Assessing the Landscape Drivers of Cold-Water Temperatures at
Tributary Confluence Plumes: A Multi-Spatial Analysis

by
Hannah S. Green

BSc. Honours in Environment and Natural Resources, University of New Brunswick,
2023

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science in Environmental Management

in the Graduate Academic Unit of Forestry and Environmental Management

Supervisors: Charles Sacobie, PhD, Biology
Jae Ogilvie, MSc, RPF, Forestry and Environmental Management

Examining Board: Janet Blackadar, MScF, Forestry and Environmental
Management, Chair

Alexa Alexander-Trusiak, PhD, Biology, HRA

This thesis is accepted by the Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK
August 2024

© Hannah S. Green, 2024



Abstract

The impact of climate change and human disturbances affects the thermal regime
of rivers, increasing the need for conservation of thermal refuges. Tributary confluence
plumes are a classification of thermal refuges on the Restigouche River watershed. The
objectives of this thesis were to use landscape attributes to predict water temperatures at
tributary confluence plumes at two spatial scales (global and reach-specific) and identify
how landscape drivers vary at the sub-catchment. Model 3D explored three variables, and
a second model (12D) included the addition of nine other variables. We increased global
variability explained between model 3D (R? = 0.07) and model 12D (R?= 0.88). We
classified reach-scale models under three categories of high relative importance: bedrock,
climate and canopy cover. We recommend that the Kedgwick (canopy), Restigouche and
Upsalquitch Southeast (climate) tributaries be of high priority for protection, while

continuing exploration into the effects of geomorphology on the watershed.
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1.0 Introduction

1.1 Water Temperature

Water temperature is a determining factor in the survival capability of many
aquatic species, and often influences their behaviours (Caissie, 2006; Hudon et al., 2010).
For salmonid species such as Atlantic Salmon (Salmo salar), temperatures above 24.8°C
pushed salmon to aggregate within cold-water patches within the Ouelette River, Québec
due to experiencing the beginnings of thermal stress (Dugdale et al., 2016). While there is
debate over what the exact temperature values, typically, temperatures above 17°C are
what cause Atlantic Salmon to experience thermal stress, while sustained temperatures
exceeding 23°C can lead to mortality (Wilbur et al., 2020; Quilbé et al., 2023). For
Atlantic Salmon, water temperature also plays a key factor in rate of food intake, growth,
reproductive rate, and influences the probability of individual presence on a mainstem

river or tributary (DeWeber & Wagner, 2015; Santiago et al., 2017).

1.2 Thermal Refuges

Cold-water refuges are areas of thermal variance where poikilotherms aggregate
to find temporary thermoregulation (Sullivan et al., 2021). The term ‘thermal refuge’ has
been used differently among researchers, with disagreements on its definition. The terms
‘thermal refuge’, 'thermal refugia' and ‘cold-water refuge' have been used to define the
same concept in different research contexts. Hydrologists and biologists define the term
differently, making a universal term definition difficult to achieve. Hydrologists describe
a thermal refuge as a 'thermal anomaly' where distinct water temperature mixing occurs
(Sullivan et al., 2021). However, the term 'thermal anomaly' does not exclusively define

the mixing between cold and warm, but simply a general temperature difference between



the two. This is like the definition of a 'thermal refuge’, which can be classified as cold-
water or warm-water refuges. Biologists and ecologists define the term 'thermal refuge’ as
being a cold-water patch utilized by organisms to achieve favourable physiological
conditions (Sullivan et al., 2021). In the context of this thesis, the classification of thermal
refuges is exclusively cold-water. The definition of a cold-water patch comparative to a
cold-water refuge is dependent on the biological lens. Cold-water patches are areas of cool
water temperatures at least three degrees Celsius cooler than the mainstem river, while
cold-water refuges are cold-water patches that pertain to the physiological requirement of
poikilotherms to avoid high water temperatures (Sullivan et al., 2021). A cold-water patch
may not be utilized as a cold-water refuge if the biological requirements for reproductive
success, increased growth rates, and prey availability are inadequate (Ritter, 2020;
Sullivan et al., 2021; Wilbur, 2020).

There are seven classifications of thermal refuges: cold alcove, cold side channel,
hyporheic upwelling, lateral seep, springbrook, tributary confluence plume, and wall-

based channel (Table 1).



Table 1. List of thermal refuge classifications and definitions. Modified from Dugdale
(2014), Dugdale et al. (2015) and Torgersen et al. (2012).

Classification Definition Reference
Cold Alcove Floodplain/gravel bar groungjvv_ater ext_ends to Ebersole et al.,
downstream end of floodplain into main channel 2003a
Cold Side A secondary cold-water channel along the Dugdale et al.,
Channel mainstem river 2015
Brunke &
Hyporheic A resurgence found downstream from meanders, Gonser, 1997;
Upwelling bars, and riffles Dugdale et al.,
2015
Lateral Seep Active channel disrgpts groundwater flow Torgersen et al.,
through slope, alluvial fan, or terrace 2012
. Steady flow emerging from floodplain Ebersole et al.,
Springbrook depressions 2003a

Tributary
Confluence
Plume

Wall-based
Channel

Tributary inputs intersect with mainstem and
create a plume of cold water

Cold channels characterized by runoff from a
terrace or valley wall

Dugdale, 2014;
Torgersen et al.,
2012

Dugdale et al.,
2015; Torgersen
etal., 2012

1.2.1 Tributary Confluence Plumes

A tributary confluence plume (TCP) is a cold-water plume found at the mouth of

tributaries that flow into the mainstem, where there is a discharge of cold-water that mixes

with warmer mainstem flow (Dugdale et al., 2013; Dugdale et al., 2015). Tributary

confluence plumes are typically more frequent than that of other refuge classifications due

to their locations at tributary and main flow intersections (Dugdale et al., 2013). Dugdale

(2014) found that plumes were more temporally persistent, with 69.9% observed on more

than one occasion. The repeat observation of confluence plumes suggested that they are

also less likely to be affected by seasonal variations in groundwater than other

classifications such as lateral seeps (Dugdale, 2014). This may be due to the stability of

the refuge, where the cold-water plumes are more stable than refuges that depend on other

landscape variables for cold water patches, such as boulder deflections (Dugdale, 2014).
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Figure 1. Side by side comparison of orthoimagery (left) and thermal imagery (right) of a tributary confluence plume located on the

Kedgwick tributary at Falls Brook. Modified by Gillis (2024).



1.3 Landscape Drivers of Water Temperature

Cold-water tributary temperatures are an accumulation of factors in the structure,
function, and spatial scale of the drainage system. At the watershed (global) scale, drivers
of TCPs differ from those at the sub-catchment (reach-level) or at the microhabitat level
(Torgersen et al., 2012). This is primarily due to the variance of landscape effects at
different spatial scales. Variables such as slope and aspect experience minimal variation
at the microhabitat scale (10-2-10°m?) compared to the basin scale (102-103km?). A study
by Monk et al. (2013) explored the effects of landscape drivers contributing to cold-water
temperatures of TCPs at the watershed-level and found there was a significant relationship
between cold-water temperatures and landscape variables such as elevation, soil type,
forest type, refuge position and the presence of wetlands in the delineated catchment on
the Cains River in New Brunswick. Similarly, Torgersen et al., (2012) suggested that at
the watershed level, thermal refuge water temperatures were driven by the relationship
between topography, hydrogeology, and land cover composition. His findings are
comparable to other previous literature on the drivers of thermal refuge temperatures

(Ebersole et al., 2003a; Sullivan et al., 2021; Timm et al., 2017).

1.3.1 Canopy Cover

Riparian cover contributes to shading at the sub-catchment level, where tributary
level shading can influence water temperature greater than at the watershed level (Aas et
al., 2010). The influence of canopy cover depends on the width and water volume of the
streams (Johnson & Wilby, 2015), and in general, a tributary will experience higher
canopy cover than a river’s mainstem. Forest cover adjacent to waterways influence

surface water temperatures by reducing incoming solar radiation (Kurylyk et al., 2015). A
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channel with minimal to no canopy cover will receive more solar radiation, increasing the
amount of solar radiation that hits the stream and/or mainstem river. Johnson and Wilby
(2015) found one of the channels of their study location in England, the Dove, received
1.54 x 10® MJ/km of direct solar energy with no tree canopy present, while the section
with trees present received 0.39 x 106 MJ/km (25%) direct solar energy. Canopy cover is
a natural protection from soil erosion, reducing the amount of runoff entering the tributary
system (Kurylyk et al., 2015). This can have a positive or negative effect on water

temperature depending on the nature of the rest of the tributary system.

1.3.2. Landscape Topography and Lithology

Soil drainage and slope have a strong relationship due to the nature of groundwater
movement. Soil drainage is characterized by lithology and has strong influence on the
percolation rate of water in a watershed (Shaban et al., 2016). Typically, coarse textured
soil with larger grain sizes and shallow depths on the landscape reduce the storage time of
groundwater, and allows for faster discharge (Briggs et al., 2017; Huggenberger et al.,
1988; O’Sullivan, 2021; Shaban et al., 2016). We would expect to see that a well-drained
soil connected with a high average slope percentage would be important drivers of cool-
water temperatures, as a higher rate of flow decreases the time in which groundwater is
stagnant, and surface water is heated through solar radiation (Monk et al., 2013). This
statement is supported in cases such as in Québec, where thermal refuges were associated
with well-drained alluvial soils (Fakhari et al., 2022).

