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Abstract

Pesticides are increasingly used around the world alone with the expansion of intensive
crop cultivation and food production. Pesticide residues from agriculture fields being
carried to surface and ground water impose a potential threat to the aquatic ecosystem as
well as to human health. However, monitoring potential threat of pesticide residuals in
river systems is expensive and difficult. Previous studies indicated that traditionally used
grab sampling methods could potentially underestimate the maximum concentrations of
pesticide residues in streams by 10 to 1000 times. The objective of this study was to assess
pesticide loading and concentration with assistance of integrated hydrological models in
streams of small to medium- sized watersheds. Soil and Water Assessment Tool (SWAT)
was selected for simulating hydrological processes together with pesticide loading and in
stream pesticide concentration. Model predicted pesticide loading and pesticide
concentration was compared with three years measured data from Black Brook Watershed
and two Sub-basins within the same watershed. We found that the model predicted
pesticide loading and in stream concentrations of three pesticides had the same seasonal
trend with field surveys with some discrepancies. The discrepancies are likely caused by
three main factors. 1. Model predicts the daily pesticide loading and daily average
pesticide concentration and while actual pesticide concentrations change rapidly during
stormflow period. 2. Current field sampling method could not capture the rapid change of
pesticide concentration due to mechanical limitations. 3. Input data on exact pesticide
application date were not available. In general, the pesticide modelling results indicate
that the model is an effective tool in loading and concentration prediction in small

agricultural watershed. We also found the model predicted pesticide loading during



baseflow period were relatively high compare with near zero pesticide concentration
observed. This suggest there is a need to improve in pesticide routing algorithm in SWAT

model and current estimation during based flow period should be manually adjusted.
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Introduction

Pesticides are widely used to reduce insect damage; control weed competition or prevent
diseases in agriculture crop production. Pesticide residues being carried into aquatic
system by runoff water or soil erosion could cause damages aquatic ecosystem. For
example, pesticide washed off from nearby agricultural field had led to many cases fish
kills in Prince Edward Island (Standards and Use 2009). Pesticide residues in surface and

groundwater could also threat human health (Nicolopoulou-Stamati et al 2016).

In New Brunswick, agriculture sector is a key part of the provincial economy and
agriculture associated pesticide issue is also a raising public concern. According to Xing
et al (2013), pesticide residues were detected in 17-22% of the water samples in
watersheds that under agricultural operation from 2003-2007. The measured
concentrations of pesticide exceeded the Canadian council of Ministers of the
Environment (CCME) Environmental Quality guideline with the exceedance rate range
from 3.4 to 30%. In fact, the pesticide issue may be more severe than reported due to the
inherited limitations of the grab sampling method being used to conduct pesticide surveys

in the past (Xing et al. 2013).

As a general principle, the environmental risks of pesticide of a given pesticide in water
is related the pesticide concentrations as well as the durations of the residue associated
with pesticide pollution events. Pesticide concentrations in streams could be affected by
many factors including pesticide properties, pesticide application method, environmental
conditions and watershed characters (Wauchope and Leonard 1980). As a consequence,

pesticide concentrations in stream are often shown complicated spatial and temporal



patterns. For example, high concentrations of the pesticides are often characterized as a
short-duration pulse, with variabilities associated with the pesticides properties as well as
hydrological characteristics of rain event (Gao et al. 2018). As a result, low sampling
frequency such as monthly samples may miss the severe pesticide pollution event (Pinto
et al. 2010). However, higher sampling frequencies implies that a large number of water
samples need to be collected in the field and analyzed in the laboratory, which is not only
time consuming, but also expensive. As such, pesticide estimations based on the
traditional grab sampling method with fixed time interval, or at random sampling points
may not reflect the true severity of pesticide risks across landscape. A more innovative
and economical alternative approach is required to obtain the pesticide pollution
information and using model to simulate pesticide concentration or loading is a viable
option. Although pesticides can be transported to non-target areas by volatilization, spray
drift, the major mechanisms that lead to pesticide pollutions in aquatic ecosystem are
closely associated with hydrological processes. For this reason, models that could be used
for predicting pesticide concentrations require a robust description of the hydrological
processes related to pesticide transport, partitioning and transformation (Kannan et al.
2006). In addition, model-generated data could partially supplement the problem of

lacking high frequency field sampling data.

In this study, SWAT was chosen to estimate the pesticide concentration and loading
variations. The SWAT model is a physically based, semi-distributed comprehensive
hydrological model. The model was developed for assessing of effects of different
management practices on hydrological, sediment and agriculture chemicals dynamics and

transport at watershed scale. The latest version of SWAT model incorporated several other



models, the Groundwater Loading Effects of Agricultural Management System
(GLEAMS) model (Leonard et al. 1987) and the Erosion-Productivity Impact Calculator
(EPIC) Model (Williams 1990). The SWAT model has been calibrated and validated for
the Black Brook Watershed for hydrological and nutrient dynamic simulations in an
earlier study (Qi et al. 2016). The general objective of this study is to use the SWAT model
to estimate pesticide loading and pesticide concentration in small and medium sized
watersheds. Specific objectives include: (1) Estimate event-based pesticide
concentrations based on pesticide monitoring records. (2) Use SWAT model to estimate
daily mean pesticide concentrations. (3). Assess the feasibility of using SWAT model to

predict pesticide risks in agriculture watershed.

