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Abstract 

Pesticides are increasingly used around the world alone with the expansion of intensive 

crop cultivation and food production.  Pesticide residues from agriculture fields being 

carried to surface and ground water impose a potential threat to the aquatic ecosystem as 

well as to human health. However, monitoring potential threat of pesticide residuals in 

river systems is expensive and difficult.  Previous studies indicated that traditionally used 

grab sampling methods could potentially underestimate the maximum concentrations of 

pesticide residues in streams by 10 to 1000 times.  The objective of this study was to assess 

pesticide loading and concentration with assistance of integrated hydrological models in 

streams of small to medium- sized watersheds.   Soil and Water Assessment Tool (SWAT) 

was selected for simulating hydrological processes together with pesticide loading and in 

stream pesticide concentration.  Model predicted pesticide loading and pesticide 

concentration was compared with three years measured data from Black Brook Watershed 

and two Sub-basins within the same watershed.  We found that the model predicted 

pesticide loading and in stream concentrations of three pesticides had the same seasonal 

trend with field surveys with some discrepancies. The discrepancies are likely caused by 

three main factors. 1. Model predicts the daily pesticide loading and daily average 

pesticide concentration and while actual pesticide concentrations change rapidly during 

stormflow period. 2. Current field sampling method could not capture the rapid change of 

pesticide concentration due to mechanical limitations. 3. Input data on exact pesticide 

application date were not available. In general, the pesticide modelling results indicate 

that the model is an effective tool in loading and concentration prediction in small 

agricultural watershed. We also found the model predicted pesticide loading during 
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baseflow period were relatively high compare with near zero pesticide concentration 

observed. This suggest there is a need to improve in pesticide routing algorithm in SWAT 

model and current estimation during based flow period should be manually adjusted.  
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Introduction 

Pesticides are widely used to reduce insect damage; control weed competition or prevent 

diseases in agriculture crop production. Pesticide residues being carried into aquatic 

system by runoff water or soil erosion could cause damages aquatic ecosystem.  For 

example, pesticide washed off from nearby agricultural field had led to many cases fish 

kills in Prince Edward Island (Standards and Use 2009). Pesticide residues in surface and 

groundwater could also threat human health (Nicolopoulou-Stamati et al 2016).  

In New Brunswick, agriculture sector is a key part of the provincial economy and 

agriculture associated pesticide issue is also a raising public concern.  According to Xing 

et al (2013), pesticide residues were detected in 17-22% of the water samples in 

watersheds that under agricultural operation from 2003-2007.  The measured 

concentrations of pesticide exceeded the Canadian council of Ministers of the 

Environment (CCME) Environmental Quality guideline with the exceedance rate range 

from 3.4 to 30%.  In fact, the pesticide issue may be more severe than reported due to the 

inherited limitations of the grab sampling method being used to conduct pesticide surveys 

in the past (Xing et al. 2013).  

As a general principle, the environmental risks of pesticide of a given pesticide in water 

is related the pesticide concentrations as well as the durations of the residue associated 

with pesticide pollution events. Pesticide concentrations in streams could be affected by 

many factors including pesticide properties, pesticide application method, environmental 

conditions and watershed characters (Wauchope and Leonard 1980). As a consequence, 

pesticide concentrations in stream are often shown complicated spatial and temporal 
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patterns. For example, high concentrations of the pesticides are often characterized as a 

short-duration pulse, with variabilities associated with the pesticides properties as well as 

hydrological characteristics of rain event (Gao et al. 2018). As a result, low sampling 

frequency such as monthly samples may miss the severe pesticide pollution event (Pinto 

et al. 2010).  However, higher sampling frequencies implies that a large number of water 

samples need to be collected in the field and analyzed in the laboratory, which is not only 

time consuming, but also expensive. As such, pesticide estimations based on the 

traditional grab sampling method with fixed time interval, or at random sampling points 

may not reflect the true severity of pesticide risks across landscape.  A more innovative 

and economical alternative approach is required to obtain the pesticide pollution 

information and using model to simulate pesticide concentration or loading is a viable 

option.  Although pesticides can be transported to non-target areas by volatilization, spray 

drift, the major mechanisms that lead to pesticide pollutions in aquatic ecosystem are 

closely associated with hydrological processes.  For this reason, models that could be used 

for predicting pesticide concentrations require a robust description of the hydrological 

processes related to pesticide transport, partitioning and transformation (Kannan et al. 

2006).  In addition, model-generated data could partially supplement the problem of 

lacking high frequency field sampling data.   

In this study, SWAT was chosen to estimate the pesticide concentration and loading 

variations. The SWAT model is a physically based, semi-distributed comprehensive 

hydrological model.  The model was developed for assessing of effects of different 

management practices on hydrological, sediment and agriculture chemicals dynamics and 

transport at watershed scale. The latest version of SWAT model incorporated several other 
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models, the Groundwater Loading Effects of Agricultural Management System 

(GLEAMS) model (Leonard et al. 1987) and the Erosion-Productivity Impact Calculator 

(EPIC) Model (Williams 1990). The SWAT model has been calibrated and validated for 

the Black Brook Watershed for hydrological and nutrient dynamic simulations in an 

earlier study (Qi et al. 2016). The general objective of this study is to use the SWAT model 

to estimate pesticide loading and pesticide concentration in small and medium sized 

watersheds.  Specific objectives include: (1) Estimate event-based pesticide 

concentrations based on pesticide monitoring records. (2) Use SWAT model to estimate 

daily mean pesticide concentrations.  (3). Assess the feasibility of using SWAT model to 

predict pesticide risks in agriculture watershed. 