Landscape topography influences the structure of tributaries, groundwater
movement, and surface water flowpaths (Leibowitz et al., 2018). The direction of the slope

face is also a factor in water temperature cooling or warming, as south facing slopes



receive more solar radiation than north-facing slopes and will experience a greater

variability in temperatures (Furze et al., 2021).

1.3.3. Wetlands

Wetlands facilitate surface and groundwater interactions with the landscape and
are important contributors to water temperature in watersheds (Winter, 1998). They
contribute to recharge and discharge within watersheds (Price et al., 2005), as the
connectivity between wetlands and tributaries facilitates groundwater movement
(Leibowitz et al., 2018). Groundwater connectivity directly affects the ability of wetlands
to influence thermal regimes, as wetlands can be characterized as a recharge, discharge,
or flow through (Winter, 1998). The contribution from wetlands to groundwater systems
is influenced by their position on the watershed, as well as contributions from soil and

geologic underlay (Price et al., 2005).

1.3.4 Bedrock Geology and Groundwater

Groundwater has been described as an important driver in tributary water
temperatures (Caissie, 2006; Fakhari et al., 2019). Typically, thermal refuges are driven
by groundwater, however, watersheds are complex, dynamic systems, wherein thermal
refuges can be informed by other landscape drivers (Wawrzyniak et al., 2016). Within the
watershed, groundwater functions as a connector between wetlands and streams
(Leibowitz et al., 2018). For example, the presence of an isolated wetland on the watershed
may still contribute to streams disconnected from wetlands by way of a deep groundwater
aquifer, which recharges the wetland through groundwater flow or surface-water flow

(Leibowitz et al., 2018).



The type of exposed bedrock significantly affects groundwater recharge (Shaban
etal., 2006), showing that bedrock type may be correlated to water temperature depending
on permeability, bedrock age, and mean travel time for groundwater. The connection
between bedrock geology and groundwater is described by Hale et al. (2016), where their
study found that the mean transit time (MTT) of groundwater was longer in catchments
underlaid with permeable and weathered sandstone compared to catchments with volcanic
bedrock. O’Sullivan et al. (2019) found that the underlaying coarse textured glaciofluvial
material, which is permeable and typically associated with groundwater discharge, was a
significant variable in water temperature predictions in Clearwater Brook, New
Brunswick. They concluded that older bedrock is more permeable than younger bedrock,
which, coupled with a greater volume of surficial deposits, lead to cooler groundwater

inflow in the Cains River, New Brunswick (O’Sullivan et al., 2019).

1.4 Threats to Thermal Refuges

The removal of forest cover for forest harvesting, agriculture or urban expansion
can have drastic effects on tributary water temperatures (Stott & Marks, 2000; Quilbé et
al., 2023). Forest harvesting affects other landscape metrics that directly inform water
temperatures, such as groundwater levels, soil drainage, and surface runoff (Brewer et al.,
2013; Moore et al., 2005; Shaban et al., 2006). Paul and Meyer (2001) found that on an
altered landscape, the loss of riparian vegetation increased stream temperatures through
increased solar radiation levels, and surface runoff through vegetation removal at stream
banks (Quilbé et al., 2023). The removal of canopy cover at the catchment level may
increase groundwater temperatures upstream of the tributary, with or without the presence

of a riparian buffer (Kurylyk et al., 2013).



Groundwater levels can be altered and decreased through anthropogenic
interventions such as the draining of aquifers for agricultural or urban use, flow
manipulations such as dams, and aggregate extraction (Quilbé et al., 2023; Wu et al.,
2020). In areas of high agricultural activity, draining of wetlands can lead to loss of
biological and functional activity, as direct and indirect wetland connection to the stream
network contributes to water levels (Leibowitz et al., 2018; Wu et al., 2020). Drainage of
wetlands may also decrease groundwater recharge availability by lowering the water table

(Leibowitz et al., 2018).

1.5 Challenges in Thermal Refuge Management

The impact of climate change is dependent on the landscape scale as well as the
characteristics of the watershed (Arnell & Reynard, 1996). Wang (2020) describes the
correlation between the increase in air temperature to increasing stream temperatures, as
well as the following negative effects caused by said warming such as decreased inflow,
increased evaporation, and a shift from snowmelt-to-rainfall-dominated flow regimes on
thermal refuges. Similarly, Wilbur (2020) discusses how climate factors such as increased
heat events will almost guarantee an expected decrease in flow events during summer
months.

The study of thermal refuges and what drives water temperatures is complicated
by spatial and temporal variations at the stream level, as well as the many influential
landscape factors that interact with each other. A study conducted by Bogan et al (2003)
on USGS stream gauging stations in the eastern and central United States found that
climate controlled water temperatures on 22% of the total 596 streams while groundwater

and other variables influenced water temperatures in the remaining reaches. Similarly,



Loinaz et al. (2013) used simulations on data collected from Silver Creek, Idaho that by
reducing groundwater flow by 10% to the Silver Creek stream reach increased water
temperatures by an average of 0.3°C and a maximum of 1.5°C. Statements that water
temperatures are heavily influenced by climate may not be accurate without accounting
for the spatial and temporal aspects.

The connection between the atmosphere and landscape makes managing TCPs
difficult, and there are knowledge gaps that have been identified when it comes to thermal
refuge research. The need for statistical models at different spatial integrations has been
documented as a knowledge gap (Mejia et al., 2023; Ouellet et al., 2020), as well as
identifying anthropogenic interactions at different spatial scales that affect the aquatic

environment (Gillis et al., 2023; Mejia et al., 2023; Ouellet et al., 2020).

1.6 Research Aim and Layout

The primary aim of this research is to explore knowledge gaps through introducing
spatially predictive models for thermal refuge temperatures in the Restigouche River
watershed. The complexity of water temperature drivers varies at different spatial scales,
making it difficult to identify commonalities. With the development of a global and reach-
specific models, we can use overall predictor variables at a both scales to help identify the
differences between variable importance at both scales. A secondary aim is to create
accessible statistical models at the global and reach-specific scales that are applicable to
seventh streams on other watersheds. The models can then be used to predict TCP
locations on a watershed based on associated landscape variables and identify

anthropogenic effects and manageable characteristics at the reach-level.
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My research question was: what are the landscape-level drivers of water
temperatures at tributary confluence plumes (TCPs) on the Restigouche River watershed?
Objective 1 is to use models to predict water temperatures at TCP’s based on twelve
landscape variables at the watershed (global) and tributary (reach-specific) levels through
the creation of Forest Based Classification and Regression and multiple linear regression
models. Objective 2 is to determine how landscape level drivers vary in terms of driving

strength at the reach scale.
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2.0 Methods

2.1 Study Area

The Restigouche River watershed crosses the provincial boundaries of New
Brunswick and Québec, with a total area of 660,000 hectares (ha) and a total drainage
basin of 12,800 km? (Quilbé et al., 2023). The watershed is located on the unceded
territory of the Mi'gmaq of Gespe’gewa’gi, and is stewarded by the Listiguj, Ugpi‘'ganjig
(Eel River Bar) and Oinpegitjoig (Pabineau) communities (Jeannotte et al., 2007). Within
New Brunswick, there are seven major tributaries (sub-catchments): Matapegiag
(Matapeédia), Patapegiag (Patapédia), Metamgetjuig (Kedgwick), Getnig (Restigouche),
Little Main Restigouche, Apse’tgwejg (Upsalquitch) Northwest, Apse’tgwejg
(Upsalquitch) Southeast and Apse’tgwejg (Upsalquitch) (Figure 3). These tributaries
intersect the mainstem Restigouche and empty into the Mawi Paqtapegigtug (Baie des

Chaleurs) (Jeannotte et al., 2007; Simard & Clowater, 2006).
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Figure 2. Location of the Restigouche River watershed study area relative to the extent of
the New Brunswick provincial limit. The watershed is in the northernmost part of the
province, outlined in blue. The study extent of the project extends into the southern tip of
the province of Québec but does not include the remainder of the watershed extent.
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Figure 3. Delineated study area of the Restigouche River watershed and the locations of
the tributaries.

2.2 Watershed Characteristics

The New Brunswick section of the watershed is located within the Atlantic
Maritimes region with three intersecting ecoregions: The Central Uplands (25%),
Highlands (27%), and Northern Uplands (48%) (Wilson, 2006). The lithological
classifications of the landscape include the Edmundston Highlands, Miramichi Highlands,
and the Chaleur Uplands, and is comprised of glacial deposits of till-covered and exposed
bedrock of limestone, slate, and calcareous shale (Aas et al., 2010; Curry, 2002; Wilson,
2006). The watershed is dominated by forest cover (93%), with approximately 4%
urbanized area (Quilbé et al., 2015). Agricultural land accounts for less than 2% due to
the high percentage of steep slopes > 25% (Dugdale, 2014; Simard & Clowater, 2006).

