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ABSTRACT 

 

 For decades researchers have been studying forest soils and summarizing findings 

in the form of soil surveys with thematic soil maps depicting soil associations, broad 

polygons representing groups of individual soil types. With growing availability of high-

resolution spatial data, it has become possible to model and map how individual soil 

properties vary, both spatially and with depth, across the landscape at high resolution. 

This dissertation demonstrates how this can be accomplished for the Province of New 

Brunswick (NB), Canada by way of digital soil mapping (DSM) based on (i) existing soil 

information and related data sets, (ii) principles of soil formation as dictated by location-

specific changes in topography, surficial geology, and climate. For this purpose, existing 

elevation data sets were fused via error reduction procedures to generate a 

comprehensive province-wide digital elevation model (DEM) at 10m resolution. The 

resulting DEM was then used to delineate a variety of data sets detailing spatial variations 

in topography, hydrology, and climate. Various sources of spatial geology depictions were 

combined by way of similarities in classifications resulting in re-delineations of landform 

and lithological attributes. In combination, the data layers generated were used to 

determine how specific soil properties (n = 12,058) vary, both spatially and with increasing 

depth, across the province at 10m resolution. These determinations were made possible 

by way of machine-based random forest regression modelling.  
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This dissertation provides details in terms of how (i) a province-wide soil database 

was generated from existing soil survey reports, (ii) how missing soil data were 

substituted through the process of pedotransfer function development and analysis, (iii) 

how the province-wide DEM layers were fused, and (iv) how the DSM procedure was 

formulated and executed. The soil properties selected for modelling and mapping 

purposes refer to soil depth, drainage, bulk density, texture, coarse fragment content, 

and soil organic matter content. In turn, these properties, in combination with spatial 

data sets (topography, geology, and climate), can be used to model and map other soil 

variables such as, e.g., pH, soil water retention at field capacity and permanent wilting 

point, and cation exchange capacity.  
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CHAPTER 1 - INTRODUCTION 

1.1. OVERVIEW 

Soil is a complex and essential, yet non-renewable, natural resource which plays a 

critical role in policy and resource management (Adhikari et al., 2012; Cambule et al., 

2013; Poggio et al., 2013). As such, this resource is gaining increasing attention with 

growing concerns around climate change adaptation and how soil properties vary with 

changing environments (Grimm and Behrens, 2010; Häring et al., 2012; Poggio et al., 

2013). Of particular importance, especially for precision agriculture and forestry, is 

knowing how soils and their properties vary across the landscape and how these 

variations influence root development and the movement, and storage, of soil carbon, 

nutrients, minerals, and water (Florinsky et al., 2002; Smith et al., 2006; Carré et al., 2007; 

Keys, 2007; Grimm and Behrens, 2010; Häring et al., 2012; Weil and Brady, 2017). 

 Soil formation relies on five primary factors: parent material, relief (topography), 

vegetation, climate, and time (Jenny, 1941; Klingebiel et al., 1988; Valladares and Hott, 

2008; Adhikari et al., 2012; Cambule et al., 2013). Therefore, understanding the variation 

in these factors for any given location can provide a glimpse into soil conditions, and in 

turn, may allow for better understanding the relationships between soil properties and 

vegetative productivity. Conventionally, soils are depicted as choropleths, i.e., tessellated 

boundaries that hierarchically group soils by similarities in landforms (i.e. soil 

associations, distinguished by morphological features and mineralogical composition) as 

illustrated in Fig. 1.1 (Colpitts et al., 1995; Fahmy et al., 2010). This form of mapping 
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represents a generalized simplification of surveyed soil properties (McBratney et al., 

2000a; MacMillan et al., 2005; Mora-Vallejo et al., 2008). The resulting map units, 

however, are too broad to reflect many of the soil variations within these units as affected 

by elevation, drainage, type of vegetation cover, surface exposure, water flow, and 

gravitation influences (Odgers et al., 2014).  

 
Figure 1.1. Visual example of one of Holmesville soil associations within NB with extent outlined in white 
(A), range of elevation within the association (B), and range in varying land types (organic) and land 
management practices (both agriculture and forestry) within small subset of association overlain on GeoNB 
basemap imagery (C). This one association covers 35,683ha (0.6% of NB). 

 

Traditionally surveyed and delineated soil associations are limited, specifically due 

to (Pitty, 1979; Moore et al., 1993; Zhu and Mackay, 2001; Heung et al., 2014; Odgers et 

al., 2014): 
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1. Soil surveys were developed for assessing land uses instead of soil property 

variability. 

2. Soil properties vary continuously and do not abruptly change at defined 

boundaries (Simbahan et al., 2006; Odgers et al., 2014). 

3. Relationships between soil properties and landform/landscape position were 

often missed (MacMillan et al., 2005). 

4. Locations of individual soil types within each, and across, soil associations remain 

unknown with reference to actual landform extent and topographic delineations 

(Dobos et al., 2000), 

5. Survey objectives were limited in various ways: time and available financial 

support, lack of survey-supporting data layers, and non-standardized data 

collection and laboratory procedures (Park et al., 2001).  

With increasing availability of high-resolution datasets within geographic 

information systems, pertaining to, e.g., digital elevation models (DEMs) (with resolutions 

ranging between 50 - 100cm) and DEM-derived secondary models (topographic and 

climate models), it is possible to ascertain how soil properties, those of which influence 

the rooting medium, vary spatially across the landscape, from upper reaches of hill crests 

to valley bottoms and stream banks, with properties focusing on soil depth, texture, 

organic matter content (SOM), bulk density (Db), coarse fragment (CF) content, pH, cation 

exchange capacity (CEC), and moisture retention at field capacity (FC) and permanent 

wilting point (PWP). This is feasible by way of digital soil mapping (DSM): 
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1. Developing pedotransfer functions (PTFs) (Bouma, 1989), mathematical 

relationships between soil properties, and  

2. Producing spatially-continuous soil attribute maps by modeling relationships 

between geographically-explicit soil profiles across the landscape with data sets 

representing surficial geology, climate, and topographic information (from DEMs). 

Digital soil mapping (DSM) is a growing science directed toward modeling soil 

properties spatially across the landscape at a continuous extent by resolving the issue of 

soil boundary discretization and omission of soil property inter-variability per soil 

association (McBratney et al., 2003; Smith et al., 2006). This approach is based on three 

fundamental principles: 

1. pedometrics, mathematical and statistical approaches to modeling soil properties 

and relationships (Florinsky, 2012),  

2. soil-landscape relationships (Gerrard, 1981; Birkeland, 1999; McBratney et al., 

2000; MacMillan et al., 2005; Barka et al., 2011), and 

3. soil formation and soil forming factors (Jenny, 1941; Birkeland, 1999; Wu et al., 

2008; Adhikari et al., 2012).  