Methods 

Study site 

The research was conducted in a nested watershed located in northwestern part of New 

Brunswick, Canada (47°5′to 47°9′N and 67°43′to 67°48′W).  The Black Brook watershed 

(BBW) is a sub-watershed of the Little River Watershed, and covers an area of 1450 ha. 

The elevation ranges from 127 to 432 m. Slopes range from 2% to 15% (Anon 2013). The 

annual precipitation in the BBW is approximately 1134 mm, and about one-third of the 

precipitation is in the form of snow. Up to 65% of the total area of the watershed is crop 

land. Forests cover only 21% of the land together with a small proportion pasture and 

residential areas. In 1990, the BBW was established as an experimental watershed for 

studying the effectiveness of soil conservation practices on soil erosion water quality. 

Since then, stream discharge, water level and nutrient concentration in streams have been 
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monitored, thus providing a wealth of hydrological data for this study. In this study, data 

from monitoring stations 1, 8 (2018, with a total area of 2.98 km2 where 84% is agriculture) 

and 9 (2006 to 2008, with a total area of 0.8 km2 where 93% is agricultural) were chosen 

for analysis due to the completeness of their measured streamflow and pesticide loading 

records (Figure 1.1).  

 

Figure 1. Location map of the Black Brook watershed and the Little River Watershed. 
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Figure 2. Sub-basins of Black Brook Watershed (BBW) and location of the monitoring 

stations #01 and SUB#9. 

Input data for SWAT model 

The SWAT model requires topographic, weather, soil, land use, streamflow and pesticide 

dataset as input files. Topographic data (DEM) for BBW was obtained from Service New 

Brunswick. The 1-meter DEM derived from high precision Lidar data was used to define 

flow path, watershed boundary and hydrological response units (HRUs).  
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The source of weather data was the St Leonard station (47.16°N, 67.83°W), from 

Environment and Climate Change Canada (1986 to 2015) and Fort Kent station (47.23°N, 

68.61°W), Maine United States from the National Oceanic and Atmospheric 

Administration (2015 to 2018).   

Detailed soil information and high-resolution soil map (1:10000) was provided by 

Agriculture and Agri-Food Canada (AAFC).  In BBW, there is one organic soil 

association (St. Quentin) and six mineral soil associations (Grand Falls, Interval, Siegas, 

Undine, Muniac and Holmesville) in the BBW. Compared with other soil types, 

Holmesville soils are the most extensive, accounting for about 45% of the whole 

watershed. The drainage class for Holmesville varies from imperfectly drained to well-

drained, but most poorly drained sites are forested. Siegas soils are the second most 

predominant soil type in the BBW, occupying approximately 33% of the total land. 

Similarly, its drainage class varies from very poorly (7.9 ha) to well and moderately well 

drained (202 ha) (Qi et al. 2017). St. Quentin soil (organic soil) are found in the forested 

area located in the northern part of the BBW, occupying some 24.9 ha. 

Land use information of the BBW has been recorded yearly since 1988. Generated land 

use classes include Cropland, Forest, Pasture and Residential. The most important cash 

crop in the BBW is potatoes, in rotation with corn, grain (wheat, oat and barley) and clover. 

In general, potato planting season starts in late March or April and ends in October, with 

slight variations depending on climate conditions. For SWAT model, basic crop 

information is required, such as harvest index, leaf area index and so on. Crop information 

was obtained from the built-in SWAT database, where appropriate crop parameters were 

selected for model setup. 
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Three widely used pesticides (Linuron, Chlorothalonil and Metribuzin) were selected for 

model simulation. Key physical and chemical properties of these pesticides are shown in 

Table 1. Water samples used for pesticide testing were collected from the monitoring 

stations of the BBW and sub-watershed 9 in 2008.  

Table 1. Pesticide properties of Linuron (Herbicide), Metribuzin (Herbicide) and 

Chlorothalonil (Fungicide). 

  

Partition 

coefficient (the 

concentration 

ratio between 

two media) 

Soil 

Half-life 

(Days) 

Solubility 

(mg/L) 

Foliage 

Half-life 

(Days) 

Wash-off 

Fraction  

Linuron 400 60 75 15      0.6 

Chlorothalonil 1380 30 0.6 10      0.5 

Metribuzin 60 40 1220 5      0.8 

 

Pesticide monitoring 

Automatic water sampler (ISCO 2900 sampler) coupled with a flow-monitoring system 

was installed to collect pesticide samples at outlets 1, 8, and 9 (Figure 1.2).  The ISCO 

2900 sampler can accommodate twelve 2-L amber bottles for sample collection, and a 

CR10X data logger (Campbell Scientific, Logan, UT, USA) was installed and programed 

to trigger water sample collection based on water level changes. Flow rates were measured 

at 5-min intervals and recorded on an hourly basis during non-rainfall periods when the 

change of water level was less than 2 cm. Flow rates were recorded more frequently, less 

than one hour, when water level change was more than 2 cm during heavy rain events. In 

this study, the event-based sampling method was adopted for pesticide sample collection. 