Softwood tree species dominate the watershed, followed by hardwood stands, then
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mixedwood stands (Simard & Clowater, 2006). Species of common occurrence within the
region include coniferous species such as white spruce (Picea glauca), balsam fir (Abies
balsamea), red pine (Pinus resinosa) and white pine (Pinus strobus). Deciduous species
include yellow birch (Betula alleghaniensis), sugar maple (Acer saccharum), and white
birch (Betula papyrifera) (Zelazny et al., 2007). Wetlands within the watershed are mainly
categorized as open water and marsh wetlands fed by rain, snowmelt, and flooding

(NWWG, 1987; Zelazny et al., 2007).

2.3 Data Collection

Observed water temperature data was provided by the Gespe’gewa’gi Institute of
Natural Understanding (GINU) and was released through a data sharing agreement. Water
temperature acquisition was performed by GINU and Dugdale (2014) between 2011-13
to include the total watershed extent in both provinces, with the total New Brunswick
survey length completed in 308km. Imagery was taken during the months of July and
August between the hours of 11:00 and 16:00, when temperature variability between
tributaries and the mainstem river were highest and more easily observable from remote
sensed imagery. Optical and thermal infrared imagery (TIR) were collected with a digital
SLR and TIR camera respectively, while GPS coordinates were identified by a Garmin
GPS76 CSx unit. Stable river discharge ensured the accuracy of TIR imagery to avoid
decreasing the temperature signal in the river, which can occur following rainfall events
where flow from tributaries may increase depending on the rate of incoming rainfall
(Dugdale, 2014). Optical imagery required warm, sunny days for the best results, as the
high sun positioning avoided image blurring, and the absence of clouds ensured minimal

reflections that would have been difficult to view beneath the water surface (Dugdale,
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2014). Four temperature loggers were placed in the tributary thermal refuges to record in-
situ measurements to confirm the accuracy of TIR water temperature values. Refuge
locations were defined through the methodology outlined in Dugdale (2014). In total, 222
tributary confluence plumes (TCP) were identified on the New Brunswick portion of the
Restigouche River watershed (Figure 4). The shapefile created included attributes such as
a unique point identifier, GPS coordinates, observed temperatures, refuge classification,

tributary location, and original data source (Leblanc et al., 2012).
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Figure 4. Dispersion of tributary confluence plumes (TCPs) within sub-tributaries of the
Restigouche River watershed (NB extent). A total of 195 TCPs is present on the sub-
tributaries: Kedgwick (n = 33), Little Main Restigouche (n = 15), Restigouche (n = 56),
Patapédia (n = 21), Upsalquitch (n = 31), Upsalquitch Northwest (n = 26), Upsalquitch
Southeast (n = 12).
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2.4 Geospatial Data Availability

LiDAR data for the province of New Brunswick was accessed through the
University of New Brunswick (UNB) and included digital elevation model (DEM) at 1m
resolution, a hillshade raster at 2m resolution, and a canopy height raster at 1m resolution.
LiDAR for the province of Québec was acquired through ForétOuvert (Ministere des
Foréts et Ressources Naturelles, 2023), which included a DEM at 1m resolution, a
hillshade raster at 2m resolution and a canopy height raster at 1m resolution. The province
of New Brunswick acquired LiDAR data in 2017, while the province of Québec acquired
their LIDAR data in 2020. Data analysis was conducted in ArcGIS Pro Version 3.0 (2022).
Acquisition of provincial data was done through open data sources, which include GeoNB

and Ministére des Foréts et Ressources Naturelles (see Appendix A).

2.5 Sub-Catchment Delineation

The Hydrology toolset in ArcGIS Pro was used to create sub-catchments for each
TCP by utilizing the clipped watershed DEM at 2m resolution and to create a D8 flow
direction integer raster, which identifies the steepest downslope neighbour by determining
the direction of steepest descent in each cell (Jenson & Domingue, 1988). In conjunction
with the flow direction raster, a flow accumulation raster was created to identify the
highest flow points, where the associated tributary met the mainstem river.

TCP points were snapped to match an associated flow accumulation point
symbolized by the dark blue colour. It must also be noted that the original GPS coordinates
had an error of £ 200m of their original location. In some cases, points were located on an

incorrect bank, in the middle of the mainstem, or opposite of the correct flow point. To
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identify the tributary associated with the TCP, orthoimagery and hillshade rasters were
used to evaluate the accuracy and likelihood of TCP location at the mainstem
intersections. Orthoimagery and hillshade rasters allowed for the identification of culverts,
slopes, valleys, and roads that may impact the correct location of the TCP (Lidberg et al.,
2017; Paul et al., 2017).

TCP points were snapped to the corresponding flow accumulation cell with the
snap pour point tool, snapping the points to the closest cell of highest flow accumulation
within a neighbouring distance of 2.9m. The watershed tool, with the snap pour point and
flow direction rasters, concluded the hydrological analysis, with individual sub-
catchments for each TCP created to visualize the total drainage areas. While we
acknowledge that TCPs require the account of influence from upstream drivers, in the case
of this study, individual tributaries located at the mainstem intersection and variables
contributing within the unique catchment areas were of primary interest. A total of 194
sub-catchments were delineated for analysis (Figure 6). Delineated sub catchments ranged
in size from 0.06km? to 255.8km?, with the smallest sub catchment located in the

Upsalquitch and the largest in the Restigouche (Figure 5).
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Figure 5. Frequency of sub-catchment sizes in the Restigouche River watershed delineated
from the TCP sub-catchments created from total drainage area associated with their
snapped flow accumulation points (n = 194).

2.6 Variable Acquisition and Definitions

Raster data was resampled to 2m resolutions with the exceptions of slope and
aspect rasters, where resampling was done at 2m, 10m and 20m resolutions to determine
how differences at spatial scales affect modelled temperature predictions. Aspect was
classified based on eastness to determine locations of high radiation contact, calculated
using the sin function in Raster Calculator at 2m, 10m and 20m resolution using the

following equation: Sin (Aspect*3.14/180).
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Figure 6. Sample of delineated sub-catchment areas on the Upsalquitch
Northwest tributary. Yellow points show locations of tributary confluence
plumes. The light blue outlines show the delineated drainage areas of each point.
The map is underlaid by a slope raster at 20m resolution, with a gradient from
low slope (blue) to high slope (light brown).

Canopy cover data were obtained from the canopy height raster (CHR) from
provincial datasets and masked to exclude buildings by using a building footprint layer
(Figure 7). Canopy values were extracted from 30m stream buffers created using the
Euclidean Distance tool, then defined as values < 30m (Figure 8). Stream buffers were
delineated at 30m to abide by the Province of New Brunswick’s Watercourse and
Wetlands Alteration Technical Guidelines (New Brunswick Department of Environment,

2012).
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Figure 7. Canopy cover classified as >3m (green) and <3m (brown). Canopy
height was calculated through the percentage of forest and non-forest values in
raster calculator using the equation Forested / (Forested + Non-Forested) *100
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Figure 8. Delineated 30m riparian buffer zones (grey) depicted within the sub-
catchments along streams. Riparian buffers were calculated using the raster
calculator by inputting the following equation: Con (“EucDisRastert <30,
WatershedRaster”).

Geological data were extracted from provincial datasets from New Brunswick and
Queébec and categorized based on the average age in millions of years ago (Mya) of the
geological period: Cambrian (541-485.5Mya), Ordovician (485-443.8 Mya), Silurian
(443.9-419.2 Mya), and Devonian (419.2-358.9 Mya) (Wilson, 2006). Average geological
ages were calculated by taking the time period range of the geological time period and
identifying the median age (Wilson, 2006). Soil drainage classifications were delineated
from the GeoNB Forest Soils layer and corrected to account for wetlands and waterbody
occurrences within the provincial data (Furze et al., 2021). Classifications were grouped

into six classifications to determine overall drainage capability of underlying soil, where

0 is defined as poorly drained, and 6 is classified as very-well drained soils (Table 2). The
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wet areas mapping (WAM) raster was masked using the raster calculator to delineate wet
areas with a value of 1, and remaining areas with a value of 0 (Murphy et al., 2008;
Murphy et al., 2009; Murphy et al., 2011; White et al., 2012).

Table 2. Soil drainage classifications delineated based on the depth of wet areas. Classes

were calculated using the raster calculator on the WAM raster, where WAM.MN
represents the average depth of wet areas (White et al., 2012).

Soil Drainage Draln_a_ge _ WAM Parameters

Class Classification

0 Very Poor WAM.MN > 10

1 Poor WAM.MN > 5 and WAM.MN <10

2 Imperfect WAM.MN > 1 and WAM.MN <5

3 Moderately Well WAM.MN > 0.5 and WAM.MN <1

4 Well WAM.MN > 0.25 and WAM.MN < 0.5
5 Rapid WAM.MN > 0.1 and WAM.MN <0.25
6 Very Rapid WAM.MN >0 and WAM.MN <0.1

Forest cover type was extracted from provincial datasets, and stand types were
harmonized with Québec definitions. Stand types were identified as softwood, mixed
wood or hardwood stands based on the provided attributes and the top three species by
density found within each stand. Forest harvesting data were provided by GINU by
equivalent cut areas (ECA). ECA is defined as the sum of area of all harvesting or natural
clearing multiplied by the regressive rate of the cut effect (RRCE), with the calculated
ECA value divided by the total basin area (Leblanc et al., 2012). The RRCE was calculated
based on the intensity of the cut occurring on the watershed. For example, a partial cut is
defined as a less intense disturbance than a clear-cut, and these differences are accounted
for through the weighted value of the RRCE and includes the last thirty-five years of forest

harvesting defined by New Brunswick forestry (Leblanc et al., 2012). Roads and
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agricultural locations were obtained through the provincial data sources of GeoNB and
ForétOuvert and were classified as presence or absence within the watershed.