Methods

Study site

The research was conducted in a nested watershed located in northwestern part of New
Brunswick, Canada (47°5'to 47°9'N and 67°43'to 67°48'W). The Black Brook watershed
(BBW) is a sub-watershed of the Little River Watershed, and covers an area of 1450 ha.
The elevation ranges from 127 to 432 m. Slopes range from 2% to 15% (Anon 2013). The
annual precipitation in the BBW is approximately 1134 mm, and about one-third of the
precipitation is in the form of snow. Up to 65% of the total area of the watershed is crop
land. Forests cover only 21% of the land together with a small proportion pasture and
residential areas. In 1990, the BBW was established as an experimental watershed for
studying the effectiveness of soil conservation practices on soil erosion water quality.

Since then, stream discharge, water level and nutrient concentration in streams have been



monitored, thus providing a wealth of hydrological data for this study. In this study, data
from monitoring stations 1, 8 (2018, with a total area of 2.98 km? where 84% is agriculture)
and 9 (2006 to 2008, with a total area of 0.8 km? where 93% is agricultural) were chosen
for analysis due to the completeness of their measured streamflow and pesticide loading

records (Figure 1.1).
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Figure 1. Location map of the Black Brook watershed and the Little River Watershed.
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Figure 2. Sub-basins of Black Brook Watershed (BBW) and location of the monitoring

stations #01 and SUB#9.

Input data for SWAT model

The SWAT model requires topographic, weather, soil, land use, streamflow and pesticide
dataset as input files. Topographic data (DEM) for BBW was obtained from Service New
Brunswick. The 1-meter DEM derived from high precision Lidar data was used to define

flow path, watershed boundary and hydrological response units (HRUS).



The source of weather data was the St Leonard station (47.16N, 67.83<W), from
Environment and Climate Change Canada (1986 to 2015) and Fort Kent station (47.23N,
68.61), Maine United States from the National Oceanic and Atmospheric

Administration (2015 to 2018).

Detailed soil information and high-resolution soil map (1:10000) was provided by
Agriculture and Agri-Food Canada (AAFC). In BBW, there is one organic soil
association (St. Quentin) and six mineral soil associations (Grand Falls, Interval, Siegas,
Undine, Muniac and Holmesville) in the BBW. Compared with other soil types,
Holmesville soils are the most extensive, accounting for about 45% of the whole
watershed. The drainage class for Holmesville varies from imperfectly drained to well-
drained, but most poorly drained sites are forested. Siegas soils are the second most
predominant soil type in the BBW, occupying approximately 33% of the total land.
Similarly, its drainage class varies from very poorly (7.9 ha) to well and moderately well
drained (202 ha) (Qi et al. 2017). St. Quentin soil (organic soil) are found in the forested

area located in the northern part of the BBW, occupying some 24.9 ha.

Land use information of the BBW has been recorded yearly since 1988. Generated land
use classes include Cropland, Forest, Pasture and Residential. The most important cash
crop in the BBW is potatoes, in rotation with corn, grain (wheat, oat and barley) and clover.
In general, potato planting season starts in late March or April and ends in October, with
slight variations depending on climate conditions. For SWAT model, basic crop
information is required, such as harvest index, leaf area index and so on. Crop information
was obtained from the built-in SWAT database, where appropriate crop parameters were

selected for model setup.



Three widely used pesticides (Linuron, Chlorothalonil and Metribuzin) were selected for
model simulation. Key physical and chemical properties of these pesticides are shown in
Table 1. Water samples used for pesticide testing were collected from the monitoring

stations of the BBW and sub-watershed 9 in 2008.

Table 1. Pesticide properties of Linuron (Herbicide), Metribuzin (Herbicide) and

Chlorothalonil (Fungicide).

Partition

coefficient (the  Soil - Foliage

concentrati(gn Half-life (Srf]lulki')l ity Half-?ife \Ié\::z?i_oorff

ratio between (Days) g (Days)

two media)
Linuron 400 60 75 15 0.6
Chlorothalonil 1380 30 0.6 10 0.5
Metribuzin 60 40 1220 5 0.8

Pesticide monitoring

Automatic water sampler (ISCO 2900 sampler) coupled with a flow-monitoring system
was installed to collect pesticide samples at outlets 1, 8, and 9 (Figure 1.2). The ISCO
2900 sampler can accommodate twelve 2-L amber bottles for sample collection, and a
CR10X data logger (Campbell Scientific, Logan, UT, USA) was installed and programed
to trigger water sample collection based on water level changes. Flow rates were measured
at 5-min intervals and recorded on an hourly basis during non-rainfall periods when the
change of water level was less than 2 cm. Flow rates were recorded more frequently, less
than one hour, when water level change was more than 2 cm during heavy rain events. In
this study, the event-based sampling method was adopted for pesticide sample collection.
Based on the analysis of previous years’ water level variations, the auto-sampler was

activated by the data logger to take water sample at every 3 cm change in water level in



the BBW station in 2006 and 2008, and every 5 cm change in water level in Sub-watershed
9 station in 2006 and 2008 (Xing et al. 2013). In 2018, the sampler was set to take water
samples at every 5 cm change in water level in both Sub-watershed 8 station and the BBW

station.