With DSM, soil properties from field-collected soil samples can be statistically 

compared to DEM-derived topographic derivatives, climatic and geological datasets from 

ancillary data sources, and remote sensing techniques (Moore et al., 1993b; Odeh et al., 

1994; Gessler et al., 1995), following the framework of the well-known soil-formation 
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model, ‘CLORPT’, as outlined by Jenny (1941). With advancements in soil science and 

geospatial analyses, McBratney et al. (2003) introduced ‘SCORPAN’ to also incorporate a 

spatial component, neighborhood (N), into the modeling framework. The SCORPAN 

model suggests that a soil property at a given spatial location, Soil, is a function of other 

soil properties at the same spatial location (S ), climate (C ), organisms (O ), relief 

(topography) (R ), parent material (P ), age (A ), and neighborhood (N ) (McBratney et al., 

2003; Florinsky, 2012; Cambule et al., 2013). This model coincides with enhancements in 

geospatial analyses and the ability to spatially compare soil properties to underlying 

ancillary data sources for any given location.  

This dissertation introduces and explores the development of a DSM framework 

for NB, Canada, with the purpose of producing continuous soil physical and chemical 

property maps across the landscape. NB was chosen as a study extent due to the wealth 

of existing data and the variability in soil forming factors. These factors refer to changing 

temperature and precipitation conditions from lowlands in the southeast to highlands in 

the northwest, changing glacial landscapes, and topographic expressions varying from flat 

lowlands to steeply sloping hillsides (Pronk and Ruitenberg, 1991; Colpitts et al., 1995; 

Fahmy et al., 2010).  

1.2. RESEARCH QUESTIONS 

1. To what precision can pedotransfer functions be derived from county-based soil 

surveys? 
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2. How can spatial models be derived for use in predicting soil properties at a 

continuous extent?  

3. To what extent can the underlying relationships between soil formation and soil 

forming factors be modeled by way of digital soil mapping for predicting soil 

properties spatially? 

1.3. OBJECTIVES 

The objective of this dissertation was to develop a framework with functioning 

models for predicting soil physical and chemical properties continuously across the 

landscape for the province of NB, Canada as a case study. The process to complete this 

task was applied as follows: 

1. County-based soil surveys and current soil maps were utilized to develop an 

aspatial database, and, in turn, produce pedotransfer functions relating soil 

attributes to one another. 

2. Available DEMs for NB were amalgamated resulting in a new DEM via open-

sourced DEM fusion. In turn, DEM-derived topographic and hydrographic datasets 

were developed. 

3. Continuous climate data sets pertaining to temperature and precipitation were 

developed for NB by way of comparing historical records for spatially explicit 

weather stations from NB and Ontario to underlying DEM and spatial location.  
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4. Existing surficial geology delineations were updated via similarity modeling 

comparing different data sets representing parent material mode of deposition 

and primary lithology.   

5. Spatial database of soil properties was developed via amalgamating field-collected 

soil profiles from numerous sources (n = 12,058). 

6. Statistical comparison of soils information in spatial database to underlying 

geologic, topographic, and climatic datasets, and conventional soil maps was 

conducted using Random Forest machine learning algorithm with model results 

utilized to develop spatial continuum maps for specific soil properties. 

7. By mapping important soil properties such as depth, bulk density (Db), texture (% 

sand, silt, and clay), coarse fragment content (% CF), and soil organic matter 

content (% SOM), model results can be expanded with pedotransfer functions to 

predict additional soil properties spatially across landscape of New Brunswick at 

10m resolution.  

1.4. SUBJECT MATTER 

This dissertation is completed in “article” format with the body consisting of four 

distinct chapters (i.e., Chapters 2 through 5), as outlined below. The final chapter (Chapter 

6) provides a summary of the material, overall conclusions from this research, and 

recommendations for future research. 
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Chapter 2 introduces and describes the development of an aspatial database from 

the amalgamation and harmonization of historical county-based soil surveys. 

Chapter 3 presents the development of soil physical and chemical PTFs, derived 

from the aspatial database from Chapter 2. Soil physical PTFs were compared to other 

published PTFs to test the overall performance.  

Chapter 4 describes the development of a method to systematically and 

comprehensively reduce DEM errors across New Brunswick based on fusing province-

wide DEM layers from various sources, and calibrating the result using select LiDAR-

generated DEMs for final elevation calibration. 

Chapter 5 introduces the development of a spatial database from field-collected 

samples and resulting DSM spatial models by comparing this database to underlying 

topographic, geological, and climatic data sets. This chapter also describes how these data 

sets were adjusted prior to spatial modeling. With this, soil properties of drainage, horizon 

depths, sand, silt, clay, CF, Db, and SOM were modeled in continuum format at 10m 

resolution.  

Chapter 6: provides an overall summary of this dissertation, a statement of 

original contributions, and recommendations for further development and research. 
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CHAPTER 2  – AMALGAMATION AND HARMONIZATION OF SOIL SURVEY 

REPORTS INTO A MULTI-PURPOSE DATABASE: AN EXAMPLE 

Shane Furze, Paul Arp 

Faculty of Forestry and Environmental Management 

University of New Brunswick, Fredericton, NB, Canada, E3B 6C2 

Foreword: 

The following chapter is an article submitted to the Open Journal of Soil Science. It was 

submitted on May 31st, 2018.  

Citation: 

Furze, S. and Arp, P.A. 2018. Amalgamation and Harmonization of Soil Survey Reports 
into a Multi-Purpose Database: An Example. Open Journal of Soil Science (submitted).  

2.1. ABSTRACT 

This article describes procedures used to generate an aspatial, terminologically-

consistent, province-wide database for forest soils from soil survey reports, with New 

Brunswick, Canada, serving as an example. The procedures involved summarizing existing 

soil information into soil associations via similarities in landform and parent material. 

Consistent soil associations were developed, and pedologically-correct horizon sequences 

were assigned to each soil associate within each soil association, all done with reference 

to soil-forming factors. These factors refer to: (i) soil parent materials as classified by 

mode of deposition and lithology, (ii) topographic surface expressions, (iii) soil drainage, 

and (iv) dominant vegetation type. Additionally, each associate was characterized with 

horizon–specific physical and chemical soil properties distinguished by depths. An 
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amalgamated database containing 106 soil associations, 243 soil associates (differing 

within the soil associations by drainage only), and 522 soil profiles was developed.  

Key Words: Soil surveys, amalgamation, associations, associates, parent materials, 

landforms, lithology, drainage, profiles, horizons, properties. 

2.2. INTRODUCTION 

Soils are part of the natural environment consisting of complex interactions 

between living organisms and soil forming factors pertaining to geology, climate, 

topography, organisms, and time (Jenny, 1941; Birkeland, 1999; Adhikari et al., 2012). As 

such, soils vary spatially in type (soil profile) and spatial extent. This is generally reflected 

by most soil survey reports which group surveyed soil units into landform- and lithology-

defined soil associations (McKeague and Stobbe, 1978). Cross-referencing these reports 

to one another, however, revealed numerous inconsistencies in terms of naming and 

labelling similar soils types and horizons. This is in part due to changing soil classification 

and mapping protocols over a period of roughly 70 years. In detail, some of the 

inconsistencies refers to: 

1. Changes in soil survey methods, including sampling strategies, laboratory 

analyses, and quantitative units for reporting results (McKeague, 1978; Group, 

1981; Working Group on Soil Survey Data, 1982; Guertin et al., 1984); 

2. Incompleteness in terms of reporting small to large scale variations in soil 

associates, varying in scale and resolution, with main focus on agricultural lands 
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(Pitty, 1979; Zhu and Mackay, 2001; Adhikari et al., 2012; Odgers et al., 2014). Past 

survey practices generally addressed soil variations at the 1:10,000 scale (and 

often coarser), and were therefore generally mute about small scale variations. As 

a result, spatial pedological variations which influence crop, forest productivity 

and root growth via nutrient and water retention, remained unrecognized (Parr et 

al., 1992; Southorn, 2003; Keys, 2007; Taylor et al., 2013).  