Based on the analysis of previous years’ water level variations, the auto-sampler was 

activated by the data logger to take water sample at every 3 cm change in water level in 
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the BBW station in 2006 and 2008, and every 5 cm change in water level in Sub-watershed 

9 station in 2006 and 2008 (Xing et al. 2013). In 2018, the sampler was set to take water 

samples at every 5 cm change in water level in both Sub-watershed 8 station and the BBW 

station.  

Collected water samples were stored in cool and dark places and then forwarded to the 

Atlantic Laboratory for Environmental Testing (ALET) for analysis. In 2006 and 2008, 

one insecticide, two fungicides and two herbicides were analyzed. In 2018, one insecticide, 

one fungicide and two herbicides were analyzed. However, considering the pesticide 

application amounts and rates, only one fungicide (Chlorothalonil) and two herbicides 

(Metribuzin and Linuron) were selected for modelling purpose. All pesticides were 

separated and measured by using gas chromatography- mass spectrometer (GC-MS) 

analysis. It should be noted that pesticide concentration analysis is supposed to be 

performed on both filtered and unfiltered extracts of the same water sample. However, 

only dissolved pesticide concentrations were analyzed and discussed in this study because 

of the larger proportion of dissolved pesticides in streams (Table 2). Also, attached 

pesticides were not discussed here because only the amount of dissolved pesticides was 

analyzed in 2018.  

Table 2. Maximum, minimum and average percentages of dissolved pesticide (µg/L) 

/total pesticide (µg/L) in the Little River watershed 

 2006   2007   

Pesticide Max Min Average Max Min Average 
Chlorothalonil 99.57% 28.57% 87.70% 96.03% 18.84% 67.18% 
Linuron 99.25% 40.39% 83.50% 92.30% 38.76% 69.54% 
Metribuzin 98.57% 87.70% 94.42% 99.04% 86.50% 92.36% 
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Pesticide loading and concentration calculation 

Event-based loading (Le) was calculated according to pesticide concentration and flow 

rate during rain events: 

 Le = ∑ (ci𝑡𝑖𝑓𝑖)n
1  (1) 

where 𝑐𝑖 is the pesticide concentration of the ith sample, 𝑡𝑖  is the recorded time interval, 

𝑓𝑖  is the instantaneous flow rate at the time of the ith sample being sampled and n is the 

number of samples per rainfall event. 

Daily pesticide loadings were also calculated with the same method.  

The mean pesticide concentrations during event (MC) was also calculated by event-based 

pesticide loading and total stream discharge of the event:  

MC =
Le

∑ (𝑡𝑖∗𝑓𝑖
𝑛
1 )

     (2) 

where 𝑡𝑖 is the recorded time interval, 𝑓𝑖 is the instantaneous flow rate at the time of the 

ith sample being sampled and n is the number of samples per rainfall event.  

Daily mean pesticide concentrations were calculated in the same method.  

Calibration and validation 

The SWAT model is a process-based model with some pre-set parameters for hydrological 

and nutrient simulations. However, considering diverse climate and geological conditions 

in different watersheds, calibrations are necessary to obtain adequate prediction accuracy.  
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The hydrological processes of the SWAT model was calibrated with monthly base flow 

and total discharge for the period 1992 to 2001 in the BBW station (Qi et al. 2017). Then, 

the model was validated by using monthly streamflow discharge for the period 2002 to 

2011. Further detailed information about model calibration and validation can be found in 

Qi et al. (2017).  

The measured event-based pesticide concentration data of 2006 and 2008 were used for 

calibration and validation of the pesticide module of SWAT model. Pesticide 

concentration calibration was done by adjusting pesticide property parameters listed in 

Table 3.  

Table 3. Final values of SWAT calibration parameters for pesticide concentration   

simulation. 

Parameters Unit SWAT Name Chlorothalonil Linuron Metribuzin 
Soil Adsorption 

coefficient 
Ratio SKOC 1380 500 80 

Wash-off fraction Ratio WOF 0.5 0.6 0.8 
Foliar half-life Days HLIFE_F 5 10 5 
Soil half-life Days HLIFE_S 15 20 10 
Pesticide solubility mg/L WSOL 0.6 75 1220 

 

Evaluation criteria 

The Nash–Sutcliffe efficiency (NSE) and the coefficient of determination (R2) were used 

for evaluating model performance on hydrological predictions (2006, 2008 and 2018). 

The NSE is a coefficient that  measures how well a model simulation matches the observed 

data (Scott et al. 2008). The range of NSE lies between -∞ and 1 (perfect fit) (Scott et al. 

2008). The R2 is a commonly used statistical measure of the correlation between observed 

and predicted values. The R2 value ranges between 0 and 1, with a value of 0 indicating 

no correlation and a value of 1 representing perfect fit.  As the measured data was 
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insufficient to obtain a reliable estimation of daily pesticide loading that required to 

compare with SWAT model prediction, the model performance in pesticide simulation 

was mainly assessed by visual inspection.  