Collected water samples were stored in cool and dark places and then forwarded to the
Atlantic Laboratory for Environmental Testing (ALET) for analysis. In 2006 and 2008,
one insecticide, two fungicides and two herbicides were analyzed. In 2018, one insecticide,
one fungicide and two herbicides were analyzed. However, considering the pesticide
application amounts and rates, only one fungicide (Chlorothalonil) and two herbicides
(Metribuzin and Linuron) were selected for modelling purpose. All pesticides were
separated and measured by using gas chromatography- mass spectrometer (GC-MS)
analysis. It should be noted that pesticide concentration analysis is supposed to be
performed on both filtered and unfiltered extracts of the same water sample. However,
only dissolved pesticide concentrations were analyzed and discussed in this study because
of the larger proportion of dissolved pesticides in streams (Table 2). Also, attached
pesticides were not discussed here because only the amount of dissolved pesticides was

analyzed in 2018.

Table 2. Maximum, minimum and average percentages of dissolved pesticide (Jg/L)

[total pesticide (/L) in the Little River watershed

2006 2007
Pesticide Max Min Average Max Min Average
Chlorothalonil 99.57% 28.57% 87.70% 96.03% 18.84% 67.18%
Linuron 99.25% 40.39% 83.50% 92.30% 38.76%  69.54%

Metribuzin 98.57% 87.70% 94.42% 99.04% 86.50% 92.36%




Pesticide loading and concentration calculation

Event-based loading (Le) was calculated according to pesticide concentration and flow

rate during rain events:
Le = X1(citif;) (1)

where ¢; is the pesticide concentration of the it sample, t; is the recorded time interval,
f; is the instantaneous flow rate at the time of the i sample being sampled and n is the

number of samples per rainfall event.
Daily pesticide loadings were also calculated with the same method.

The mean pesticide concentrations during event (MC) was also calculated by event-based

pesticide loading and total stream discharge of the event:

Le
MC = TR(E*fD) @)

where t; is the recorded time interval, f; is the instantaneous flow rate at the time of the

i sample being sampled and n is the number of samples per rainfall event.

Daily mean pesticide concentrations were calculated in the same method.

Calibration and validation

The SWAT model is a process-based model with some pre-set parameters for hydrological
and nutrient simulations. However, considering diverse climate and geological conditions

in different watersheds, calibrations are necessary to obtain adequate prediction accuracy.



The hydrological processes of the SWAT model was calibrated with monthly base flow
and total discharge for the period 1992 to 2001 in the BBW station (Qi et al. 2017). Then,
the model was validated by using monthly streamflow discharge for the period 2002 to
2011. Further detailed information about model calibration and validation can be found in

Qi et al. (2017).

The measured event-based pesticide concentration data of 2006 and 2008 were used for
calibration and validation of the pesticide module of SWAT model. Pesticide
concentration calibration was done by adjusting pesticide property parameters listed in

Table 3.

Table 3. Final values of SWAT calibration parameters for pesticide concentration

simulation.
Parameters Unit SWAT Name Chlorothalonil Linuron Metribuzin
Soil Adsorption Ratio SKOC 1380 500 80
coefficient
Wash-off fraction Ratio WOF 0.5 0.6 0.8
Foliar half-life Days HLIFE_F 5 10 5
Soil half-life Days HLIFE_S 15 20 10
Pesticide solubility mg/L  WSOL 0.6 75 1220

Evaluation criteria

The Nash—Sutcliffe efficiency (NSE) and the coefficient of determination (R?) were used
for evaluating model performance on hydrological predictions (2006, 2008 and 2018).
The NSE is a coefficient that measures how well a model simulation matches the observed
data (Scott et al. 2008). The range of NSE lies between - and 1 (perfect fit) (Scott et al.
2008). The R? is a commonly used statistical measure of the correlation between observed
and predicted values. The R? value ranges between 0 and 1, with a value of 0 indicating

no correlation and a value of 1 representing perfect fit. As the measured data was

10



insufficient to obtain a reliable estimation of daily pesticide loading that required to
compare with SWAT model prediction, the model performance in pesticide simulation

was mainly assessed by visual inspection.