3. Implied differences in soil association conditions and extent across arbitrary 

survey boundaries. 

Typically, each soil survey report included 3 sections (e.g., Poitras map unit, 2615 

ha; Langmaid et al. 1980): 

Section 1: an overview of soil associates including information regarding association, 

landform, lithology, vegetation, drainage, and topography,  

 

Section 2: a profile description for sampled soil associates which included field-based 

measurements for horizons, depths, texture, CF content, structure, root presence, 

mottling (if applicable), and pH, (Fig. 2.1): 

 



 

12 

 

Figure 2.1. Example of information obtained from soil surveys and utilized in developing the database, 
including general information (section 1) (top paragraph) and field-based measurements for each horizon 
(Section 2) (bottom descriptions) separated by dotted line. The example provided represents the Poitras 
soil associate retrieved from Langmaid et al. (1980). 

 

Section 3: an overview of lab-measured physical and chemical properties by soil associate 

(e.g., % carbon, % sand, silt and clay, Db, field capacity (FC), permanent wilting point 

(PWP)), (Fig. 2.2): 

 

Figure 2.2. Example of information obtained from soil surveys and utilized in developing the database, 
including lab-measured, horizon-specific soil physical and chemical properties. The example provided 
represents the Poitras soil associate retrieved from Langmaid et al. (1980). 
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The rationale for a province-wide compilation of soil survey reports arose from 

the need for understanding where and how soils respond, locally and regionally, to 

intensifying land uses and overall climate-change expectations. As such, unified soil 

databases per province would assist in, e.g., (i) estimating survey-based soil carbon 

storage, and (ii) determining how soil carbon storage would change within existing and 

proposed changes to land management and related climate-change adaptation scenarios 

(Carré et al., 2007; Aksoy et al., 2009; Grimm and Behrens, 2010; Poggio et al., 2013). 

These changes would vary from abandoning farm fields, converting natural stands into 

agricultural land, expanding build-up areas through urban sprawl to land reclamation 

operations including wetland restoration and afforestation.  

The objective of this article was to develop a seamless database by amalgamating 

and harmonizing existing soil survey reports for NB as a case study. This objective was 

accomplished by:  

1. Compiling all the existing soil survey information into one consistent and seamless 

database, 

2. Unifying the classifications and descriptions assigned to the surveyed soil 

associations, soil associates, and soil-forming factors, namely, parent material (by 

mode of deposition and lithology), topography, vegetation cover type, and 

drainage, and 
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3. Standardizing the soil associate names by profile and property descriptions, with 

emphasis on horizon labels and properties, notably horizon depth, soil texture, 

SOM content, CF content, Db, and soil moisture retention at FC and PWP.  

All of this was completed in reference to: 

1. the standardized soil surveying terminology of the Mapping System Working 

Group (1981) and the Expert Committee on Soil Survey (1982), 

2. sampling and analytical techniques described by McKeague (1978) and Guertin et 

al. (1984), 

3. the National Soils Database (“NSDB”, retrieved from the CANSIS website at 

http://sis.agr.gc.ca/cansis/nsdb/index.html), and 

4. the spatial soil distribution and representation as established by the province-

wide soil mapping approximations also retrieved from the CANSIS website, i.e.,  

a. "Soils of New Brunswick: the Second Approximation" ("SNB", Fahmy et 

al., 2010),  

b. "Forest Soils of New Brunswick" ("FSNB", Colpitts et al., 1995) 

2.3. COMPILATION OF SOIL SURVEY REPPORTS 

The New Brunswick soil survey reports were retrieved from the publications 

section of the Canadian Soil Information System (CANSIS) as available from Agriculture 

http://sis.agr.gc.ca/cansis/nsdb/index.html
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and Agri-Food Canada website at 

http://sis.agr.gc.ca/cansis/publications/surveys/nb/index.html. Each survey was 

downloaded and assessed to determine the extent of data availability. Table 2.1 

summarizes these findings and identifies which reports were utilized in developing the 

amalgamated soil database and which provide spatial coverage. Some of the reports 

needed to be excluded either due to the omission of horizon-specific data, or insufficient 

information about the horizon-specific soil forming process, i.e., "A1" instead of "Ae" or 

“Ah”. Also omitted were surveys specifically dealing with small sections of agricultural 

lands. Of the available soil surveys (both included and excluded from the database), only 

53.9% of NB has survey coverage with the spatial coverage of the surveys utilized in this 

study only representing 35.5% of NB (Fig. 2.3). 

An overview of the soil associates and soil associations is provided in Appendix I. 

From this, an aspatial database was developed, with specific attention given to soil 

associations, soil associates, soil classification (subgroup, great group, and order), 

dominant vegetation type, topography (landform, slope position, slope steepness, 

aspect), soil parent materials (lithology and mode of deposition), drainage, stoniness 

(amount of exposed coarse fragments at the surface), and rockiness (amount of exposed 

bedrock at the surface). Next, all soil horizon data pertaining to horizon depth, density, 

texture, organic matter content, coarse fragment content and other physical and 

chemical properties were entered into the database in an associate-by-associate manner. 

When inconsistencies arose, either varying analytical procedure or units of measurement, 

all values were retained but placed in separate fields to decide which of these entries best 

http://sis.agr.gc.ca/cansis/publications/surveys/nb/index.html
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reflect theoretical expectations. The procedures to do so including estimating omitted 

values and standardizing across different analytical techniques are described in Chapter 

3. 

 

Figure 2.3. Spatial coverage of soil surveys utilized for developing database. Also included is elevation and 
physiographic regions to represent how coverage varies in each region. Physiographic regions retrieved 
from Colpitts et al. (1995). 
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Table 2.1. Overview of available soil surveys for New Brunswick, Canada, with publication year, scale, 
whether it includes data on a horizon-by-horizon basis, whether it was utilized in this study, and if spatial 
coverage is available. Some reports did not provide a spatial data layer but do provide images. These have 
been georeferenced (GR) but not digitized. 