The water-table ratio (WTR) was sourced from Cuthbert et al. (2019) and is
defined as the fullness of the subsurface and its interaction to the landscape. The WTR
identifies areas of the landscape where groundwater is controlled topographically (WTR

>1) or by recharge (WTR <1) (Cuthbert et al., 2019).
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2.7 Variable Extraction

Variable extraction within sub-catchment rasters was categorically divided into
raster and vector data and extracted using two tools for consistency (Table 3). The
Tabulate Areas tool was used for vector data as the tool summarizes the total sum of values
that intersect the delineated sub-catchment. For example, canopy cover percentage was
calculated by dividing the total forested area by the catchment area and expressed as a
percentage ((Forested Area/Catchment Area) *100). Zonal Statistics were used for raster
data to determine statistical values such as the average, maximum and minimum values
through cross calculating the raster with the sub-catchment area. Extracted data were
compiled in aspatial tables and joined to the confluence plumes attribute table by their

associated sub-catchment ID number.
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Table 3. List of predictor variables and their associated variable measurements used in the
global and reach-specific models. Italicized variables were identified as being used in

preliminary analysis.

Reference

. Variable
Summary Tool Variable
Measurement

Slope (2m, .

10m, 20m) Mean/Max/Min
Zonal Statistics Aspect (2m, Mean
(Raster Data) L0m, 20m)

Wet Areas Max/Mean

Wa'Fer Table Max/Mean

Ratio

Canopy Percent

Cover

Bedrock Age  Mean

Soil Drainage Percent

Forest Stand
Tabulate Area Type Percent
Vector Data .
( ) Agriculture Presence/Absence
Road
Presence/Absence
Presence
Loss Year
Equivalent Percent
Cut Areas

Moore et al. (2005); Vidon &
Hill (2004)

Furze et al. (2021)
Leibowitz et al. (2018)
Winter (1998)

Kurylyk et al. (2015); Wilby
(2015)

O’Sullivan et al. (2019)
Briggs et al. (2017);
Huggenberger et al. (1988)

Garner et al. (2014)
Leibowitz et al. (2018)
Torgersen et al. (2012)

Moore et al. (2015)

2.8 Model 3D

Multiple linear regression was computed in Excel for the global and reach-specific

predictions of water temperature. The preliminary model was restricted to three

continuous variables within the multiple regression, being named the 3D model to

describe the inclusion of the three variables. Soil drainage class, slope percentage and

canopy cover percentage were used due to their use in previous research in relationship to

water temperature (Ebersole et al., 2013; Johnson et al., 2015; Leibowitz et al., 2018 Monk

et al., 2013). Analysis was divided into watershed (global) and tributary (reach-specific)
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level models to review model performance at different spatial scales. The Québec section
of the watershed was not included in this analysis due to lack of data availability. At the
global and reach-specific scales, three landscape variables of interest were included as
model parameters: total canopy cover percentage, well-drained soil classes (0-6), and

average slope at 2m, 10m and 20m resolutions.

2.9 12D Model
2.9.1 Global Model

A secondary global model was created to explore whether the addition of more
variables would increase the effectiveness of temperature predictions at a the global scale,
with nine additional variables unaccounted for in the 3D model. Forest-Based
Classification and Regression (FBCR) is a statistical analysis tool which outputs a
prediction raster, or features based on categorical and continuous input variables. The tool
outputs multiple tables for analysis, including a variable importance table, which
calculates the influence of individual variables based on the total sum of Gini coefficients.
The tool outputs validation R? values based on the number of validation runs. Alongside
output tables, two feature class outputs were created: a temperature prediction feature
class as well as a standardized residual feature class to depict the over and
underpredictions of the model to the observed values. Global model inputs were
conducted with identical overall parameters: a classification tree number of 150, a mean
tree depth of 11 using 100% of the available training data, and 11 randomly sampled
variables. The models by the FBCR included the total number of inputs to total n = 35

predictor variables (Table 4).
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Table 4. Legend of model abbreviations and associated model variable definitions.

Model Abbreviation Variable

Y Latitude

MEAN WTR Water Table Ratio

VALUE_469 Average Bedrock Age (469Mya)
AECCOLLEC Equivalent Cut Area

LOSSYR Forest Extent Change (2012-2023)
VALUE_390 Average Bedrock Age (390Mya)
PROP_WET Proportion of Wet Areas
CANOPY Non-Buffered Canopy Cover Percentage
MEAN_S10 Average Slope (10m)
VALUE_430 Average Bedrock Age (430Mya)
MEAN_S20 Average Slope (20m)
MEAN_S?2 Average Slope (2m)

MAX_S2 Max Slope (2m)

MAX_S20 Max Slope (20m)

MEAN_E2 Average Aspect (2m)

MIN_S20 Min Slope (20m)

MAX_S10 Max Slope (10m)

Al Poor Soil Drainage

MEAN_E?20 Average Aspect (20m)

F Hardwood Stand

MIN_S2 Min Slope (2m)

MEAN_E10 Average Aspect (10m)

A2 Imperfect Soil Drainage

AQO Very Poor Soil Drainage

M Mixedwood Stand

R Hardwood Stand

ROADP_1 Road Presence

MIN_S10 Min Slope (10m)

A 6 Very Rapid Soil Drainage

A3 Moderately Well Soil Drainage
AS5 Well Soil Drainage

A 4 Rapid Soil Drainage

AGRI Agricultural Presence
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Global FBCR models were separated to view the impact of canopy on temperature,
specifically to determine if canopy cover is important at different intensities within the
sub catchments. The “No Buffer” FBCR model depicts catchments where canopy cover
is used as a predictor for the entire sub-catchment. The “Buffer” FBCR model restricts
canopy cover to the provincially legislated 30m buffer distance around high flow
ephemeral streams located within the sub-catchments. The performance of the FBCR
models were measured using the Nash-Sutcliffe Coefficient (NSC), a measure of model
fit (Nash & Sutcliffe, 1970). An NSC value of 1.0 depicts a perfect-fit model (Jain &

Sudheer, 2008).

2.9.2 Reach-Specific Model

Reach-specific analysis was conducted using a multiple regression R script by
Monk (2018) in RStudio (v4.3.1). Data were scaled and transformed using the “dplyr”
package. In the reach-specific models, | wanted to identify how the top drivers of the
global model fair at the different reach levels for management purposes. Reach-specific
model inputs were determined based on the results of the FBCR models, where the top
statistically relevant variables were included, in conjunction with their variable strength
within the models. Reach-specific models were divided into a buffered and non-buffered
version for each tributary to explore the differences between canopy cover at the 30m
riparian buffer level versus canopy cover at the catchment level. The differences in canopy
cover were the only variations of the reach-specific models, leaving the remaining variable
inputs identical. Correlation tests were run to remove related variables, where variables
with a perfect correlation of 1.0 were removed. Tests for collinearity (at the tributary level)

were run to view the variance inflation factor (VIF). Variables with a VIF > 24 signifies
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a high level of collinearity. To avoid overfitting, models were reduced using the avsPlots
function in conjunction with the stepANOVA function in R. Outliers were identified and
removed by viewing residual vs fitted plots to confirm points did not cross or closely
approach Cook’s D contours, which identifies observation values that are far removed

from the remaining observations (Dhakal et al., 2017).
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3.0 Results

3.1 3D Model
3.1.1 Global 3D Model

The global model temperatures (n = 194) ranged from 13°C to 21°C, with most
values ranging from 17 °C to 19 °C (Figure 9). The global model performed poorly under
statistical analysis, producing an R? value of 0.07 and a standard error of 2.0°C. This result
did not account for reach-specific differences. The average temperatures for the global

prediction model showed a range of values from 17°C — 20°C.

3.1.2 Reach-Specific 3D Model

Residual graphs depict the difference between the observed value and mean value
that the model predicted for the observation (Figures 10, 11). Positive residuals mean that
there was an under prediction while a negative residual mean there was an over prediction
of values. The R? value describes the variance between the outcome and the predicted
variables that were input in the regression model. We would expect to see an R? value
close to 1.0 which would mean that the variance is almost 100% described by the
predictors that were input into the model.

At the reach level, temperature predictions were condensed depending on the
tributary, with the warmest values located in the Restigouche (19°C — 21°C), and the
coolest values located in the Upsalquitch Southeast (13°C — 15°C). These inter-tributary

differences account for the high standard error within the global model (Figure 9).
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Figure 9. Global model (all reaches) and reach-specific modelled mean + standard error
(SE) tributary confluence plume (TCP) water temperature in order from warmest to
coldest average tributary (n = 194).