Results

Hydrological calibration and validation

Predicted and measured daily flow rate are shown in Figures 1.3-5, and calculated NSE
and R? for model predicted flow rate are listed in Table 1.4. There was a slight
overestimation of flow rates during the peak flow period (around April 2006, Figure 1.3).
In 2008, however, there were a underestimation of peak flow during the during the same
season. These results indicated that model prediction of snow melting could be improved.
However, there were no pesticide applications during snow melting season and the small
discrepancies would have little impacts on pesticide assessment. In general, the SWAT
model predicted flow rate follows the observed trends quite well during the three-year
period (Figures 1.3-5). The NSE for stream flow ranged between 0.695 to 0.724 in 2006,
2008 and 2018. The R? ranged between 0.709 to 0.809 in 2006, 2008 and 2018, which
indicated an acceptable model performance. Despite the discrepancies between the
measured and simulated streamflow during snow melting seasons, the overall hydrologic
performance of SWAT model can be considered as satisfactory for pesticide assessment

based on both the statistical and graphical evaluation.
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Table 4. SWAT performance statistics for daily discharge in the BBW (2006, 2008 and

2018).
BW NSE R?
Year
2006 0.724 0.748
2008 0.695 0.709
2018 0.695 0.879

Measured vs SWAT predicted flow rate for 2006
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Figure 3. Measured and simulated daily streamflow in the BBW in 2006.
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Measured vs SWAT predicted flow rate for 2008
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Figure 4. Measured and simulated daily streamflow in the BBW in 2008.

Measured vs SWAT predicted flow rate for 2018
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Figure 5. Measured and simulated daily streamflow in the BBW in 2018.

Pesticide loading
The measured and SWAT-predicted soluble pesticide loadings, and observed flow rates

in the BBW are shown in



Figure 6-Figure 8. Overall, the SWAT-predicted loadings matched well with the measured

data during the whole growing season, with few exceptions in heavy storms.

In 2006, the SWAT model showed satisfactory performance in metribuzin and linuron
loading predictions in the BBW, while the predicted Chlorothalonil loadings were higher
than observed values for some rain events at the beginning of the growing season. For
Linuron and Metribuzin, the model successfully simulated peaks for most of the
simulation period; the exception was for Linuron at day 180 when the model
underestimated Linuron loading compared to the measured data. For Chlorothalonil, the

model simulated well in the timing of peak pesticide emission although the magnitude of

prediction needs further improvement.
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Figure 7 shows a good agreement between measured and SWAT -predicted Chlorothalonil

and Linuron loadings in the BBW. However, for Metribuzin, the predicted loadings were
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three times higher than measured ones at the first two rain events. In 2018, the model
predicted pesticide loadings were almost four times higher than measured ones for the

three sampled rain events. However, due to the low sample size, we cannot determine

whether SWAT model failed in capturing pesticide loading variation pattern for 2018.

1.00
T, 075 ] —— measured flow rate 300000
e ) —— SWAT predicted Chlorothalonil loading g
2 0.501 o e measured Chlorothalonil loading 200000
< =
~ Y k_ B
% 0.25 4 100000 S
= AN A~
0.00 : : : : : ; ; N
160 180 200 220 240 260 280 300
1.00 600000
o —— SWAT predicted Metribuzin loading _
"= ®  measured Metribuzin loading L 400000 %D
2 2
5] kS|
~ 200000 &
g 3
2
S
160 180 200 220 240 260 280 300
_ 1.00 ® : - - - 150000
T —— SWAT predicted Linuron loading
A2 075 . . =
g ® measured Linuron loading L 100000 £
2 0.50 1 g
5] k=)
= - 50000 8
£ 0.251 3
[
0.00 . : L . : . . 0
160 180 200 220 240 260 280 300
Julian Date

Figure 6. Observed event-based dissolved pesticide loadings and SWAT-predicted

dissolved daily pesticide loadings in the BBW for 2006.
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Figure 7. Observed event-based dissolved pesticide loadings and SWAT-predicted

dissolved daily pesticide loadings in the BBW for 2008.

16



0.4
T, 031 —— measured ﬂ'ow rate ' . L 40000 5,
g —— SWAT predicted Chlorothalonil loading g
g 0.2 ® measured Chlorothalonil loading %0
5 E
E 0.1 S
s 9
0.0 T T T T T T T
160 180 200 220 240 260 280 300
0.4 60000
ol —— SWAT predicted Metribuzin loading _
“g 037 ®  measured Metribuzin loading L 40000 %D
202 E
e - 20000 g
E 0.1 1 3
00 . : . — : : —
04 160 180 200 220 240 260 280 300
T: —— SWAT predicted Linuron loading | 75000 _
- 037 ® measured Linuron loading %D
- 50000 5
=
25000 3
0.0 : : : : : . . 0
160 180 200 220 240 260 280 300

Julian Date

Figure 8. Observed event-based dissolved pesticide loadings and SWAT-predicted

dissolved daily pesticide loadings in the BBW for 2018.
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Measured and predicted pesticide loadings in Sub-watershed 9 (2006 and 2008) and Sub-

watershed 8 (2018) are shown in
0.100 5
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Figure 9-Figure 11. The SWAT model produced pretty good predictions in Metribuzin

and Linuron loadings in 2006. As for Chlorothalonil, the SWAT model captured the

timing of peak loading while the predicted values were lower than observed ones. Similar

phenomenon also occurred in pesticide loading predictions in 2008 and 2018, when model

predicted values were much lower than observed ones at the beginning of the growing

seasons. In addition, it is interesting to note that measured Chlorothalonil and Metribuzin

loadings were much lower than predicted values at day 218 and 220 in 2018 when sharp

rise in water levels was recorded. Although poor simulations were obtained for

Chlorothalonil in 2006, it might be attributed to potential wrong pesticide application data.