Results 

Hydrological calibration and validation 

Predicted and measured daily flow rate are shown in Figures 1.3-5, and calculated NSE 

and R2 for model predicted flow rate are listed in Table 1.4. There was a slight 

overestimation of flow rates during the peak flow period (around April 2006, Figure 1.3).  

In 2008, however, there were a underestimation of peak flow during the during the same 

season. These results indicated that model prediction of snow melting could be improved. 

However, there were no pesticide applications during snow melting season and the small 

discrepancies would have little impacts on pesticide assessment.  In general, the SWAT 

model predicted flow rate follows the observed trends quite well during the three-year 

period (Figures 1.3-5). The NSE for stream flow ranged between 0.695 to 0.724 in 2006, 

2008 and 2018. The R2 ranged between 0.709 to 0.809 in 2006, 2008 and 2018, which 

indicated an acceptable model performance. Despite the discrepancies between the 

measured and simulated streamflow during snow melting seasons, the overall hydrologic 

performance of SWAT model can be considered as satisfactory for pesticide assessment 

based on both the statistical and graphical evaluation.   
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Table 4. SWAT performance statistics for daily discharge in the BBW (2006, 2008 and     

2018). 

            BBW          

Year   
NSE R2 

2006 0.724 0.748 
2008 0.695 0.709 
2018 0.695 0.879 

 

 

Figure 3. Measured and simulated daily streamflow in the BBW in 2006. 
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Figure 4. Measured and simulated daily streamflow in the BBW in 2008. 

 

Figure 5. Measured and simulated daily streamflow in the BBW in 2018. 

Pesticide loading  

The measured and SWAT-predicted soluble pesticide loadings, and observed flow rates 

in the BBW are shown in  
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Figure 6-Figure 8. Overall, the SWAT-predicted loadings matched well with the measured 

data during the whole growing season, with few exceptions in heavy storms.  

In 2006, the SWAT model showed satisfactory performance in metribuzin and linuron 

loading predictions in the BBW, while the predicted Chlorothalonil loadings were higher 

than observed values for some rain events at the beginning of the growing season. For 

Linuron and Metribuzin, the model successfully simulated peaks for most of the 

simulation period; the exception was for Linuron at day 180 when the model 

underestimated Linuron loading compared to the measured data. For Chlorothalonil, the 

model simulated well in the timing of peak pesticide emission although the magnitude of 

prediction needs further improvement. 

 

Figure 7 shows a good agreement between measured and SWAT-predicted Chlorothalonil 

and Linuron loadings in the BBW. However, for Metribuzin, the predicted loadings were 
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three times higher than measured ones at the first two rain events. In 2018, the model 

predicted pesticide loadings were almost four times higher than measured ones for the 

three sampled rain events. However, due to the low sample size, we cannot determine 

whether SWAT model failed in capturing pesticide loading variation pattern for 2018.  

 

 

 

Figure 6. Observed event-based dissolved pesticide loadings and SWAT-predicted 

dissolved daily pesticide loadings in the BBW for 2006. 
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Figure 7. Observed event-based dissolved pesticide loadings and SWAT-predicted 

dissolved daily pesticide loadings in the BBW for 2008. 

 

 

 

 

 

 

 

 

 



17 

 

 

Figure 8. Observed event-based dissolved pesticide loadings and SWAT-predicted 

dissolved daily pesticide loadings in the BBW for 2018.  
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Measured and predicted pesticide loadings in Sub-watershed 9 (2006 and 2008) and Sub-

watershed 8 (2018) are shown in 

 

Figure 9-Figure 11. The SWAT model produced pretty good predictions in Metribuzin 

and Linuron loadings in 2006. As for Chlorothalonil, the SWAT model captured the 

timing of peak loading while the predicted values were lower than observed ones. Similar 

phenomenon also occurred in pesticide loading predictions in 2008 and 2018, when model 

predicted values were much lower than observed ones at the beginning of the growing 

seasons. In addition, it is interesting to note that measured Chlorothalonil and Metribuzin 

loadings were much lower than predicted values at day 218 and 220 in 2018 when sharp 

rise in water levels was recorded. Although poor simulations were obtained for 

Chlorothalonil in 2006, it might be attributed to potential wrong pesticide application data. 

Chlorothalonil was frequently used in the field to protect crop from fungi disease, and 
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sometimes farmers may mistake the application date. According to Boithias et al. (2014), 

even a small error in pesticide application date can cause significant discrepancies in 

model simulation results. Generally, pesticides with fewer application times tend to have 

a better performance in model predictions, like Linuron and Metribuzin.  The two 

pesticides are both herbicides and were applied only one to two times in the entire growing 

season.  

 

Figure 9. Observed event-based dissolved pesticide loadings and SWAT-predicted 

dissolved daily pesticide loadings in Sub-watershed 9 for 2006.  
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Figure 10. Observed event-based dissolved pesticide loadings and SWAT-predicted 

dissolved daily pesticide loadings in Sub-watershed 9 for 2008.  
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Figure 11. Observed event-based dissolved pesticide loadings and SWAT-predicted 

dissolved daily pesticide loadings in Sub-watershed 8 for 2018.  