Reach-specific models provided more variability explained than the global model,
with standard errors (SE) between 0.2°C and 0.8°C. This observation was expected during
the initial analysis to occur due to the spatial variation at the global scale. The Little Main
Restigouche (n = 15) showed one of the highest R? (Figure 10) and standard error (0.2)
values and showed the lowest CV (1.6%). In comparison, the Upsalquitch Southeast, with
a comparable sample size (n = 12), had the highest CV of predicted temperatures for the
reach specific results (6.6%), but also the highest R? (0.91). Similarly, the Upsalquitch
(n=31) and the Restigouche (n = 75) tributaries both demonstrated CV values of 4.0%

and 2.7%, respectively. However, both models performed poorly in terms of temperature

predictions, with R? values of 0.19 and 0.27, respectively (Figure 10).

32



Kedgwick R =0.5788 Little Main Restigouche R2=0.8419

20.5 202
5 %) °
t 20 . C?_/. 20
o :
2195 2 108
a ]
i " 5196
= =
£ 185 £
= s = 194
T 2192
5175 g
3 17 E v
=5 =%
16.5 18.8
16.5 17 17.5 18 18.5 19 19.5 20 18.8 19 19.2 19.4 19.6 19.8 20 20.2
Measured Temperature (°C) Measured Temperature (°C)
Patapedia R2 = 0.4843 Restigouche R =0.2691
17.5 215
o
.;'g'“ 21
g
. 2 205
2 B
= 5 ]
5 (L £
=6 . 5 20
3 =
z ¢ 3 .
155 5195
£ E
15 T
15 15.5 16 16.5 17 17.5 19 19.5 20 20.5 21 215
Measured Temperature (°C) Measured Temperature (deg. C)
Upsalquitch SW R? = 0.9057 Upsalquitch NW R?= 04192
16 17.5
Tss g
- o .
2 s £ 165 . LI
g E L
E . 5 e e
g s R . g 16 . O S
E -l 5 R S ] °
2 14 L i g R
B e b
5135 - 2 °
< =
£ g .
12.5 14
12.5 13 135 14 14.5 15 155 16 14 14.5 15 15.5 16 16.5 17 17.5
Measured Temperature (°C) Measured Temperature (°C)
Upsalquitch R2=0.1879
215
o
8
£ 205 °
g [ ]
g 2
= JORRRS 4
B 195 .
g .
2
S 19
~
185
18 18.5 19 19.5 20 205 21 218

Measured Temperature (°C)

Figure 10. Measured vs. predicted temperatures (°C) of reach-scale water temperatures
and associated R? values at the seven tributaries (n=194).
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Model residuals inform the results of predicted tributary confluence water
temperatures (Figure 11). Similar to the R? results from the Upsalquitch SE and the Little
Main Restigouche, the observed versus predicted water temperature graphs depict
minimal ranges in over and under predictions of water temperature values. Under suitable
circumstances, the predicted temperature residual values would sit along the x-axis to
show the difference between the predicted and observed values.

In the Upsalquitch SE and the Little Main Restigouche tributaries, respective
residuals sit closest to the x-axis compared with remaining tributary extents (Figure 11).
These results infer that the parameters included within these two reach-specific models
may be strong drivers to modelling tributary confluence plume temperatures on the
Upsalquitch SE and Little Main Restigouche. However, these same parameters used in the
poorly performing models of the Restigouche and Upsalquitch may not be the dominant

drivers of tributary confluence water temperatures at these tributaries.
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Figure 11. Residual graphs of measured vs predicted temperatures (°C) of the seven
tributaries.
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3.2 12D Model
3.2.1 Global 12D Model

The global models yielded a total of 195 tributary confluence points (Table 5).
Both canopy model variations exhibited identical model parameters, with 10% training
data, 150 trees tested with the input variables, a tree size of 5, a tree depth range between

8 and 18, and an average tree depth of 11.

Table 5. Total sample sizes of tributary confluence points within the seven tributaries
used in the global model analysis.

Tributary Sample Size (n)
Kedgwick 33
Little Main Restigouche 15
Patapédia 21
Restigouche 56
Upsalquitch 31
Upsalquitch Northwest 26
Upsalquitch Southeast 12

Predicted temperature results of the buffered FBCR global model (n=195) showed
a range of values from 14.3°C — 20.5°C, with an average predicted temperature of 18.1°C.
The Upsalquitch Southeast exhibited the coolest mean predicted temperature of 15.6°C
with an SE of 0.2°C, while the Restigouche exhibited the warmest mean predicted
temperature of 19.2°C with an SE of 0.1°C. These results were comparable to the 2012
TIR measured temperatures, which found the Upsalquitch Southeast as the coolest
tributary with an average temperature of 14.7°C with an SE of 0.3°C, and Restigouche

with the warmest mean temperatures at 20.1°C with an SE of 0.1°C. The final buffered
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model produced a validation R? of 0.81 and a standard error of 0.089. The out-of-bag
errors produced a mean squared error (MSE) of 1.92, with 55.3% of the variation
explained. Model variable strength was calculated by calculating the percentage of Gini
coefficients compared to the total coefficients of the model. Based on the associated
variable Gini coefficients, four variables accounted for 50% of the model strength, while
nine variables

accounted for 75% of the model strength (Table 6). There is a considerable decrease in
model strength after the top three variables in both models, where there is a drop of

approximately 4.5% in variable importance (Figures 12 and 13).

Table 6. Percentage of variable model strength of variables included under the buffered
and non-buffered models. See Appendix E for comprehensive list of variable Gini
strength.

Regression Variables

Gini Strength (%0)

Variable Non-Buffered Buffered
Latitude 18.56 17.36
Water Table Ratio 15.69 17.57
Bedrock 469 11.57 11.19
ECA Value 6.03 6.75
Loss Year 5.70 5.25
Bedrock 390 5.23 5.45

Wet Areas 3.47 3.21
Canopy Cover 3.25 3.31
Bedrock 430 2.69 1.93

The “No Buffer” FBCR global model (n = 195) resulted in temperature predictions
ranging from 13.9°C to 20.6°C, with the Upsalquitch Southeast and Restigouche having

the mean coolest (15.0°C and SE of 0.2°C) and warmest (19.8°C and SE of 0.1°C)
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temperatures, respectively. The mean predicted temperature was calculated at 18.6°C with
an SE of 0.1°C. These results are like that of the “Buffer” model, where the coolest and
warmest tributaries are consistent. The validation R? value was greater than that of the
Buffered model, sitting at 0.88. The standard error of the model shows a value of 0.097.

Model out-of-bag error outputs showed the model had an MSE of 1.90, with 56.1% of the

variation explained.
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Figure 12. Distribution of variable importance based on total Gini Coefficients for the
global “buffered” model and associated predicted water temperature values. A drop in
Gini Coefficient strength occurs at canopy cover (BUFC), with the highest variable of
importance being latitude (Y). Variables that contributed to 75% of the model strength
(Gini Coefficient > 3) were used for reach-specific models.
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Figure 13. Distribution of variable importance based on total Gini coefficients for the
global “non-buffered” model and associated predicted water temperature values. A drop
in variable strength occurs at average bedrock age 390 (VALUE_390), with the highest
variable of importance being latitude (). Variables that contributed to 75% of the
model strength (Gini Coefficient >3 were used for reach-specific models.
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We expected to see minimal change when comparing the canopy models under the
12D model parameters against each other due to the minimal changes in values. In both
global models, four variables accounted for 50% of the total model strength for predicting
tributary water temperature. These variables included the latitude (), water table ratio
(MEAN_WTR), bedrock at an average age of 469 Mya (VALUE_469), and the equivalent
cut areas (ECA). In model 12D, there were spatial patterns within the prediction abilities
of the model at different reaches. Under both models, the Patapédia, Little Main
Restigouche, Restigouche and Upsalquitch temperature predictions fell within -0.5 to 1.5
standard deviations, while the Upsalquitch Northwest, Upsalquitch Southeast and
Kedgwick predictions fell within -1.5 to > 2.5 standard deviations.

As | aimed to compare the differences in canopy cover within the models, canopy
cover contributed to 3.25% and 3.31% of the model strength for the non-buffered and
buffered models, respectively. The Nash-Sutcliffe coefficient calculation was conducted
for the “Buffer” and “No Buffer” models respectively, and the resulting values were
compared to each other to determine which model was more effective. The resulting NSC
values in both circumstances were comparable, with the “Buffer” model with an NSC of
0.908, and the “No Buffer” model with an NSC of 0.912. Both models explain the variance
in the data to an almost perfect-fit regardless of catchment-wide canopy cover or 30m
riparian cover as an NSC value of 1.0 depicts a perfect-fit model (Jain & Sudheer, 2008).
However, the “No Buffer” model was a slightly better fit than that of the “Buffer” model

in terms of model fit to the data.
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3.2.3 Reach-Specific 12D Model

Reach-specific results were divided into two regression analyses to explore the
differences between buffered riparian zones and total canopy cover (non-buffered). We
used the results of the global model to inform the model variable parameters by taking the
number of variables that added to 75% of the total model strength and using them at the
reach-level. The inputs of the reach-specific models included latitude, water table ratio,
bedrock at 469Mya, 390Mya and 430Mya, canopy cover, loss year, ECA and wet areas.