Chlorothalonil was frequently used in the field to protect crop from fungi disease, and
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sometimes farmers may mistake the application date. According to Boithias et al. (2014),
even a small error in pesticide application date can cause significant discrepancies in
model simulation results. Generally, pesticides with fewer application times tend to have
a better performance in model predictions, like Linuron and Metribuzin. The two

pesticides are both herbicides and were applied only one to two times in the entire growing

season.
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Figure 9. Observed event-based dissolved pesticide loadings and SWAT-predicted

dissolved daily pesticide loadings in Sub-watershed 9 for 2006.
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Figure 10. Observed event-based dissolved pesticide loadings and SWAT-predicted

dissolved daily pesticide loadings in Sub-watershed 9 for 2008.
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Figure 11. Observed event-based dissolved pesticide loadings and SWAT-predicted

dissolved daily pesticide loadings in Sub-watershed 8 for 2018.

Pesticide concentration in streams
The measured dissolved pesticide concentrations are event-based values and were
calculated by using the equation (1) and (2) for each rain event. Although SWAT has the
capability to simulate both dissolved and attached concentrations of pesticides, only
dissolved phased pesticide concentrations were calculated to make the measured and
predicted data comparable. The SWAT predicted pesticide concentrations were calculated
with the daily pesticide loading (mg) divided by the total daily discharge (m®). As such,

the predicted pesticide concentration reflects daily average concentration.
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Good agreement between measured and SWAT-predicted Metribuzin and Linuron
concentrations was observed in the BBW in 2006. As for Chlorothalonil, the general
pesticide concentration variation trend was followed, and the only exception occurred at
day 192 when the simulated Chlorothalonil concentration was greatly underestimated

compared with measured data.

In 2008, the simulated Chlorothalonil concentrations did not match well with the
measured data, especially between day 210 to 225. The simulated Chlorothalonil
concentration was higher than observed ones at day 214 and 215, and lower at day 221.
Predicted Linuron and Metribuzin concentrations showed a good agreement with the
measured data except for day 174. The simulated concentrations of Metribuzin and

Linuron were both underestimated in this rain event.

In 2018, pesticide concentration data were not adequate to observe its seasonal trend since
only three rain events were successfully monitored in the BBW. Besides, the predicted
pesticide concentrations were significantly larger than measured values for all the three
pesticides (Chlorothalonil, Metribuzin and Linuron) at day 220, which showed

consistency in pesticide loading variation trend in 2018.
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Figure 12. Observed event-based mean pesticide concentrations and SWAT-predicted

dissolved daily mean pesticide concentrations in the BBW for 2006.
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Figure 13. Observed event-based mean pesticide concentrations and SWAT-predicted

dissolved daily mean pesticide concentrations in the BBW for 2008.
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Figure 14. Observed event-based dissolved pesticide concentrations and SWAT-

predicted dissolved daily pesticide concentrations in the BBW for 2018.

Sub-watershed 9 monitoring station was not operated in 2018, so Sub-watershed 8 station
was selected to continue pesticide monitoring task. Thus, the three graphs below are not
strictly comparable because the SWAT model was run for two slightly different

watersheds.

In general, there was a good match between observed and simulated pesticide
concentrations in Sub-watershed 9 in 2006 for Metribuzin and Linuron. The
Chlorothalonil concentrations were greatly underestimated at day 169 and day 190, when
the measured concentrations were much higher than predicted ones, up to 200 pg L™ and
189 g L at day 169 and 190, respectively. In the case of Chlorothalonil, the possible

reason for the poor result at day 169 may be attributed to wrong model input data. The
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first model predicted peak loading for Chlorothalonil occurred at day 181, and normally
during a rain event, the surface runoff can wash off pesticide residues from soil and foliage
into surface runoff (Topaz et al. 2018). Thus, it is almost impossible that with correct
application data, the predicted pesticide concentration was almost 200 times lower than

measured data after a rain event.

In 2008, the concentrations of Chlorothalonil, Metribuzin and Linuron were all
underestimated at day 177. This phenomenon can probably be attributed to the difference
between measured and simulated flow rate. There was a spike in measured flow rate at
day 177 while no fluctuations shown in SWAT-predicted daily flow rate. The measured
flow rate (approximately 0.014 CMS) was threefold higher than the simulated value

(approximately 0.004 CMS) at day 177.