Soil Survey 
Year 

Published 
Scale 

Horizon - 
Specific (Y 

/ N) 
Utilized 

Digitized 
(Y / N) 

Spatial 
Coverage (% 

of NB) 

Fredericton - Gagetown 1940 95,040 N  Y 4.28 

Sussex Area 1986 20,000 Y X N (GR) 0.25 

Chipman - Minto - Harcourt 1992 50,000 Y X Y 9.98 

Woodstock - Florenceville (Vol. 1) 1989 20,000 Y X Y 0.12 

Woodstock - Florenceville (Vol.2) 1992 20,000 Y X Y 0.11 

Woodstock - Florenceville (Vol. 3) 1996 20,000 Y X Y 0.39 

Woodstock - Florenceville (Vol. 4) 2001 20,000 Y X Y 0.98 

Moncton Parish 1993 20,000 Y X N (GR) 1.10 

Shediac and Botsford Parishes 1996 20,000 Y X Y 1.03 

Dorchester Parish 1998 20,000 Y X Y 0.10 

Acadian Peninsula 2000 20,000 Y X Y 1.50 

Woodstock Area 1944 63,360 Y X N  

Andover - Plaster Rock 1963 63,360 Y X Y 4.60 

Southern Northumberland 
County 

1964 31,680 N  N - 

Northern Victoria County 1976 63,360 Y X Y 4.60 

Madawaska County 1980 50,000 Y X Y 4.78 

Rogersville - Richibucto Region 1983 50,000 Y X Y 5.81 

Blackbrook Watershed 1993 10,000 Y X N - 

St. Quentin - Kedgwick 1982 50,000 Y X Y 0.62 

Southeastern New Brunswick 1950 126,720 N  N - 

Havelock Parish 1980 10,000 Y X Y 0.36 

Central and Northern New 
Brunswick 

2005 250,000 N  N - 

Southwestern New Brunswick 1953 156,720 N  Y 12.90 

Agriculture Canada Benton Ridge 
Potato Breeding Substation 

1992 5,000 N  N - 

Agriculture Canada Research 
Station, Fredericton 

1984 4,800 N  N - 

Senator Herve J. Michaud 
Experimental Farm Agriculture 

Canada, Buctouche 
1983 3,000 N  N - 

Mount Carleton Provincial Park 1972 - N  N - 

Lepreau Provincial Park 1973 - Y  N - 

 

2.4. DATA HARMONIZATION AND AMALGAMATION PROCEDURES 

The compilation of the surveyed soil data was guided by the comprehensive soil 

association overviews for New Brunswick SNB and FSNB reports, and by the cross-

referenced aspatial listing of soil association names, profile descriptions and soil horizon 
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properties within the Canada-wide NSDB database. This compilation resulted in a 

database consisting of 2,490 rows of data with coverage for individual properties outlined 

in Table 2.2. Of the 522 soil profiles, 500 contain soil classifications and 507 contain 

drainage classifications. 

Table 2.2. Overview of measured soil properties within amalgamated database with overall completeness. 

Soil Property # of Horizons % Complete 

Horizon Depth (cm) 2490 100.00 

Coarse Fragment Content (%) 885 35.54 

Texture (% sand, silt, and clay) 1306 52.45 

pH (H2O) 1535 61.64 

pH (CaCl2) 647 25.98 

Bulk Density (g/cm3) 938 37.67 

Organic Matter Content (%) 121 4.90 

Base Saturation (%) 466 18.71 

Cation Exchange Capacity 659 26.47 

Field Capacity (-33kPa) 846 33.98 

Permanent Wilting Point (-1500kPa) 738 29.64 

Ca (meq/100g) 976 39.20 

Mg (meq/100g) 960 38.55 

K (meq/100g) 973 39.08 

 

Soil Names and Inconsistencies. The amalgamated database was organized by soil 

association name, each with its own soil associates and horizon sequences. In this, the 

well-drained soil associate members of each soil association carry the name of the soil 

association. Naming inconsistencies occurred and were resolved using the SFNB and SNB 

reports as guiding authority, as follows: 

1. Some of the soil associations were referred to as a complex between two 

associations, i.e., "Baie du Vin - Galloway", "Barrieau - Buctouche", and 

“Parleeville - Tobique” because of similar soil forming factors and soil properties. 
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For these instances, only one name was retained based on descriptions of parent 

material lithology and mode of deposition.  

2. In some cases, only the names of the soil associations were provided although 

profiles were provided for different drainage classes. For these, new drainage-

related soil associate names were assigned based on Table 6 (“Correlation of New 

Brunswick Soil Series/Associations with Forest Soil Units”) of the SNB reports.  

3. Within some reports, horizon and depth specifications by soil associate (section 2, 

Fig. 2.1) were inconsistent with their listing at the end of the reports (section3, 

Fig. 2.2). This was most prevalent in the Northern Victoria and St. Quentin soil 

surveys. To correct this, the measured properties were kept separate from the 

general data and were entered at the end of the database.  

4. Also inconsistent were the amounts of data provided for each soil type. For 

example, only general information was provided for some soil types (sections 1 

and 2) while measured soil properties (section 3) were omitted. This resulted in 

some soil associates lacking horizon-specific property measurements.  

Drainage. Soil drainage was classified from very poor (wetlands and organic soils) 

to rapidly- and excessively-drained (coarse-textured, upper slope positions), as outlined 

by the Expert Committee on Soil Survey (1982). The procedure in Fig. 2.4 was used to 

determine if soil drainage was correctly classified for each soil associate in terms of soil 

horizon sequence. This procedure ensured that: 
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1. the soil associate names within each association were consistent with the 

drainage expectations based on Table 4 in the SNB report, entitled “New 

Brunswick mineral soil catenas”; 

2.  well- to rapidly-drained members occur on upper slope and hill-crest positions, 

imperfect- to moderately well-drained members occur on the lower slopes, and 

very poor- to poorly-drained members along toe slopes and in depressions.  

The drainage classifications derived were generally consistent with the original 

survey drainage assignments. In cases where the original drainage classifications provided 

broad ranges, i.e., "VP-I", the middle drainage class (P) was retained. The drainage 

assignment procedure in Fig. 2.4 was used to ensure proper drainage classification for all 

samples, particularly for those of which were assigned broad classes, e.g., “VP-R”, or 

specified neighboring drainage classes, e.g., “VP-P”. 
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Figure 2.4. Visual representation of model developed to assign drainage regime to aspatial database. 
Resulting drainage classes are bolded. 

 

Soil Classification. Each soil profile was placed within the Canadian Soil 

Classification (Soil Classification Working Group, 1998) context by specifying its belonging 

to Soil Order, Great Group, and Subgroup. Once completed, abbreviations and rankings 

for soil classifications, stoniness, rockiness, and drainage were assigned to every soil 

associate (where applicable). Table 2.3 provides an overview of the % distribution of 

database entries by soil classification. 
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Table 2.3. Overview of soil orders separated by great group and subgroup within database with overall 
representation of great groups provided. 