Pesticide concentration in streams 

The measured dissolved pesticide concentrations are event-based values and were 

calculated by using the equation (1) and (2) for each rain event. Although SWAT has the 

capability to simulate both dissolved and attached concentrations of pesticides, only 

dissolved phased pesticide concentrations were calculated to make the measured and 

predicted data comparable. The SWAT predicted pesticide concentrations were calculated 

with the daily pesticide loading (mg) divided by the total daily discharge (m3).  As such, 

the predicted pesticide concentration reflects daily average concentration. 
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Good agreement between measured and SWAT-predicted Metribuzin and Linuron 

concentrations was observed in the BBW in 2006. As for Chlorothalonil, the general 

pesticide concentration variation trend was followed, and the only exception occurred at 

day 192 when the simulated Chlorothalonil concentration was greatly underestimated 

compared with measured data.  

In 2008, the simulated Chlorothalonil concentrations did not match well with the 

measured data, especially between day 210 to 225. The simulated Chlorothalonil 

concentration was higher than observed ones at day 214 and 215, and lower at day 221. 

Predicted Linuron and Metribuzin concentrations showed a good agreement with the 

measured data except for day 174. The simulated concentrations of Metribuzin and 

Linuron were both underestimated in this rain event.  

In 2018, pesticide concentration data were not adequate to observe its seasonal trend since 

only three rain events were successfully monitored in the BBW. Besides, the predicted 

pesticide concentrations were significantly larger than measured values for all the three 

pesticides (Chlorothalonil, Metribuzin and Linuron) at day 220, which showed 

consistency in pesticide loading variation trend in 2018.  

 

 

 

 

 

 

 

 



23 

 

 

Figure 12. Observed event-based mean pesticide concentrations and SWAT-predicted 

dissolved daily mean pesticide concentrations in the BBW for 2006.  
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Figure 13. Observed event-based mean pesticide concentrations and SWAT-predicted 

dissolved daily mean pesticide concentrations in the BBW for 2008. 
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Figure 14. Observed event-based dissolved pesticide concentrations and SWAT-

predicted dissolved daily pesticide concentrations in the BBW for 2018. 

Sub-watershed 9 monitoring station was not operated in 2018, so Sub-watershed 8 station 

was selected to continue pesticide monitoring task. Thus, the three graphs below are not 

strictly comparable because the SWAT model was run for two slightly different 

watersheds.   

In general, there was a good match between observed and simulated pesticide 

concentrations in Sub-watershed 9 in 2006 for Metribuzin and Linuron. The 

Chlorothalonil concentrations were greatly underestimated at day 169 and day 190, when 

the measured concentrations were much higher than predicted ones, up to 200 µg L-1 and 

189 µg L-1 at day 169 and 190, respectively. In the case of Chlorothalonil, the possible 

reason for the poor result at day 169 may be attributed to wrong model input data. The 
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first model predicted peak loading for Chlorothalonil occurred at day 181, and normally 

during a rain event, the surface runoff can wash off pesticide residues from soil and foliage 

into surface runoff (Topaz et al. 2018). Thus, it is almost impossible that with correct 

application data, the predicted pesticide concentration was almost 200 times lower than 

measured data after a rain event.  

In 2008, the concentrations of Chlorothalonil, Metribuzin and Linuron were all 

underestimated at day 177.  This phenomenon can probably be attributed to the difference 

between measured and simulated flow rate. There was a spike in measured flow rate at 

day 177 while no fluctuations shown in SWAT-predicted daily flow rate. The measured 

flow rate (approximately 0.014 CMS) was threefold higher than the simulated value 

(approximately 0.004 CMS) at day 177.  

The 2018 to 2019 hydrological year was dry, and water level was very low at the Sub-

watershed 8 station. Recorded stage height was negative for some samples collected at 

weir station 8, which means that there was no continuous flow over the V-notch during 

the sample collection process, and only the pool before the weir was filled with water. 

Therefore, the data collected from weir station 8 were considered error-prone and were 

not recommended for quantitative analysis, and it is obvious that some extreme values 

occurred in measured data. For example, the Linuron concentration at day 180 was greatly 

underestimated in SWAT model by up to two order of magnitude. And for the same rain 

event (day 180), the observed Metribuzin and Chlorothalonil concentration were much 

higher than predicted ones as well. Another possible explanation for these extreme values 

was that the pesticide properties have changed over the ten-year period. In this study, the 

pesticide data were compared for 2006, 2008 and 2018, and it is most likely that the 
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pesticide manufacturer improved some physical or chemical properties to increase 

pesticide efficiencies. Thus, the old SWAT dataset might be outdated, and the pre-

calibrated model may not perform well in 2018. 

 

 

Figure 15. Observed event-based dissolved pesticide concentrations and SWAT-

predicted dissolved daily pesticide concentrations in the Sub-watershed 9 for 

2006.  