The 2018 to 2019 hydrological year was dry, and water level was very low at the Sub-
watershed 8 station. Recorded stage height was negative for some samples collected at
weir station 8, which means that there was no continuous flow over the V-notch during
the sample collection process, and only the pool before the weir was filled with water.
Therefore, the data collected from weir station 8 were considered error-prone and were
not recommended for quantitative analysis, and it is obvious that some extreme values
occurred in measured data. For example, the Linuron concentration at day 180 was greatly
underestimated in SWAT model by up to two order of magnitude. And for the same rain
event (day 180), the observed Metribuzin and Chlorothalonil concentration were much
higher than predicted ones as well. Another possible explanation for these extreme values
was that the pesticide properties have changed over the ten-year period. In this study, the

pesticide data were compared for 2006, 2008 and 2018, and it is most likely that the

26



pesticide manufacturer improved some physical or chemical properties to increase
pesticide efficiencies. Thus, the old SWAT dataset might be outdated, and the pre-

calibrated model may not perform well in 2018.
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Figure 15. Observed event-based dissolved pesticide concentrations and SWAT-
predicted dissolved daily pesticide concentrations in the Sub-watershed 9 for

2006.
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Figure 16. Observed event-based dissolved pesticide concentrations and SWAT-
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o)
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predicted dissolved daily pesticide concentrations in Sub-watershed 9 for

2008.
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Figure 17. Observed event-based dissolved pesticide concentrations and SWAT-
predicted dissolved daily pesticide concentrations in Sub-watershed 8 for

2018.

Discussion

Uncertainties of event-based pesticide loading and concentration estimation

Quantification of pesticide concentrations in a rain event plays an important role in water
quality assessment and hydrologic model setup (Cha et al. 2010). In reality, although the
flow rate can be measured near-continuously, the pesticide concentration data is often

derived from discrete sampling method which contains lots of data gaps (Novic et al.
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2018). Therefore, it is important to understand the uncertainties associated with pesticide

concentration estimation.

Variations of pesticide concentrations during one rain event

Figure 18Error! Reference source not found. shows some typical pesticide
concentration distributions on different rain events sampled in 2006, which gives an
insight on inter-storm pesticide concentration variability. Flow rate and pesticide

concentration were plotted over time to explore their relationships.

Two of the four plots (A and B) show first flush effect, which means the initial storm
water received by stream channel is the most polluted (Stenstrom and Kayhanian 2005).
It is obvious that in the two graphs, the maximum pesticide concentration occurred earlier
than the peak flow rate. Schiff and Sutula (2001) observed similar phenomenon in
diazinon in urban southern California watersheds. The occurrence of first flush effect
mainly depends on two factors: watershed size and the mobility of pesticide. In large
watersheds, the travel time of runoff from various places is quite different. This time lag
leads to the mixture of a small amount of pesticide with a significant amount of streamflow,
where pesticides are diluted. For pesticides have higher solubility, first flush effect is
much more likely to be observed because storm water can move them easily at the
beginning of rain event (House and Warwick 1998). Considering this unique phenomenon,
it is obvious that if pesticide samples were not collected as quickly as possible to capture
the rapid concentration variation, then the total pesticide loading calculated by equation
(1) is error-prone to a certain degree. Since the first flush effect is quite common in small-

sized watershed (Stenstrom and Kayhanian 2005), the discrepancy between measured and
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predicted 2008 pesticide loading and concentration (Chlorothalonil, Metribuzin and

Linuron) in Sub-watershed 9 may be attributed to it.

In contrast, graph (C) shows a different pesticide concentration distribution pattern. In this
case, the Chlorothalonil concentration peaked on the falling limb and then gradually
decreased. The maximum flow rate in graph (C) was around 0.4 CMS, which was lower
than that in graph (A) and (B) (around 2.5 CMS), indicating that the characteristics of
rainfall (amount, intensity and duration) may influence pesticide transport (Leecaster,
Schiff, and Tiefenthaler 2002). In other words, pesticides are more prone to wash-off in
heavy storm events. The disagreement between measured and predicted 2008 pesticide
concentration for the first sampled event in Sub-watershed 9 may also be explained by
rainfall property difference. Since daily rainfall intensity data were not available in this
study, a built-in storm pattern was used for SWAT simulation. It was reported that runoff
and sediment yields were strongly affected by rainfall intensity (Mohamadi and Kavian
2015). Thus, high-intensity rainfall events that yield large quantities of surface runoff over
relatively short time periods might result in marked differences between observed and
predicted pesticide concentration. This inference can be applied well in the case of rain

event at day 178 in Sub-watershed 9 in 2008.

Graph (D) shows that sometimes collected water samples do not adequately represent the
original hydrograph, which may result in errors in pesticide concentration estimation. The
samples collected in this rain event did not cover the entire hydrograph. In other words,
there were some missing periods in the pesticide concentration data while flow rate data
were available. Although linear interpolation was applied to treat these data gaps, the

missing data may still cause adverse effects on pesticide concentration calculation.
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Therefore, it is a challenge for researchers to develop an economic sampling strategy to

use as few of samples as possible and still represent the whole hydrograph.
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Figure 18. Time—concentration series of Chlorothalonil distribution patterns during

different storm events in the BBW in 2006.