Order Great Group Subgroup Number of Profiles % Total 

Podzol 

Ferro-Humic 

Gleyed 1 

4.79 Gleyed Fragic 1 

Orthic 23 

Humic Orstein 1 0.19 

Humo-Ferric 

Fragic 4 

41.95 

Gleyed 29 

Gleyed Luvic 1 

Gleyed Mini 1 

Gleyed Orthic 18 

Gleyed Sombric 1 

Mini 1 

Orstein 7 

Orthic 155 

Sombric 2 

Brunisol 

Dystric 

Eluviated 11 

6.51 
Gleyed 7 

Gleyed Eluviated 7 

Orthic 9 

Eutric 
Gleyed Eluviated 3 

0.77 
Orthic 1 

Melanic 

Gleyed Eluviated 1 

1.53 Gleyed 4 

Orthic 3 

Sombric 

Gleyed Eluviated 1 

4.02 Gleyed 7 

Orthic 13 

Luvisol 

Gray 

Brunisolic 7 

18.39 

Dark 5 

Gleyed Brunisolic 10 

Gleyed 8 

Gleyed Podzolic 20 

Orthic 3 

Podzolic 43 

Gray Brown 
Brunisolic 1 

0.38 
Gleyed 1 

Regosol 

Humic Gleyed 3 0.57 

Regosol 

Cumulic 1 

1.72 
Gleyed Cumulic 2 

Gleyed 4 

Orthic 2 

Gleysol 

Gleysol 

Fera 3 

4.02 Orthic 16 

Rego 2 

Humic 
Orthic 20 

4.21 
Rego 2 

Luvic 

Fera 5 

4.60 
Fragic 2 

Humic 1 

Orthic 16 

Organic Fibrisol 
Typic 5 

2.49 
Terric Mesic 3 
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Terric Humic 2 

Mesic 1 

Terric 2 

Mesisol 

Typic 6 

2.11 
Terric 3 

Terric Fibric 1 

Terric Humic 1 

Humisol 

Typic 3 

1.72 
Terric 2 

Terric Fibric 2 

Terric Mesic 2 

 

According to this compilation, Podzols (46.9% of database) have a much higher 

representation than any other order (representing almost half of the database), followed 

by Luvisols (18.8%), Brunisols and Gleysols (12.8%), and Regosols (2.3%). Organic soils 

(6.4%) were both surveyed and included in the database but were omitted from the 

analyses by focusing on mineral soils only.  

Soil Forming Factors. Soil parent materials were classified by:  

1. landforms which vary by mode of deposition (how the material was deposited 

geologically) and  

2. lithology (referring to the chemical and physical makeup of the deposited 

material).  

Differences in surficial geology descriptions, both in mode of deposition and lithology, 

occurred within the same soil association names when cross-referencing the SNB (Table 

6), FSNB (Tables 2 and 5), and NSDB reports. This was corrected as follows: if three or 

more sources (including soil surveys, SNB, FSNB, and NSDB) provided the same mode of 

deposition for an individual soil association, then that mode of deposition was assigned 
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to that association. Any remaining inconsistencies were addressed by determining the 

expected mode of deposition by surface expressions (topography), coarse fragment 

content, and horizon sequences. Together, this cross-referencing resulted in 21 unique 

modes of deposition (Table 2.4), with some associations having two distinct modes of 

deposition overlaying one another (i.e. glaciomarine/basal). In such instances, the top 

parent material will have the dominant influence on soil formation and development.  

Table 2.4. Summary of updated parent material modes of deposition within aspatial database including the 
quantity of associations within each mode of deposition. 

Mode of Deposition Number of Associations % of Total 

Residual 4 3.60 

Residual and Colluvium 1 0.90 

Colluvium and Water Re-worked Till 4 3.60 

Ablation/ Residual 9 8.11 

Ablation 14 12.61 

Ablation/ Basal 2 1.80 

Basal 29 26.13 

Basal/ Residual 1 0.90 

Glaciomarine/ Basal 5 4.50 

Glaciomarine 5 4.50 

Glaciomarine/ Marine 1 0.90 

Marine 3 2.70 

Marine/ Basal 1 0.90 

Glaciofluvial and Marine 6 5.41 

Glaciofluvial 10 9.01 

Alluvium and Glaciofluvial 2 1.80 

Ancient Alluvium 1 0.90 

Alluvium 3 2.70 

Lacustrine 1 0.90 

Glaciolacustrine 1 0.90 

Organic 8 7.21 

 

Not yet included in the Table 2.3 description are landforms that specifically refer to, e.g., 

valley trains, glaciofluvial outwash plains, drumlins, moraines, and eskers. Additionally, 

glacial tills (ablation and basal) lack information on depth of deposits. Additional 
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information pertaining to these deposits and depths can be obtained from Rampton 

(1984).  

With respect to soil lithology specifications, there were inconsistencies as well. For 

example, the parent material of the Baie du Vin association was labelled as: "acidic GLFL 

or MA sand, petrologically similar to underlying sandstone bedrock, and rich in biotite". 

The Galloway soil units, stated to have the same lithology, was labelled: "acidic, 

petrologically similar to the underlying sandstone bedrock and rich in biotite". These 

inconsistencies were addressed through re-labelling and by updating lithology by 

dominant rock types, grain sizes, and mineral hardness (based on Mohs hardness scale, 

retrieved from http://rocks.comparenature.com/). This was followed by (i) providing 

binary descriptors for sedimentary, igneous, and metamorphic parent materials per soil 

association, and (ii) by the ranking of (a) rock type weatherability (ease of physical and 

chemical breakdown of parent material) and (b) fertility (mainly Ca, and Mg richness of 

the weathering parent material) (Table 2.5). Weatherability and fertility were based on 

Table 4 in the FSNB report.  

Some soil associations (Bellefleur, Bottomland, Bransfield, Chockpish, Gulquac, 

Lower Ridge, St. Charles, and Wakefield) could not be identified as forest soil associations 

in the FSNB and SNB reports. For these associations, weatherability and fertility 

assignments could therefore not be determined. This conforms with the previous 

statements in which inconsistencies occur with soil mapping initiatives.  

http://rocks.comparenature.com/
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Table 2.5. Overview of weatherability and fertility rankings assigned to common rock types, retrieved from 
Figure 4 (The relative weatherability and fertility of the common rock types found in New Brunswick) from 
FSNB. 

Rock Type 
Relative Weatherability 

0-1 (slow-fast) 
Relative Fertility 
0-1 (poor-rich) 

Quartz-Pebble Conglomerate 0.04 0.2 

Felsic Volcanic (Rhyolite) 0.07 0.19 

Felsic Pebble Conglomerate 0.14 0.17 

Schists 0.15 0.43 

Metaquartzites 0.18 0.44 

Gneiss 0.20 0.42 

Granodiorites 0.20 0.54 

Quartz Diorites 0.23 0.61 

Granites 0.28 0.31 

Diorites 0.28 0.55 

Alkali Granites 0.34 0.25 

Gabbros 0.33 0.65 

Polymictic Metaconglomerates 0.39 0.37 

Mafic Volcanic (Basalt) 0.38 0.72 

Quartzose Sandstone 0.42 0.40 

Metasandstone 0.47 0.55 

Polymictic Conglomerates 0.54 0.31 

Slates 0.53 0.61 

Metasiltstones 0.58 0.66 

Lithic Sandstones 0.62 0.39 

Metawackes 0.64 0.71 

Feldspathic Sandstones 0.66 0.47 

Mudstones 0.73 0.53 

Calcareous Sandstones 0.77 0.78 

Calcareous Slates 0.80 0.80 

Calcareous Siltstones 0.84 0.84 

Calcareous Mudstones 0.87 0.87 

Limestones 0.90 0.94 

Argillaceous Limestones 0.95 0.79 

 

Topography. Topographic surface expression descriptors by soil association also 

varied by survey report, being absent in some of the reports. When present, topographic 

surface expressions ranged from flat (or domed) for organic soils to strongly rolling and 

hilly on dense igneous parent materials in the New Brunswick Highlands. Although 

included in the database, little emphasis was placed on topographic expressions because 
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the expressions vary by resolution, intensity and frequency of changing topographic 

positions, slopes, and geographic regions, resulting in inconsistent descriptions between 

reports. A consistent measure for each association referred to average slope position and 

slope percent, but this information was only provided for 40% of the reports. To remedy, 

soil association boundaries can be re-defined spatially via unified landform and lithology 

classifications and topographic expressions can be classified via digital terrain modeling 

as described in Chapter 4.  