 

 

 

 

 

 

 



28 

 

 

 

Figure 16. Observed event-based dissolved pesticide concentrations and SWAT-

predicted dissolved daily pesticide concentrations in Sub-watershed 9 for 

2008.  
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Figure 17. Observed event-based dissolved pesticide concentrations and SWAT-

predicted dissolved daily pesticide concentrations in Sub-watershed 8 for 

2018.  

 

 

Discussion 

Uncertainties of event-based pesticide loading and concentration estimation 

Quantification of pesticide concentrations in a rain event plays an important role in water 

quality assessment and hydrologic model setup (Cha et al. 2010). In reality, although the 

flow rate can be measured near-continuously, the pesticide concentration data is often 

derived from discrete sampling method which contains lots of data gaps (Novic et al. 



30 

 

2018).  Therefore, it is important to understand the uncertainties associated with pesticide 

concentration estimation.  

Variations of pesticide concentrations during one rain event 

Figure 18Error! Reference source not found. shows some typical pesticide 

concentration distributions on different rain events sampled in 2006, which gives an 

insight on inter-storm pesticide concentration variability. Flow rate and pesticide 

concentration were plotted over time to explore their relationships.  

Two of the four plots (A and B) show first flush effect, which means the initial storm 

water received by stream channel is the most polluted (Stenstrom and Kayhanian 2005). 

It is obvious that in the two graphs, the maximum pesticide concentration occurred earlier 

than the peak flow rate. Schiff and Sutula (2001) observed similar phenomenon in 

diazinon in urban southern California watersheds. The occurrence of first flush effect 

mainly depends on two factors: watershed size and the mobility of pesticide. In large 

watersheds, the travel time of runoff from various places is quite different. This time lag 

leads to the mixture of a small amount of pesticide with a significant amount of streamflow, 

where pesticides are diluted. For pesticides have higher solubility, first flush effect is 

much more likely to be observed because storm water can move them easily at the 

beginning of rain event (House and Warwick 1998). Considering this unique phenomenon, 

it is obvious that if pesticide samples were not collected as quickly as possible to capture 

the rapid concentration variation, then the total pesticide loading calculated by equation 

(1)  is error-prone to a certain degree. Since the first flush effect is quite common in small-

sized watershed (Stenstrom and Kayhanian 2005), the discrepancy between measured and 
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predicted 2008 pesticide loading and concentration (Chlorothalonil, Metribuzin and 

Linuron)  in Sub-watershed 9 may be attributed to it.  

In contrast, graph (C) shows a different pesticide concentration distribution pattern. In this 

case, the Chlorothalonil concentration peaked on the falling limb and then gradually 

decreased. The maximum flow rate in graph (C) was around 0.4 CMS, which was lower 

than that in graph (A) and (B) (around 2.5 CMS), indicating that the characteristics of 

rainfall (amount, intensity and duration) may influence pesticide transport (Leecaster, 

Schiff, and Tiefenthaler 2002). In other words, pesticides are more prone to wash-off in 

heavy storm events. The disagreement between measured and predicted 2008 pesticide 

concentration for the first sampled event in Sub-watershed 9 may also be explained by 

rainfall property difference. Since daily rainfall intensity data were not available in this 

study, a built-in storm pattern was used for SWAT simulation. It was reported that runoff 

and sediment yields were strongly affected by rainfall intensity (Mohamadi and Kavian 

2015). Thus, high-intensity rainfall events that yield large quantities of surface runoff over 

relatively short time periods might result in marked differences between observed and 

predicted pesticide concentration. This inference can be applied well in the case of rain 

event at day 178 in Sub-watershed 9 in 2008.  

Graph (D) shows that sometimes collected water samples do not adequately represent the 

original hydrograph, which may result in errors in pesticide concentration estimation. The 

samples collected in this rain event did not cover the entire hydrograph. In other words, 

there were some missing periods in the pesticide concentration data while flow rate data 

were available. Although linear interpolation was applied to treat these data gaps, the 

missing data may still cause adverse effects on pesticide concentration calculation.  
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Therefore, it is a challenge for researchers to develop an economic sampling strategy to 

use as few of samples as possible and still represent the whole hydrograph.  

 

 

Figure 18. Time–concentration series of Chlorothalonil distribution patterns during 

different storm events in the BBW in 2006. 

Potential impacts of pesticide properties on pesticide distribution pattern 

Pesticide properties (toxicity, persistence, volatility, solubility and soil adsorption) can 

affect a pesticide’s potential to pollute water. The water solubility of a pesticide 

determines how easily it goes into solution with water. However, simply being water 

soluble does not mean that a pesticide will be washed off into surface water because the 

concentration of pesticide in streams depends on many factors, such as pesticide 

application method, rainfall intensity and pesticide half-life (Haith and Duffany 2007). 

Some pesticides must be somewhat soluble in order to work properly. The solubilities for 

Chlorothalonil, Linuron and Metribuzin are 0.6, 75, 1220 mg/L, respectively. As 

discussed before, generally, the first flush effect is more likely to occur for those pesticides 
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with large solubility. However, the situation varies from case to case. As shown in Figure 

19, the Metribuzin did not show the first flush effect at day 160 (graph A) while the first 

flush effect occurred at day 179 (graph B) and day 201 (C). Figure 20. showed that there 

was no obvious first flush effect at day 160 (graph A) and day 215 (graph D) for Linuron. 