In the case of all tributaries, no variables indicated high collinearity (VIF > 5).
Results of the model reductions produced variable results, with the Patapédia being
reduced to one variable, while the Upsalquitch Southeast was reduced to six variables for
the largest amount of model variables to remain. One outlier was removed from the
Restigouche tributary and from all prior analyses, where a negative average water table
ratio caused distortion in the results in crossing Cook’s D contours.

A model ANOVA comparison was run with the final reduced models to determine
which 12D canopy cover model was a better fit based on the residual sum of squares
(RSS). The results showed that the Kedgwick and Restigouche tributaries performed
better under the buffered model, while the Upsalquitch Southeast and Upsalquitch
Northwest performed better under the non-buffered model. The Patapédia, Little Main
Restigouche, and Upsalquitch tributaries did not have canopy cover in the final reduced

model (Table 7).
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Buffered canopy cover (2/7 models), average bedrock age (5/7 models), and forest

harvesting intensity (2/7 models) were common variables occurring within the reduced

models (Table 7). No significant trends in variable presence were observed in the final

models, as there was no spatial relationship between the number of final variables and the

location of the tributaries. One interesting observation was the range in variables

depending on latitude, seen in the reduced models of the Patapédia and Kedgwick

compared to those of the Upsalquitch Forks. The tributaries at higher latitudes had < 2

variables, while the tributaries at lower latitudes had > 3 variables.

Table 7. Final reduced models of the reach-specific models. See Appendix C for
standardized model coefficients.

Tributary Reduced Model

Kedgwick OBSERVED ~ Y + BUFC

Little Main  OBSERVED ~ AECCOLLEC + PROP_WET + PROP_469

Patapédia OBSERVED ~ PROP_390

Restigouche OBSERVED ~ Y + BUFC + MEAN_WTR + LOSSYR

Upsalquitch OBSERVED ~ AECCOLLEC + LOSSYR +PROP_WET +
PROP_469

Es\sla'q“'mh OBSERVED ~ NOB_C + MEAN_WTR + PROP_469

Upsalquitch  OBSERVED ~Y + NOB_C + MEAN_WTR + AECCOLLEC +

SE PROP_WET + PROP_390

Models that performed the strongest were characterized as models showing an R?

value > 0.75; Upsalquitch Southeast (R?> = 0.96), Patapédia (R? = 0.86), and the

Upsalquitch (R? = 0.75). A similar R? result in both model 3D and model 12D was

identified, with the Upsalquitch Southeast having an R? value of 0.96 and 0.91 in models

1 and 2, respectively.
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Models that performed moderately well were defined as models with R? values
between 0.50 and 0.75; Little Main Restigouche (R? = 0.63), Kedgwick (R? = 0.58), and
the Restigouche (R? = 0.51). These models showed a trend of forest harvesting and canopy
cover being important drivers among the three tributaries, however, compared to the
Kedgwick and Little Main Restigouche, the Restigouche did not contain a variation of
bedrock age as a driving variable. The Kedgwick and Restigouche tributaries both showed
that latitude was a driving factor in the reduced models, but not for the Little Main
Restigouche. The Kedgwick tributary showed an identical R? value under both model 3D
and model 12D parameters. Contrastingly, the values of the R? for the Kedgwick and
Restigouche tributaries decreased and increased, respectively.

One model that underperformed was characterized with an R? value of below 0.50:
Upsalquitch Northwest (R? = 0.39). The Upsalquitch Northwest showed a similar trend
under both models, with an R? of 0.42 in the 3D model. There was a decrease in the
number of poorly performing tributaries under 12D model variables, as the Restigouche
and Upsalquitch performed poorly under model 3D but increased under the 12D model
parameters (Table 8).

Table 8. Descriptive statistics for the final reduced models of reach-specific 12D model
results.

Tributary n p-value R? F-statistic Standard Error
Kedgwick 33 <0.001 0.78 59.33 0.42
Little Main 15 0.003 0.63  8.955 0.19
Patapédia 21 <0.001 0.86 1137 0.32
Restigouche 56 <0.001 051 1452 0.37
Upsalquitch 31 <0.001 0.75 23.68 0.39
Upsalquitch NW 26 0.003 0.39 6.453 0.73
Upsalquitch SE 12 <0.001 0.97 79.67 0.14
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4.0 Discussion

4.1 3D Model
4.1.1 Global

The global watershed level model under the 3D model parameters failed to explain
an adequate amount of variation (R? = 0.07). Further analysis at the global scale was not

conducted.

4.1.2 Reach-Specific

The variables in the 3D model best fit the Upsalquitch Southeast and the Little
Main Restigouche tributaries; the difference between the TIR measured and predicted
water temperatures was minimal as seen in the R? values of both tributaries. Respectively,
91% and 85% of the variation at these tributaries could be predicted from the drivers of
the 3D model. We can infer that under the restraints of the 3D model, the Upsalquitch
Southeast and the Little Main Restigouche are primarily driven by slope, canopy cover,
and well-drained soil and water temperature can be estimated without the addition of other
parameters. For the Upsalquitch and Restigouche tributaries, 19% and 27% of the
variation was predicted from the drivers of the model. In these cases, the model was not a
reliable predictor of water temperatures and requires a more extensive model to inform
predictions.

In the 3D model, several landscape variables were unaccounted for that may have
affected the amount of variation able to be explained at the reach-scale. TCP water
temperatures are driven by groundwater and provide a stable input to the plume in summer
months when temperature variation is highest and are less susceptible to changes in

temperature as they receive stable water inputs compared to other thermal refuge
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classifications (Dugdale, 2014; Wawrzyniak et al., 2016). Measured temperature data
were collected during the summer months of 2011-2013 when variation in water
temperatures were highest. The temporal variation between the observed data and
geospatial data used in the analysis may have contributed to unexplained variation within
the model.

We expected to see that well-drained soil with a high average slope would strongly
contribute to cold-water temperatures at the reach-scale, as soil permeability informs
recharge rates and water percolation (Leibowitz et al., 2018; Shaban et al., 2006). The
reach models did not indicate a strong relationship between soil drainage and TCP water
temperatures. The Upsalquitch Southeast, a strongly predicted tributary, showed a well-
drained soil average of 75%, while the Restigouche tributary, one of the poorly predicted
tributaries, averaged a soil drainage of 72%. Soil drainage may not have been one of the
strong driving predictors, as there was no relationship between a high average well drained
soil to strong performing tributary models, which could be due to the reduction of
variability across the reaches during the initial drainage classification process.

As stated in the literature, the greater the slope, the less time groundwater and
surface water sources are able to saturate the soil or remain stagnant (Monk et al., 2013;
Leibowitz et al., 2018; Vidon & Kill, 2004). We can infer that it could be a driving factor
in tributaries such as the Upsalquitch Southeast, as this tributary has the highest average
area of steep slopes > 25% at 18% total area (Simard & Clowater, 2006). Similarly, the
Restigouche tributary stands at a total of 8% total steep slope landscape.

Canopy cover decreases the amount of solar radiation that contacts tributary
surface waters (Kurylyk et al., 2015), and has an indirect relationship to water

temperatures as it does not cool the water but creates a cooling gradient along the tributary
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under the canopy (Garner et al., 2014). This would also be the similar process occurring
at the mouth of the tributary to the mainstem, where canopy cover would provide shade
to the plume. In total, 85% of the watershed was identified as having canopy cover >3m
in height, with over half of the watershed characterized as old forest habitat (Simard &
Clowater, 2006). Forest cover at the Little Main Restigouche, Upsalquitch Southeast,
Restigouche and Upsalquitch tributaries demonstrated a collective average catchment
canopy cover of 84%. However, the Restigouche and Upsalquitch tributaries did not
perform well under the reach models. We can infer that the sources of water flow to these

tributaries may not be affected by the cooling gradient of canopy cover.

4.2 12D Model
4.2.1 Global

The results of the global watershed model under the 12D model parameters
showed that water temperature predictions responded to the same variables regardless of
the presence or absence of a buffered riparian canopy (Table 9). The buffered and non-
buffered global models showed that the amount of variation explained through the input

variables was 55% and 56%, respectively.

Table 9. Descriptive statistics of the global buffered and non-buffered models.

. L %
Model Mean Mzedlan Vall(gatl o-value Standar MSE  variance
Temp R onR d error :
explained
Non- 1860 070  0.88 <0.001 0.097 1.896  56.10
Buffered
Buffered 18.10 0.71 0.81 <0.001 0.089 1.915 55.25
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This result was expected, as the global model variables were exclusively landscape
variables, and discounted the variance that could be explained through other variables,
such as air temperature, stream morphology, precipitation, snowpack and other detailed
hydrological processes (Torgersen etal., 2012; O’Sullivan et al., 2022; Pander et al., 2024;
Wiley et al., 2006). The consistency in variable importance between both global models
informs Objective 1 of determining if there was a relationship between landscape drivers
and TCP water temperatures at the global scale.