Vegetation. Some surveys listed the presence of dominant overstory species, 

generally within the vicinity of the soil sampling points. These specifications were entered 

into the database in the form of binary fields referring to dominance of shade tolerant 

hardwoods, softwoods, and mixedwoods within the overstory canopy. Also, where forest 

floor data were provided, forest floor thickness was assigned to each horizon sequence. 

If spatial coordinates were available for the soil associates then, to some extent, 

vegetation types could be re-assigned to the associates via forest inventory data providing 

information on pre-harvest conditions.  

Horizon Descriptions and Depths: Considerable effort was placed on ensuring 

that the horizon classification within the surveys was consistent with those outlined in 

the “Canadian System of Soil Classification”. Horizons were also generalized by master 

horizon (forest floor, A, B, and C) and by the first subscript for each master horizon, i.e., 

Ae, Ah, Bf (represents the dominant process influencing the soil). Table 2.6 outlines the 

range of master horizon descriptors encountered. The additional horizon specifications 
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such as g, c, x, j, t, etc., were entered into the database as binary fields (0 when absent, 1 

when present). Profiles where soil horizon descriptors where marked by “?” or “or” were 

re-labeled through cross-referencing with other similar soil profiles. Horizon depths 

(many were originally specified in inches) were re-assigned in cm. 

Table 2.6. Variability in soil horizon classification encountered within aspatial database, separated by 
master horizons, followed by primary subscripts, resulting in 180 unique soil horizons. 

Master Horizon Primary Subscript Variations 

O (Organic) 

Of Of, “Of, Om”, Of1, Of2 

Om Om, Om1, Om2, Om3, Om4, Om5 

Oh Oh, Oh1, Oh2, Oh3, Oh4 

Ol  

Oco  

LFH (Forest Floor) 

L L, LF, LF2, LFH 

F F, F1, F2, FH 

H H, H2, HC 

A 

Ae, Aeg Ae, Ae1, Ae2, Aeh, Aej, Aeg, Aeg1, Aeg2, Aegj, 2Aeg, Aexjg, Aejg 

Ah, Ahg Ah, Ah1, Ah2, Ahb, Ahg, Ahgj 

Ahe, Aheg Ahe, Aheg, Ahejg, Ahegj 

Ap, Apg Ap, Apg, Apgj 

B 

Bf, Bfg 
Bf, Bft, Bftg, Bfc, “Bf, Bfj”, “Bf, Bm”, Bf1, Bf2, Bf3, Bf4, Bfj, Bfg, 
Bfg1, Bfg2, Bfgj, Bfjg, Bfjg2, Bfjg3, Bfjgj, Bfjg, Bfcg, Bfcjg, Bfgcj, 
Bfjgc, Bfjgjc 

Bfh, Bfhg Bfh, Bfht, Bfhc, Bfh2, Bfhg, Bfhgj, Bfhgj2 

Bh Bh, Bhcg 

Bg Bg, Bg1, B2, Bgj, 2Bg, Bgc, Bgx, Bgf, Bgfcc 

Bhf, Bhfg Bhf, Bhfg, Bhfgj, Bhfg2, Bhfjg 

Bm, Bmg Bm, Bm1, Bm2, 2Bm, Bmg, Bmx 

Bt, Btg 
Bt, “Bt, C”, Bt1, Bt2, Bt3, Bt4, Btj, 2Bt, 2Bt2, 2Btj, Btg, Btg1, Btg2, 
Btgj, “Btgj or Cgj”, “Btgj, Cgj”, Btgj1, Btgj2, Btgj3, Btgk, Btjg, Btjg1, 
Btgj2, 2Btg, 2Btg2, 2Btgj, 2Btjgj, Btxg, Btxjgj 

BC  BC, BCgj, BCx 

C 

C, Cg 
C, C1, C2, C3, C4, C5, 2C, 2C1, 2C2, 2C3, 3C, Cg, Cg1, Cg2, Cg3, Cg4, 
Cg5, Cgj, Cgj1, Cgj2, Cgj3, 2Cg, 2Cg1, 2Cg2, 2Cg3, 2Cgj, 3Cg, 3Cgj, 
4Cg, 4Cgj, 5Cg, 6Cg, 

Ck, Ckg Ck, Ckg, Ckg1, Ckg2, Ckg3, Ckgj, 2Ckgj 

Cx, Cxg Cx, 2Cxj, Cxgj 

R R  

 

Soil Properties. For each horizon, surveyed values for soil properties referring to 

soil texture, structure, Db, SOM content, CF content, and water retention (at both FC and 

PWP) were entered into the database, using the following procedures. 
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Texture: Soil texture information, where available, was entered into the database 

in two forms: 

1. Texture classes as assigned from texture triangle, as outlined in the Canadian Soil 

Classification System (Fig. 2.5), and 

2. Proportions of sand, silt, and clay within the fine-earth fraction as percentages 

with the summation equaling 100% (although not always the case within the 

database).  

Some texture descriptions provided broad ranges, i.e., “SiL-LS”. For these cases, texture 

class and percentage of sand, silt, and clay were assigned by choosing the center point 

within these classes on the texture triangle. Additionally, some texture classifications 

provided did not fall within the realm of the texture triangle, i.e. “G” (gravel) and “SG” 

(sandy gravel). This occurred for 37 samples, of which, could not be provided sand, silt, 

and clay contents. Although not in the texture triangle, these classifications were 

retained. Also, most texture classifications were assigned including a modifier, i.e., “vfSL” 

(very fine sandy loam). These modifiers were retained, but texture classes without 

modifiers were placed in a separate column.  

For some horizons, only a texture class was provided, this was typically the case 

when general descriptions (section 2) did not coincide with specific horizon properties 

(section 3) within the survey. With these horizons, the percentage of sand, silt, and clay 

were left absent. For the cases where only the percentage of sand, silt, and clay were 
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present (without assigned texture class), an automated model (outlined in Table 2.7) was 

derived to determine the texture class based on these percentages. This was used to fill 

in the voids where the texture class was absent, resulting in 86.6% of the database with 

texture measurements.  

Table 2.7. Logical Rule statements applied in ascending order to determine proper soil texture class based 
on texture triangle as outlined in Soil Classification Working Group (1998). 