A reasonable explanation for this phenomenon is that the flow rate may have great impacts 

on pesticide concentration distribution. It is noteworthy that the peak flow rates for 

Metribuzin and Linuron in graph B and C were both at least four times larger than that of 

graph A. Namely, the first flush effect can easily occur when soluble pesticides were 

washed off into surface flow with large quantities of rainfall. Based on this assumption, 

the distribution pattern for Chlorothalonil (graph A and B) can be well explained. In other 

words, if the flow rate is large enough with large quantities pesticides being transported 

into surface water, even the insoluble pesticides can show the first flush effect. Overall, 

pesticide properties do have effects on in-stream pesticide distribution, but the actual 

pesticide distribution pattern is results resulting from combined effects of various 

environmental factors.   
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Figure 19. Time–concentration series of Metribuzin distribution patterns during different 

storm events in the BBW in 2006. 
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Figure 20. Time–concentration series of Linuron distribution patterns during different 

storm events in the BBW in 2006. 

Overall, the pesticide load and concentration dynamics during a single rain event can be 

influenced by various factors, such as pesticide properties, rainfall intensity and 

hydrologic characteristics (Pinto et al. 2010); (Lefrancq et al. 2017a). Unfortunately, it is 

still not clear that how each controlling factor contributes to the pesticide chemo graph, 

which may cause uncertainties in load and concentration estimation. Therefore, the 

reliability of measured pesticide loading and concentration data needs to be taken into 

account when comparing SWAT-predicted data with observed ones.  

Limitations in pesticide sampling strategy  

Periods of high flow can deliver significant portions of pesticides to streams (Jordan et al. 

2012). In this case, the stream receives large quantities of water discharge and a quick rise 

of water level will trigger the auto-sampler to take samples via the pre-installed pipe.  For 

those small to medium-sized watersheds, since the stage height tends to rise very quickly 

(A) 

 

 

(B) 

 

(C) 

 

(D) 
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after rainfall, auto-sampler is unable to respond to the quick change of water levels and 

some high data points might be missing from sample collections. We used hydrograph-

based sampling method for sample collections in the three monitoring sites. However, for 

Sub-watershed 9 and 8, although the datalogger was set to trigger sample collection at 

every 5 cm stage height change, the recorded stage height data shows that most samples 

were taken at every 7 or 8 cm stage height change. In other words, due to technical issues, 

the current sampling strategy failed to cover the whole hydrograph in some rain events, 

especially those extreme rain events.  

Sampling methods also have great effects on pesticide concentration estimation. In this 

study, some samples were collected by using the cost-effective composite sampling 

approach in 2018. The composite samples were made by thoroughly mixing several 

discrete samples collected during one single rain event, and then the whole composite 

samples were delivered for laboratory analysis. The composite sampling approach is a 

powerful option to increase sampling capacity when facing the budget constraint. 

However, the composite samples represented an average of several pesticide 

concentration measurements and no information about the concentration variability 

among the original samples was obtained. Reduced information on the distribution of 

inner-event pesticide behavior may limit the study of pesticide transport mechanisms and 

add uncertainties to concentration estimation (Farkas et al. 2014). Another concern about 

the composite sampling is that subsamples were manually composited to create a new 

composite sample, which may introduce errors due to operational errors during the 

combination process.  Some extreme pesticide concentration values occurred in 2018 



37 

 

sampling dataset, such as the concentration of Linuron (695 µg L-1) at day 179 in Sub-

watershed 8, which might be explained by human error in sample collection. 

Limitations in concentration and loading calculation method 

While continuous measurement of stream discharge can be achieved for the entire rain 

event, there were still some missing periods in the pesticide sample collection. Linear 

interpolation was adopted to treat these missing sampling points. The potential errors 

caused by this method should be taken into account when compared with the observed 

data.  

Input data accuracy 

It is noteworthy that compared with Metribuzin and Linuron, the variation trends of 

Chlorothalonil concentration and loading were relatively hard for SWAT model to capture, 

especially in the middle of growing season. The main reason is Chlorothalonil is a broad-

spectrum organochlorine pesticide and was applied 8 times on average in the whole 

growing season in the BBW and sometimes the application dates on pesticide survey were 

simply recorded as 8 times, instead of their accurate application dates. In this case, the 

application dates were evenly assigned throughout the growing season, which can 

introduce errors to the model. As noted in Cambien (2017) and Boithias et al. (2014), 

knowing accurate pesticide application dates plays an important role in concentration and 

loading prediction. Since the impact of pesticide application data on pesticide transport 

and concentration estimation is not negligible (Watanabe and Takagi 2000) (Malone et al. 

2004), inaccurate input data may lead to some unreasonable simulation results as shown 

in Chlorothalonil modelling results. Considering this limitation, SWAT predictions might 
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be improved if more accurate information on application dates can be obtained from 

farmers. 