We identified variation between the observed and predicted temperature results at
the reach-specific level, meaning that not all models demonstrated identical variable
selection for predicting water temperature at each tributary. While the global model is
useful in informing drivers across the watershed level, landscape level drivers are variable
in order of importance at the tributary level, which could inform management procedures
through the lens of protecting tributary confluence plumes. The watershed-level global
model can be used as a proxy for identifying landscape variables and informing the inputs
of the reach-specific prediction models. We expected to see that certain variables would
not contribute to the global model, as their spatial scales were inadequate at the global
scale. Variables such as agriculture, road presence, and soil drainage are stronger
predictors at the reach-scale as their processes are more effective or impactful at the
smaller scale (Leibowitz et al., 2018; Wilbur et al., 2020). Similarly, forest cover type was
statistically unimportant at the global scale, as forest cover types inform water
temperatures through indirect processes such as through evapotranspiration (Garner et al.,
2014). This process is not a strong driver at the global scale, however, a previous study
identified summer stream temperatures under deciduous forest cover being warmer than

under coniferous forest cover (Dugdale et al., 2018). Although this study did note that
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while forest cover type was not the sole factor driving summer stream temperatures,
further studies into forest cover type as a factor in the cooling of water temperatures may
be more effective at the reach-scale to inform tree species selection during restoration

efforts (Quilbé et al., 2023).

4.2.2 Reach-Specific

Comparing the results of model 3D and model 12D, there was a significant
increase in the amount of variance explained with the addition of variables. The reach-
specific model results informed objective 2 of determining the variation of importance of
landscape drivers at the tributary level, and to identify sub-catchments for provincial level
protection based on the variables of importance. The reduced models of each tributary
showed that the variables of importance at the tributary level were not identical, informing
objective 2. The relative importance of the variables was identified, where we found that

variables could be classified into three broader categories: canopy, bedrock, and climate.

4.2.3 Canopy

Canopy cover was the driver of highest relative importance at the Kedgwick
tributary, specifically at the 30m buffer level of cover (see Appendix D). The reduced
model showed a negative relationship between buffered canopy cover and water
temperatures, supporting previous studies that found canopy cover at the tributary level
influences water temperature (Aas et al., 2010; Drake et al., 2010; Johnson et al., 2015).
A suggestion for the strength of the “buffered canopy” model attribute for the Kedgwick
tributary may be attributed to the high slopes on the sub-catchments. The Kedgwick
tributary does not experience prominent levels of forest harvesting compared to that of

other tributaries such as the Upsalquitch Forks, presumably due to low accessibility due
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to high slopes. As the Kedgwick tributary exhibits high average slopes in comparison to
other tributaries on the watershed and low levels of forest harvesting, this could be
reducing the amount of solar radiation coming into contact with the tributary.

We recommend that the Kedgwick tributary be of high importance to managers in
terms of protection, as canopy cover is a manageable landscape variable. We recommend
that the tributary and its TCP catchment areas be covered at minimum a 30m riparian
buffer under the New Brunswick provincial regulation guidelines, but preferably protect
canopy cover at the catchment scale or to explore the use of variable-width buffers to
accommodate for spatial differences at the reach-scale, where a 30m protective riparian
buffer may not suffice. Specifically following the recommendations of GINU, where
recommendations are to restore and manage shaded buffer zones along the stream network
and reducing forest harvesting to limit clearcutting and managing the forest to prioritize
planting of indigenous tree species as well as species forecasted to thrive under future

climate scenarios (Quilbé et al., 2023).

4.2.4 Bedrock

The average bedrock age was the driver of highest relative importance at the Little
Main Restigouche, Patapédia, Upsalquitch and Upsalquitch Northwest tributaries (see
Appendix D). We identified literature stating that bedrock and local geomorphology
influences the thermal regime of tributaries, as the bedrock influences groundwater
movement through deep geological fractures and high soil permeability levels (Aas et al.,
2010; Jolly et al., 2008; O’Sullivan, 2021; Price et al., 2005; Vidon and Kill, 2004).
Interestingly, we identified positive and negative relationships between tributary water

temperatures and bedrock. Typically, the older the bedrock, the cooler the water inputs
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(O’Sullivan, 2021) due to the higher level of permeability and bedrock depth. Our results
showed that there was no relationship between the older bedrock to water temperature
specifically, where the warmest water temperatures from the Little Main Restigouche
tributary is located on the oldest average bedrock age (469Mya). Conversely, the
Patapédia tributary had cooler water temperatures on the youngest average bedrock age
(390Mya). We can infer there may be other processes occurring at the catchment level, or
variables not considered here, contradicting the findings of O’Sullivan (2021). Further
exploration into the geomorphology of the Restigouche River watershed in terms of
geological depth and permeability of the bedrock would be of interest as these
characteristics of the bedrock have been documented to be significant variables within

other predictive models (O’Sullivan et al., 2019).

4.2 5 Climate

The relative importance of latitude, or the position of the tributary on the
watershed, was highest for the Restigouche and the Upsalquitch Southeast (see Appendix
D). These tributaries have been identified as tributaries that could be most susceptible to
climate change due to the high relative importance of latitude as a model variable. At the
Restigouche and Upsalquitch Southeast, there is a positive relationship between latitude
and tributary water temperatures, where an increase in latitude at both tributaries predicts
an increase in water temperature by 0.61°C and 0.92°C, respectively. While there is no
physical process that can allow for latitude to be managed on a watershed, identifying
these tributaries as more susceptible to a warming climate, we recommend that the

Restigouche and Upsalquitch Southeast be of highest importance of protection under the
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climate category due to its greater possible sensitivity to temperature increases as a

function of their regional location on the watershed.

4.3 Restrictions

The dynamic nature of riverine systems makes predicting water temperatures an
imperfect exercise, as statistical models and data analyses fail to account for the spatial
and temporal variance in favourable circumstances. The global and reach-specific models
exclusively include landscape-specific parameters, excluding other driving variables such
as air temperature, snowmelt, stream morphology, variation in climate, precipitation, and
water movement (Caissie et al., 2007; Torgersen et al., 2012).

The tributary confluence plume temperature measurements used in our models
were collected between 2011 and 2013 leaving a 10-year gap between initial collection
and the current analysis. Canopy cover data were derived from LiDAR data collected in
New Brunswick during 2021, and Québec in 2020, which has invariably changed over the
past decade, plausibly due to natural forest clearing and the continuation of forest
harvesting.

There remains a level of uncertainty regarding the precise locations of tributary
confluence plumes in model 3D. This level of uncertainty was decreased through the
addition of the Québec portion of the watershed and compared against previously created
catchments by GINU. However, the hydrological flow accumulation rasters are still
subject to human manipulation and must be confirmed in the field for accuracy purposes.

The inconsistencies in the importance of canopy cover can be attributed to the
secondary link between canopy cover and TCP temperatures, as well as other factors on

the watershed where canopy cover affects other processes. Wetlands may connect directly
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to the stream network and experience high hydrological connectivity to downstream
waters, however, wetlands located further upstream may still contribute to hydrological
connectivity depending on the nature of other landscape variables (Leibowitz et al., 2018).
Standing wetlands on the watershed may be indirectly connected hydrologically to the
river system and may be subjected to elevated levels of solar radiation with the absence
of canopy cover. Without forest cover to reduce solar radiation at wetlands, groundwater
connections between wetlands and the tributaries may be subject to increased warm water
inputs (O’Sullivan et al., 2019). In cases such as the Little Main Restigouche and
Upsalquitch tributaries, where canopy cover was not included in the reduced models, but
wetlands were, ensuring that wetlands are covered by forest may aid in providing cooler
water inputs indirectly.

The inability of the models to explain some variation at tributaries such as the
Little Main Restigouche may be due to anthropogenic influences which were disregarded
at this scale. The relationship between agriculture, urban expansion, and road presence is
greater at the reach-scale than at the global scale (Torgersen et al., 2012). Agriculture and

roads were not included at the reach-scale.

4.4 Future Implications for Management

Future research into predictive models should be explored at a variety of different
spatiotemporal scales and the variability of the landscape drivers between them. Small-
scale landscape variables, such as agricultural land use may be better used in small-scale
models than larger scale models as agricultural land is typically spatially smaller than
other variables such as catchment-wide canopy cover. The spatial scale of predictive

models is crucial to identify before choosing landscape variables. Variables with minimal
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spatial variation, such as average bedrock age, are better used in larger models. Similar to
spatial variation, acquiring high resolution data is important for predictive models, as the
higher the resolution, the greater the data accuracy, which aids in creating a more realistic
depiction of the landscape.

Our reach-level models were successful in explaining a substantial proportion of
variance, however, there remained unexplained variance that if captured, would contribute
to the success of the models. A recommendation for future predictive models would be to
add additional parameters that are not classified as landscape variables to identify the
remaining variation. For example, channel configuration and structure has been seen to
influence water temperature patterns and storage (Ebersole et al., 2003), while the
classification and depth of the bedrock may explain the lack of consistency between
bedrock age in our models (Hale et al., 2016). Some additional variables of interest stated
in literature include water velocity, stream morphology, channel configuration, and
bedrock type (Briggs et al., 2018; O’Sullivan et al.,2022)

Another recommendation when developing models would be to account for
changes in climate, as it is a given that river and tributary water temperatures will increase,
making the effects of climate change a key area of research (Gillis et al., 2023). When
creating water temperature prediction models, the addition of air temperature, snowmelt,
solar radiation, and precipitation will be of importance (O’Sullivan et al., 2022; Westhoff
& Paaukert, 2014; Wiley et al., 2007).