Rule Output Class Output Abbreviation 

Clay ≥ 60 Heavy Clay HC 

(60 – Sand) < Clay ≤ 40 & Sand ≤ 45 Silty Clay SiC 

Clay ≥ 40 & Sand < 45 & Clay ≥ (60 – Sand) Clay C 

Clay ≥ 35 & Sand ≥ 45 Sandy Clay SC 

Clay ≥ 28 & Sand ≤ 20 Silty Clay Loam SiCL 

27.5 < Clay < 40 & 20 < Sand < 45 Clay Loam CL 

Clay ≤ 12 & Clay < (20 – Sand) Silt Si 

Clay < (50 – Sand) Silt Loam SiL 

Clay ≤ (2 · (Sand – 70)) Sand S 

Clay ≤ (Sand – 70) Loamy Sand LS 

Clay ≤ 20 & Sand ≥ 53 OR Clay ≤ 7 Sandy Loam SL 

Clay ≥ (73 – Sand) Sandy Clay Loam SCL 

Else Loam L 
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Figure 2.5. Texture composition of soil samples for each soil survey utilized in developing the aspatial 
database overlain on texture triangle. 

 

Coarse Fragments: CF content was provided for 36% of the mineral horizons. 

Some of these included ranges, i.e., "40-60%, while others provided qualitative 

descriptions, i.e., "few" or "some". With the ranges, the middle values were assigned. 

Additionally, coarse fragment content was also included as part of the horizon texture 

description, e.g., “gravelly sandy loam”. For these cases, the suggestions of the Expert 

Committee on Soil Survey (1982) were adopted as follows: <15% CF by volume was 

assigned to “Non”, 15-35% not assigned an adjective, 30-60% assigned to “Very”, and 

>60% assigned to “Extremely”. Where the texture modifiers were not consistent with the 
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CF% values (i.e., “very gravelly sand” with a CF% of 10%), and were also not consistent 

with landform expectations, Table 2.8 was assessed to aid in providing CF estimates. 

Table 2.8. Overview of CF content for each parent material mode of deposition found within aspatial 
database. Note that some modes of deposition lack CF content data while others have large variations in 
values. 

Mode of Deposition 
Coarse Fragment Content 

Min. Max. Mean SD Sample Size 

Residual 10 40 24.2 12.8 6 

Residual + Colluvium - - - - 0 

Ablation 5 80 24.7 16.6 76 

Ablation/ Basal 0 30 11.9 7.5 94 

Ablation/ Residual 10 70 47.1 16.0 24 

Alluvium 0 0 0 0 14 

Alluvium + Glaciofluvial - - - - 0 

Ancient Alluvium 0 0 0 0 6 

Basal 1 60 15.5 9.8 371 

Basal/ Residual - - - - 0 

Colluvium + Water-
reworked Till 

- - - - 0 

Glaciofluvial 1 80 35 22.9 45 

Glaciofluvial + Marine 0 35 4.6 7.4 106 

Glaciolacustrine - - - - 0 

Glaciomarine 0 12.5 3.6 3.4 55 

Glaciomarine/ Basal 0 45 4.7 8.6 54 

Glaciomarine/ Marine 0 0 0 0 8 

Lacustrine 0 1 0.3 0.3 14 

Marine 0 0 0 0 11 

 

Due to the omission of samples with measured CF values for some modes of deposition, 

values could not be generalized. Alternatively, values could also be inferred from general 

parent material descriptions provided for each soil association. In principle, these values 

could be assigned to the soil horizons. However, the specified ranges were, in most cases, 

too broad to be consistent with actual CF% survey values.  

Soil Structure: Soil structure was provided as a description with three 

components, shape, size, and distinctness. Therefore, each of these three components 
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were assigned to the database. An overview of soil structures can be found in “Manual 

for Describing Soils in the Field: 1982 Revised” by Expert Committee on Soil Survey (1982). 

It was noticed that terminology for structureless soils were used interchangeably, namely 

"single grain", "loose", "amorphous", and "massive"; therefore, these were grouped into 

two classes (“massive” for amorphous and massive descriptions and “single grain” for the 

remaining two). Soil structure information was provided for 73.6% of the database. 

Organic Matter Content: SOM content was provided in four formats, % organic 

matter, % carbon, and loss on ignition (LOI) at 450°C and 850°C. Soil surveys for Plaster 

Rock and Northern Victoria Counties provided both % carbon and LOI at 450°C (328 

samples, 13% of database). Kent County was the only report to record LOI at 850°C (11 

samples, 0.4% of database) and did not record % carbon for comparison. Due to the lack 

of samples and omission of carbon values for comparison, readings for LOI at 850°C were 

omitted. The % carbon readings were converted to % organic matter via Eq. 1. 

%𝑆𝑂𝑀 = %𝐶 · 1.72                                                     (1) 

where %SOM is % soil organic matter, %C is % carbon and 1.72 is the conversion factor 

since SOM is composed of 58% carbon (Romano and Palladino, 2002; Pollacco, 2008; 

Chaudhari et al., 2013; Poggio et al., 2013). Standardizing these measurements into % 

SOM resulted in 1,202 samples with measurement (48.3% of database). 

Soil Density: For particle density (Dp) and Db, box plots were used per horizon 

label to quickly determine the extent to which density outliers were present (Fig. 2.6). For 
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each outlier, the original report was reviewed to determine if a data entry mistake had 

occurred. It was ensured that the ranges of the density values were generally consistent 

with soil texture, SOM, and soil depth expectations, with additional considerations to 

distinguish density in compacted versus non-compacted soils. Data entry with obvious 

data errors (e.g., soil Dbs greater than densities for silicate rocks) were deleted. Db 

determinations were generally sparse, with 937 of the horizon- based data entries (38% 

of database). 

 

Figure 2.6. Visual comparison of range in Dbs associated with each master horizon to assess presence (or 
absence) of outliers.  

Water Retention: In terms of water retention (the ability to access moisture under 

different pressure gradients), depending on the report, values were provided in bars 

(bar), atmospheres (atm), and kilopascals (kPa) with values measured in both volumetric 

and gravimetric form. Together, ten reports provided water retention measures in 
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gravimetric form while five reports provided measures in. Two reports did not specify 

whether the measures were gravimetric or volumetric. Gravimetric water retention 

values were recorded and converted to volumetric form via multiplication with Db. The 

different units of measurement were then amalgamated and adjusted to represent water 

retentions in kPa: -33kPa for water retention at FC, and -1,500kPa for water retention at 

PWP. Also, with water retention at FC, moistures were provided under the title "Moisture 

Equivalent" which is FC values measured via a specific test.  

Additional moisture measurements included water % at 0cm, water holding 

capacity, maximum water holding capacity, and water retention at saturation, 10cm, 

50cm, 100cm, -100kPa, -400kPa, hygroscopic moisture, available water, and moisture 

percentage. Emphasis was placed on moisture retention at FC and PWP due to the 

influence of these pressures on rooting. Once combined, water retention at FC had 836 

samples measured (34.0% of database) whereas PWP had 743 samples measured 

(29.8%).  