Potential SWAT algorithmic problem  

Models are used by scientists to explain and predict the behavior of real objects. However, 

sometimes the reality is too complex to be perfectly simulated. In this case, a model is a 

simplified representation of a system that may have slight discrepancies with the real 

world. Xing et al. (2013) reported that pesticide concentrations analyzed in base-flow 

detections were generally zero or below detection limits. However, it is obvious that the 

SWAT-simulated pesticide concentrations usually reached the peak concentration during 

rain events and then gradually decreased, and the predicted concentration was much 

higher than detection limits during the whole base-flow period for all the three pesticides 

(Chlorothalonil, Metribuzin and Linuron). The gradual decrease of predicted pesticide 

concentration curve was generated in SWAT by using a continuous smooth function, 

which leads to concentration and loading overestimation in those non-rain events. 

Therefore, we have enough reasons to doubt whether the SWAT model can be applied for 

pesticide estimation in non-rainfall days. 

 

 

Conclusions and Recommendations 

In this study, the SWAT model hydrologic and pesticide routines were assessed for their 

effectiveness in predicting stream discharge and in-stream pesticide concentrations in the 

BBW. The hydrologic module was calibrated and validated against the best available data 
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by Qi et al. (2017). The satisfactory statistical results and visual inspection of the flow 

time series graph indicated that the SWAT hydrologic prediction were reasonable. 

Pesticide module calibration was conducted for 2006, and validation was conducted for 

2008 and 2018. In general, the variation patterns of pesticide loading and concentration 

were well simulated compared to the measured data though some discrepancies were 

observed for baseflow monitoring days.  Pesticides with high application rate 

(Chlorothalonil) tended to have a more complex variation pattern and sometimes were 

hard for the model to simulate. Overall, the simulated result indicated that the model was 

capable of producing satisfactory predictions of pesticide loading and concentration in 

small watersheds. Our study has also highlighted the variability of pesticide chemo graph 

patterns and the extent to which this variability can affect pesticide loading and 

concentration estimation. The fate of pesticides is a complex process and the mechanism 

of in-stream pesticide dynamics is still not clear. In the future, by improving pesticide 

monitoring strategies and model optimization, we can gain a better understanding of how 

pesticides are transported in runoff and corresponding influence factors during this 

process.  

This study compared the event-based measured pesticide data with SWAT-predicted daily 

loading and concentration data, and showed that rain event can lead to high fluxes of 

pesticides exported to the outlet of watersheds. It has been proved that the majority of 

pesticides exhibited rapid concentration variations during the flood event (Lefrancq et al. 

2017b). However, in this study pesticide transport was studied on the scale of daily 

modelling, and further study needs to be done to better understand the contribution of 

runoff, interflow and groundwater in pesticide transport process. By using high frequency 
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sampling method, inner-event pesticide concentration data can be obtained. Based on solid 

measured data, hydrograph separation technique might be a solution for pesticide dynamic 

hydrological characterisation.  
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Appendixes 

Appendix A. Example of raw hydrological and pesticide sampling dataset 

The hydrology and pesticide data in this study were obtained by using automatic water 

samplers and dataloggers to monitor water level changes and trigger sampling process. 

Table 5. is a supplementary table that shows how autosampler was set to collect pesticide 

samples based on changing water levels. The first two columns show the water monitoring 

system recorded real time (Julian date) and corresponding recorded flow rates (CMS), 

respectively. The third column shows the time interval between two consecutive recorded 

flow rates, where we can see that the time interval was nearly one hour when there was 

no precipitation and it reduced to five minutes or so when flow rates start increasing during 

a rain event. As stated before, flow rates were recorded at a five-minute interval when 

water level change is more than 2 cm. And autosampler was set to be triggered by a fixed 

water level change, which depends on specific watersheds. The potential problem of this 

sampling method is that autosampler may fail in capturing the peak pesticide 

concentration during a heavy rain event when the water level changes rapidly during a 

relatively short period since the minimum sampling time interval is five minutes. Besides, 

these is a delay between the timing of pesticide collections and recorded flow rate since 

drawing water from the river takes time.  
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Table 5. An example of raw hydrological and pesticide sampling data for the BBW in 

2006. 

Julian 

date 

Flow rate 

(CMS) 

 Time interval 

between recorded 

flow rates 

(minutes) 

Measured Pesticide Concentration (ug/L) 

Chlorothalonil Metribuzin Linuron 

179.583 0.103 59.990 
  

  

179.625 0.103 60.005 
  

  

179.667 0.103 60.005 
  

  

179.708 0.103 59.990 
  

  

179.743 0.111 50.011 
  

  

179.747 0.125 4.997 0 0 1.62 

179.750 0.143 4.997 
  

  

179.753 0.158 4.997 0 0 7.16 

179.757 0.185 4.997 
  

  

179.760 0.246 5.011 0 0 8.02 

179.764 0.387 4.997 1.62 0.3 8.3 

179.767 0.592 4.997 30.94 1.88 30.1 

179.771 0.735 4.997 306 6.55 10.86 

179.774 0.852 5.011 348 5.24 4.35 

179.778 1.124 4.997 179.5 3.28 6.95 

179.781 1.434 4.997 30.94 1.88 30.1 

179.785 1.760 4.997 8.08 1.72 39.7 

179.788 1.965 4.997 3.74 2.28 26.63 

179.792 2.109 5.011 
  

  

179.795 2.182 4.997 0.13 1.61 5.83 
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