Potential impacts of pesticide properties on pesticide distribution pattern

Pesticide properties (toxicity, persistence, volatility, solubility and soil adsorption) can
affect a pesticide’s potential to pollute water. The water solubility of a pesticide
determines how easily it goes into solution with water. However, simply being water
soluble does not mean that a pesticide will be washed off into surface water because the
concentration of pesticide in streams depends on many factors, such as pesticide
application method, rainfall intensity and pesticide half-life (Haith and Duffany 2007).
Some pesticides must be somewhat soluble in order to work properly. The solubilities for
Chlorothalonil, Linuron and Metribuzin are 0.6, 75, 1220 mg/L, respectively. As

discussed before, generally, the first flush effect is more likely to occur for those pesticides
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with large solubility. However, the situation varies from case to case. As shown in Figure
19, the Metribuzin did not show the first flush effect at day 160 (graph A) while the first
flush effect occurred at day 179 (graph B) and day 201 (C). Figure 20. showed that there
was no obvious first flush effect at day 160 (graph A) and day 215 (graph D) for Linuron.
A reasonable explanation for this phenomenon is that the flow rate may have great impacts
on pesticide concentration distribution. It is noteworthy that the peak flow rates for
Metribuzin and Linuron in graph B and C were both at least four times larger than that of
graph A. Namely, the first flush effect can easily occur when soluble pesticides were
washed off into surface flow with large quantities of rainfall. Based on this assumption,
the distribution pattern for Chlorothalonil (graph A and B) can be well explained. In other
words, if the flow rate is large enough with large quantities pesticides being transported
into surface water, even the insoluble pesticides can show the first flush effect. Overall,
pesticide properties do have effects on in-stream pesticide distribution, but the actual
pesticide distribution pattern is results resulting from combined effects of various

environmental factors.
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Figure 19. Time—concentration series of Metribuzin distribution patterns during different

storm events in the BBW in 2006.
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Figure 20. Time—concentration series of Linuron distribution patterns during different

storm events in the BBW in 2006.

Overall, the pesticide load and concentration dynamics during a single rain event can be
influenced by various factors, such as pesticide properties, rainfall intensity and
hydrologic characteristics (Pinto et al. 2010); (Lefrancq et al. 2017a). Unfortunately, it is
still not clear that how each controlling factor contributes to the pesticide chemo graph,
which may cause uncertainties in load and concentration estimation. Therefore, the
reliability of measured pesticide loading and concentration data needs to be taken into

account when comparing SWAT-predicted data with observed ones.

Limitations in pesticide sampling strategy

Periods of high flow can deliver significant portions of pesticides to streams (Jordan et al.
2012). In this case, the stream receives large quantities of water discharge and a quick rise
of water level will trigger the auto-sampler to take samples via the pre-installed pipe. For

those small to medium-sized watersheds, since the stage height tends to rise very quickly

35



after rainfall, auto-sampler is unable to respond to the quick change of water levels and
some high data points might be missing from sample collections. We used hydrograph-
based sampling method for sample collections in the three monitoring sites. However, for
Sub-watershed 9 and 8, although the datalogger was set to trigger sample collection at
every 5 cm stage height change, the recorded stage height data shows that most samples
were taken at every 7 or 8 cm stage height change. In other words, due to technical issues,
the current sampling strategy failed to cover the whole hydrograph in some rain events,

especially those extreme rain events.

Sampling methods also have great effects on pesticide concentration estimation. In this
study, some samples were collected by using the cost-effective composite sampling
approach in 2018. The composite samples were made by thoroughly mixing several
discrete samples collected during one single rain event, and then the whole composite
samples were delivered for laboratory analysis. The composite sampling approach is a
powerful option to increase sampling capacity when facing the budget constraint.
However, the composite samples represented an average of several pesticide
concentration measurements and no information about the concentration variability
among the original samples was obtained. Reduced information on the distribution of
inner-event pesticide behavior may limit the study of pesticide transport mechanisms and
add uncertainties to concentration estimation (Farkas et al. 2014). Another concern about
the composite sampling is that subsamples were manually composited to create a new
composite sample, which may introduce errors due to operational errors during the

combination process. Some extreme pesticide concentration values occurred in 2018
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sampling dataset, such as the concentration of Linuron (695 pg L?) at day 179 in Sub-

watershed 8, which might be explained by human error in sample collection.

Limitations in concentration and loading calculation method

While continuous measurement of stream discharge can be achieved for the entire rain
event, there were still some missing periods in the pesticide sample collection. Linear
interpolation was adopted to treat these missing sampling points. The potential errors
caused by this method should be taken into account when compared with the observed

data.

Input data accuracy

It is noteworthy that compared with Metribuzin and Linuron, the variation trends of
Chlorothalonil concentration and loading were relatively hard for SWAT model to capture,
especially in the middle of growing season. The main reason is Chlorothalonil is a broad-
spectrum organochlorine pesticide and was applied 8 times on average in the whole
growing season in the BBW and sometimes the application dates on pesticide survey were
simply recorded as 8 times, instead of their accurate application dates. In this case, the
application dates were evenly assigned throughout the growing season, which can
introduce errors to the model. As noted in Cambien (2017) and Boithias et al. (2014),
knowing accurate pesticide application dates plays an important role in concentration and
loading prediction. Since the impact of pesticide application data on pesticide transport
and concentration estimation is not negligible (Watanabe and Takagi 2000) (Malone et al.
2004), inaccurate input data may lead to some unreasonable simulation results as shown

in Chlorothalonil modelling results. Considering this limitation, SWAT predictions might
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be improved if more accurate information on application dates can be obtained from

farmers.