The headwaters of streams and rivers play a significant role in water temperature,
due to its contribution through surface and subsurface water, and its sensitivity to changes
on the landscape through forest harvesting and land use (Acreman et al., 2019; Johnson et

al., 2015; Quilbé et al., 2023). This is due to the connective nature of the riverine systems,
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described as the Waterscape Continuum Concept, in which O’Sullivan et al. (2022)
describes how landscape variables connect holistically, and all contribute on a continuum
to ecosystem success. The continuous success of the riverine system extends far beyond
the river. Acreman et al. (2019) described the importance of longitudinal, lateral, vertical,
and temporal connectivity at river systems in its biological success and informs the
presence of thermal refuges. When the system is altered through human disturbances, the
biological processes of the watershed are affected (Abell et al., 2006; Acreman et al.,
2019; Hansen & DeFries, 2007). A recommendation for management would be to move
towards catchment-wide protection of TCPs to ensure total landscape connection, not only
for cold-water temperatures, but for other biological processes that occur on the watershed
(Abell et al., 2006; Acreman et al., 2019; Bower et al., 2017).

While some of the tributaries showed no statistical significance favouring the
reduced non-buffered models, we argue that not only does canopy cover act as a buffer to
solar radiation, but also contributes to other ecological services that help the success of
thermal refuges, such as nutrient inputs and decreasing perceived risk of predation of
salmonids (Gibson, 1978; Rimmer, Paim & Saunders, 1984). We identified that seven
tributary models had a variation of forest harvesting or canopy cover as a variable of
importance. Forest harvesting on the Upsalquitch, Little Main Restigouche, Restigouche,
and Upsalquitch Southeast tributaries informed water temperature predictions, and were
not influenced by temporal variation in the datasets. Canopy cover was of importance at
the global and reach-scales. When a catchment experiences forest harvesting, specifically
a clearcut, groundwater temperatures may increase regardless of the presence of a stream
buffer as the canopy cover influences ground and surface water temperatures through

atmospheric exchanges (Kurylyk et al., 2015). Currently, the Restigouche River
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watershed is managed by private companies at 24%, while the remaining 76% is managed
by the Crown (Simard & Clowater, 2006). On crown lands, avoiding clearcutting within
catchment areas while favouring less intensive harvesting techniques would be preferable.
Our recommendation for catchment-wide management is in favour of converting TCP
catchment areas to protected natural areas status under the New Brunswick Protected

Natural Areas Act.
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5.0 Conclusion

This thesis aimed to determine the drivers of TCP cold-water temperatures at
different spatial scales in the Restigouche River watershed. The objective of model 3D
was to determine if soil drainage, slope percentage and canopy cover could be used as
predictor variables at the global and reach-specific level for tributary confluence plume
water temperatures. The 3D model global fit concluded that the drivers did not provide
enough variability to inform predictions. There was a strong relationship between the 3D
model parameters at certain tributaries, specifically at the Upsalquitch Southeast and the
Little Main Restigouche. However, it failed to explain most variability for the Restigouche
and Upsalquitch tributaries, and provided limited explanations for the Patapédia,
Upsalquitch Northwest and Kedgwick tributaries. The 12D model contained nine
landscape variables in addition to the three variables of model 3D to create a stronger
prediction model at the global and reach-scales. We identified similar landscape drivers
at both spatial scales of the model 12D as being informative drivers of tributary water
temperatures through Forest-Based Classification and Regression (global) and multiple
regression (reach-specific). Additional variables included average bedrock age, aspect,
groundwater, wet areas, forest cover type, forest harvesting, agriculture, and road
presence. We identified comparable model fits between the global buffered model (NSC
= 0.908) and the non-buffered model (NSC = 0.913). However, the non-buffered model
(R?= 0.88) explained more variance than that of the buffered model (R? = 0.81). We
identified variables to be used at the reach-scale through the results of the global model
based off Gini coefficient strength and identified three variable classifications of

importance at the reach-level: bedrock, climate, and canopy cover. Recommendations for
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management at the reach-scale included the catchment-wide protection of tributary
confluence plumes, as previous studies have identified catchment-wide protection as the

most effective in terms of protecting and enhancing thermal refuges in watersheds.
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Appendix A

Descriptive List of Model Landscape Variables, Descriptions, and

Sources
Variable Attribute Variable Description Data Source
Landscape Aspect GeoNB,
Attributes MDFERN
Latitude Digital Elevation Model
(resampled to 2m, 10m, 20m-
Slope GeoNB,
MDFERN
Geology Soil Drainage Poor to well-drained soil GeoNB,
classifications 0 -6 MDFERN
Geology Bedrock Age Median age of geological GeoNB,
Land Composition time period MDFERN
Canopy Cover Total percentage of cover in GeoNB,
30m buffered stream lengths MDFERN
within unique catchment
areas
Land Composition Forest Type Hardwood, mixedwood, GeoNB,
softwood stand types MDFERN
Wet Areas Proportion of wet areas White et al.,
compared to total catchment 2012
area
Water Table Ratio Logarithm of linearly water Cuthbert et
table ratio al., 2019
Road Presence Provincial road layer for NB GeoNB,
and QC (primary, secondary MDFERN
and forestry roads)
Agriculture Locational agriculture in NB GeoNB,
and QC MDFERN
Forest Harvesting Equivalent Cut Areas Sum of forest disturbances  Leblanc et al.,
(ECA) multiplied by the regressive 2012
rate of the cut effect (RRCE)
divided by the sum of the
sub-catchment area
Loss Year Global Forest

Forest extent and change
from 2012 - 2023

Watch




Appendix B

Model 3D Descriptive Statistics

Regression
Descriptive Statistics Prediction

Mean Temp St. Dev. Cv Standard

n (°C) (°C) (%) R?  Error (°C)
Global 194 18.3 2.0 11.1% 2.0
Restigouche s 200 0.5 2.7% 0.5
Upsalquitch 31 19.4 0.8 4.0% 0.8

Little Main

Restigouche 194 0.3 0.2
Kedgwick 33 18.0 0.9 0.7
Patapédia 21 16.2 0.8 0.7
Upsalquitch NW 26 15.6 0.9 0.8
Upsalquitch SW 14.2 0.9 0.4
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Appendix C

Model 12D Standardized Coefficients

Kedgwick Little Main Restigouche  Patapedia Restigouche  Upsalquitch  Upsalquitch NW  Upsalquitch SE

Y 0.7336254 X X 0.6113968 X X 0.9211534
Canopy (buffer) -0.3611122 X X -0.248467 X X X
Canopy (No buffer) X X X X X 0.262128 0.1323955
Bedrock 469 X 0.9999513 X X 0.6211239 -0.5948365 X
Bedrock 390 X X -0.9256235 X X X 0.1971054
Bedrock 430 X X X X X X X
Water Table Ratio X X X -0.143255 X -0.2949849 -0.0660487
Wet Areas X 0.6063354 X X 0.2405809 X 0.1004729
Loss Year X X X -0.208638 -0.2299861 X X
ECA X 0.9642322 X X -0.2134168 X -0.3055845



0L

Kedgwick
Y 0.25
Canopy (Buffer) 0.75
Canopy (No Buffer)
Bedrock 469
Bedrock 390
Water Table Ratio
Wet Areas
Loss Year
ECA

Appendix D

Model 12D Reach-Specific Relative Importance

Little Main Restigouche

0.42

0.22

0.36

Patapedia

Restigouche
0.68
0.04

0.13

0.15

Upsalquitch

0.53

0.05
0.24
0.18

Upsalquitch NW  Upsalquitch SE

0.16
0.75

0.09

0.7

0.06

0.02

0.03

0.02

0.17



Appendix E

Global 12D Model Variable Importance (%)

. Non-
Variable Buf(f)ere d Buffered
Y
MEAN_WTR
VALUE_469
AECCOLLEC 6.03 6.75
LOSSYR 5.70 5.25
VALUE_390 5.23 5.45
PROP_WET 3.47 3.21
CANOPY 3.25 3.31
MEAN_S10 2.69 2.47
VALUE 430 2.69 1.93
MEAN_S20 2.59 2.77
MEAN_S2 2.40 2.01
MAX_S2 1.98 1.42
MAX_S20 1.44 1.21
MEAN_E2 1.43 1.15
MIN_S20 1.43 1.77
MAX_S10 1.38 1.10
Al 1.30 1.41
MEAN_E20 1.16 1.06
F 1.16 1.01
MIN_S2 1.06 1.22
MEAN_E10 1.06 1.38
A2 102 068 |
AO 0.97 1.38
M 0.93 1.37
R 0.92 0.85
ROADP _1
MIN_S10
A 6
A 3
A5
A4
AGRI
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