-Native Grid format for ESRI’s ArcGIS (ie. ArcMap)

-One floating point (decimal) value for every 1 m2 cell in the landscape

![Symbology](image)

<table>
<thead>
<tr>
<th>Symbology</th>
<th>0 – 0.1</th>
<th>0.1 – 0.25</th>
<th>0.25 – 0.5</th>
<th>0.5 - 1</th>
<th>1+ (transparent)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Data Table](image)
Wet Areas Maps: Data Format

Model output is a floating point ESRI Raster

- Native Grid format for ESRI’s ArcGIS (ie. ArcMap)

- One floating point (decimal) value for every 1 m² cell in the landscape

- Cell values remain unchanged, but a symbology can be applied to visualize the maps. Datasets are large.

- Best format for:
 - GIS analysis
 - Input into additional planning models
Wet Areas Maps: Data Format

Model output is also supplied as Color-Mapped GeoTIFF

-Easily read by all current GIS software and image editors

-One integer (non-decimal) CODE for every 1 m2 cell in the landscape
Wet Areas Maps: Data Format

Model output is also supplied as Color-Mapped GeoTIFF

- Easily read by all current GIS software and image editors

- One integer (non-decimal) CODE for every 1 m² cell in the landscape

```
2 1 2 3 4 4 4 4 4 4 4
2 1 2 2 3 3 4 4 4 4 3
2 1 1 2 3 3 3 3 2 2
2 1 1 1 2 3 3 2 1 1
2 2 2 1 1 2 2 1 1 2 2
3 2 2 2 1 2 1 2 2 2 3
4 3 3 2 1 1 2 2 3 4
4 4 3 2 1 2 2 3 3 4
4 4 3 2 1 2 3 4 4
4 4 4 3 2 1 2 2 4 4
```
Wet Areas Maps: Data Format

Model output is also supplied as **Color-Mapped GeoTIFF**

- Easily read by all current GIS software and image editors
- One integer (non-decimal) CODE for every 1 m² cell in the landscape

![Internal Symbology Table]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 (transparent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wet Areas Maps: Data Format

Model output is also supplied as Color-Mapped GeoTIFF

- Easily read by all current GIS software and image editors
- One integer (non-decimal) CODE for every 1 m² cell in the landscape
Wet Areas Maps: Data Format

Model output is also supplied as **Color-Mapped GeoTIFF**

- Easily read by all current GIS software and image editors

- One integer (non-decimal) CODE for every 1 m^2 cell in the landscape

- Cell values are changed to “classes” and internally symbolized to visualize the maps. No additional steps required.

- Results in drastically smaller datasets (1 GB Raw Data = ~6 MB GeoTIFF)

- Best format for visualizing data quickly and efficiently
Wet Areas Maps: Data Storage

100 m² Cell

25 m² Cell

1 m² Cell
Q: How much space is required for 1,000 hectares of data?

100 m² Cell

25 m² Cell

1 m² Cell
Wet Areas Maps: Data Storage

Q: How much space is required for 1,000 hectares of data?

100 m² Cell
1 Cell
1,000 ha = 100,000 Cells
1,000 ha ~ 0.34 MB

25 m² Cell
4 Cells
400,000 Cells
1.37 MB

1 m² Cell
100 Cells
10,000,000 Cells
34 MB
Wet Areas Maps: Data Storage

Resolution vs Storage Capacity: A Tradeoff

1 m² Cell

25 m² Cell

100 m² Cell

More Storage → Less Storage
Wet Areas Maps: Data Usage

In the Office

Model output is natively read by all ESRI products
- ArcMap/ArcCatalog
- ArcGIS Server
- ArcView GIS

Model output can be converted for use in many other programs
- Shapefiles
- ASCII Raster
- TIFF/JPEG/BIL/IMG
- many others
Wet Areas Maps: Data Usage

In the Field
Catchment Area = 24.6 ha
Peak Flow Estimate = 1.88 m³/sec
Suggested Min. Culvert Diameter = 0.36m
Wet Areas Maps: Summary

-LiDAR provides the high-resolution input to Wet Areas Mapping

-Culvert data improves model output by properly “breaching” roads to maintain flow

-Wet Areas maps are topography-driven

-Wet Areas maps also predict Dry Areas

-Model Output is easily read by all common GIS software
Wet Areas Maps

Thank You

Jae Ogilvie jae.ogilvie@unb.ca