Potential SWAT algorithmic problem

Models are used by scientists to explain and predict the behavior of real objects. However,
sometimes the reality is too complex to be perfectly simulated. In this case, a model is a
simplified representation of a system that may have slight discrepancies with the real
world. Xing et al. (2013) reported that pesticide concentrations analyzed in base-flow
detections were generally zero or below detection limits. However, it is obvious that the
SWAT-simulated pesticide concentrations usually reached the peak concentration during
rain events and then gradually decreased, and the predicted concentration was much
higher than detection limits during the whole base-flow period for all the three pesticides
(Chlorothalonil, Metribuzin and Linuron). The gradual decrease of predicted pesticide
concentration curve was generated in SWAT by using a continuous smooth function,
which leads to concentration and loading overestimation in those non-rain events.
Therefore, we have enough reasons to doubt whether the SWAT model can be applied for

pesticide estimation in non-rainfall days.

Conclusions and Recommendations

In this study, the SWAT model hydrologic and pesticide routines were assessed for their
effectiveness in predicting stream discharge and in-stream pesticide concentrations in the

BBW. The hydrologic module was calibrated and validated against the best available data
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by Qi et al. (2017). The satisfactory statistical results and visual inspection of the flow
time series graph indicated that the SWAT hydrologic prediction were reasonable.
Pesticide module calibration was conducted for 2006, and validation was conducted for
2008 and 2018. In general, the variation patterns of pesticide loading and concentration
were well simulated compared to the measured data though some discrepancies were
observed for baseflow monitoring days. Pesticides with high application rate
(Chlorothalonil) tended to have a more complex variation pattern and sometimes were
hard for the model to simulate. Overall, the simulated result indicated that the model was
capable of producing satisfactory predictions of pesticide loading and concentration in
small watersheds. Our study has also highlighted the variability of pesticide chemo graph
patterns and the extent to which this variability can affect pesticide loading and
concentration estimation. The fate of pesticides is a complex process and the mechanism
of in-stream pesticide dynamics is still not clear. In the future, by improving pesticide
monitoring strategies and model optimization, we can gain a better understanding of how
pesticides are transported in runoff and corresponding influence factors during this

process.

This study compared the event-based measured pesticide data with SWAT -predicted daily
loading and concentration data, and showed that rain event can lead to high fluxes of
pesticides exported to the outlet of watersheds. It has been proved that the majority of
pesticides exhibited rapid concentration variations during the flood event (Lefrancq et al.
2017b). However, in this study pesticide transport was studied on the scale of daily
modelling, and further study needs to be done to better understand the contribution of

runoff, interflow and groundwater in pesticide transport process. By using high frequency
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sampling method, inner-event pesticide concentration data can be obtained. Based on solid
measured data, hydrograph separation technique might be a solution for pesticide dynamic

hydrological characterisation.
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Appendixes

Appendix A. Example of raw hydrological and pesticide sampling dataset

The hydrology and pesticide data in this study were obtained by using automatic water
samplers and dataloggers to monitor water level changes and trigger sampling process.
Table 5. is a supplementary table that shows how autosampler was set to collect pesticide
samples based on changing water levels. The first two columns show the water monitoring
system recorded real time (Julian date) and corresponding recorded flow rates (CMS),
respectively. The third column shows the time interval between two consecutive recorded
flow rates, where we can see that the time interval was nearly one hour when there was
no precipitation and it reduced to five minutes or so when flow rates start increasing during
a rain event. As stated before, flow rates were recorded at a five-minute interval when
water level change is more than 2 cm. And autosampler was set to be triggered by a fixed
water level change, which depends on specific watersheds. The potential problem of this
sampling method is that autosampler may fail in capturing the peak pesticide
concentration during a heavy rain event when the water level changes rapidly during a
relatively short period since the minimum sampling time interval is five minutes. Besides,
these is a delay between the timing of pesticide collections and recorded flow rate since

drawing water from the river takes time.
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Table 5. An example of raw hydrological and pesticide sampling data for the BBW in

2006.

Julian Flow rate Time interval Measured Pesticide Concentration (ug/L)
date (CMS) between recorded  Chlorothalonil Metribuzin  Linuron

flow rates

(minutes)
179.583 0.103 59.990
179.625 0.103 60.005
179.667 0.103 60.005
179.708 0.103 59.990
179.743 0.111 50.011
179.747 0.125 4.997 0 0 1.62
179.750 0.143 4.997
179.753 0.158 4.997 0 0 7.16
179.757 0.185 4.997
179.760 0.246 5.011 0 0 8.02
179.764 0.387 4.997 1.62 0.3 8.3
179.767 0.592 4.997 30.94 1.88 30.1
179.771 0.735 4.997 306 6.55 10.86
179.774 0.852 5.011 348 5.24 4.35
179.778 1.124 4.997 179.5 3.28 6.95
179.781 1.434 4.997 30.94 1.88 30.1
179.785 1.760 4.997 8.08 1.72 39.7
179.788 1.965 4.997 3.74 2.28 26.63
179.792 2.109 5.011
179.795 2.182 4.997 0.13 1.61 5.83
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