Aspatial Overview. The soil database, amalgamated from 17 soil surveys for NB, 

Canada, is intended to provide a comprehensive overview of forest soil conditions across 

NB. As such, this database contains information for 106 soil associations, 243 soil 

associates, and 522 soil profiles, each with their own soil horizon specifications as outlined 

above. Through careful cross-referencing, all data entries were examined to ensure they 

coincided with soil association and horizon-specific expectations as outlined in the 

“Canadian System of Soil Classification” (Soil Classification Working Group, 1998). 
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Most soil associates had more than one profile described, depending on frequency 

of occurrence, i.e., some reports listed the same soil association even though reports 

occurred in different geographic locations. For example, the Holmesville soil association 

occurred in eight soil surveys. As a result, the well-drained soil associate (also called 

Holmesville) had 18 profiles within the database. Its moderately-well drained associate, 

Johnville, had 12 profiles within the database, followed by the poorly-drained associate, 

Poitras, also with 12 profiles. It was common for the broadest soil associations to occur 

within different surveys, and therefore, had multiple profiles within the database. In 

contrast, some of the less-common soil associations lacked a single soil profile altogether 

(i.e., Aulac, Babineau, Becaguimec, Belledune, Big Bald Mountain, Blackland, Caissie, 

Bottomland, Catamaran, Clearwater, Escuminac, Jacquet River, Kingston, Research 

Station, and Tetagouche).  

The outcome of all considerations and actions is presented in Appendix II, 

completed in reference to the spatial context of the SNB soil coverage for New Brunswick. 

This representation reveals (i) that not all SNB-mapped soil associations occur within the 

original soil survey reports (i.e., Becaguimec, Big Bald Mountain, Catamaran, Jacquet 

River, Kingston, Popple Depot, and Tetagouche), and (ii) that some of the surveyed soil 

associations are not spatially represented in the existing SNB delineation, as outlined in 

Table 2.9. In total, the soil association coverage in Appendix II corresponds to the 

71,450 km2 land base of New Brunswick. The total provincial area amounts to 72,907 km2 

of which 1,458 km2 is water. The organic soil coverage at 11.38% amounts to 8,131 km2. 
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Table 2.9. Surveyed soil associations not currently spatially covered in province-wide SNB soil association 
map. 

Soil Associations 

Aldouane Flemming Kouchibouguac Riley Brook 

Anagance Fundy Lord and Foy Salem 

Baie du Vin Galloway Lower Ridge Shemogue 

Bellefleur Green River Maliseet St. Charles 

Benedict Green Road Monquart Sussex 

Big Hole Gulquac Mount Hope Tobique 

Boston Brook Harquail Parsons Brook Tormentine 

Bransfield Island Lake Guimond River Upper Caraquet 

Bretagneville Jardine Petitcodiac Violette 

Caraquet Jeffries Corner Queenville Wakefield 

Chockpish Kingsclear Quisbis  

Dorchester Knightville Richibucto  

 

Although amalgamated and harmonized, the aspatial database remains 

incomplete in terms of measurement gaps for horizon-specific physical and chemical 

properties, as outlined in Table 2.2. Chapter 3 addresses and, where feasible, fills some 

of these gaps via the development of PTFs by way of linear multivariate regression 

analyses. Decision trees can be used to fill in remaining data gaps.  

2.5. CONCLUDING REMARKS 

Creation of the aspatial database expedites PTF development for gap-filling and 

summarizing and quantifying both soil association and associates via similarities and 

differences. Once complete, this will enable spatially re-digitizing the updated database 

using already-existing soil association delineations, followed by revising these to ensure 

topographic mapping consistencies. For example, all digitized floodplain-derived soil 

associations must conform with the extent of topographically delineated floodplains, all 

residual soil units need to coincide with topographically delineated ridge tops and steep 

slopes. Additionally, all organic soil units need to fall within topographically delineated 



 

38 

depressions and wet areas next to streams, rivers, lakes and coastal shores (Murphy et 

al., 2008, 2009). Finally, all soil map units need to reflect landscape features as defined 

by digitally-delineated landforms such as eskers, kames, till plains, drumlins, and 

moraines, and need to further reflect the lithology origin of these formations (e.g., 

calcareous versus siliceous). 

The topographically-corrected soil delineations, with the amalgamated and 

harmonized database, provide many possible applications. For example: 

1. The correct placement of each soil association and associated soil properties will 

assist in refining the moisture regime classification within these associations 

based on topographic location. For example, clay-textured soil associations reduce 

water infiltration into the soil, thus having ephemeral flow channel networks that 

reach further upslope to ridges than what would be the case for coarse textured 

associations. The latter would require larger upslope flow accumulations for 

stream flow initiation.  

2. Improved soil mapping will allow for better soil erosion estimation, because the 

soil descriptors needed to calculate soil erosion potentials correspond with local 

variations in topography.  

3. The revised mapping will improve the quantification of soil organic matter, 

because soil organic matter accumulations correlate positively with soil rooting 

depth as affected by soil lithology, drainage, and compaction. 



 

39 

4. Since vegetation growth and health is closely related to soil fertility (availability of 

soil nutrients) and water availability, the revised soil map will allow for better 

decision making in site selection for crop production whether in forestry or 

agriculture.  

5. Since soil and vegetation type (and vegetation structure) vary across landscapes, 

the improved soil mapping will find much use in conservation and reclamation 

practices. 

6. Given that there is a high network of paved and unpaved roads and trails 

permeating New Brunswick, the revised map will provide much needed 

information about their locations across drainage-challenged soils.  

 

 

 

 

 

 



 

40 

CHAPTER 3 – FROM SOIL SURVEYS TO PEDOTRANSFER FUNCTION 
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3.1. ABSTRACT 

This article presents the development of pedotransfer functions (PTFs) for soil 

physical and chemical properties such as bulk density, texture (sand, silt, and clay), coarse 

fragment content, pH, soil organic matter content, cation exchange capacity, field 

capacity, and permanent wilting point for varying soil types and drainage conditions. 

Pertinent data for PTF development resulted from the amalgamation of county-based soil 

surveys for the province of New Brunswick, Canada into a harmonized aspatial database 

for both soil associations and soil types. It was ensured that PTF outputs coincided with 

realistic thresholds, namely, bulk density does not exceed 2.4g/cm3, soil organic matter 

does not exceed 100%, combination of sand, silt and clay does not exceed 100% for fine 

earth mineral fraction, permanent wilting point does not exceed field capacity, and all 
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values are positive. PTF development for sand, silt, clay, organic matter content, bulk 

density, cation exchange capacity, field capacity, and permanent wilting point resulted in 

capturing between 60 to 75% of the total soil property variation with PTF models 

validated by via comparison with published PTF equations.  

Key Words: Province-wide database, physical and chemical soil properties, pedotransfer 

functions.  

 

3.2. INTRODUCTION 

Due to the high cost associated with intensive soil sampling and subsequent 

laboratory analyses required to develop high-resolution soil maps, there is a need for 

algorithms to model and predict soil properties that are difficult, or too costly, to measure 

(Moore et al., 1993; McBratney et al., 2002). These algorithms, known as pedotransfer 

functions (PTFs) are a feasible alternative allowing for the prediction of soil properties 

based on a few easy-to-measure variables. PTFs, a term introduced by Bouma (1989) are 

not a new science and have been used vastly in the past for predicting soil properties, for 

example, a review of hydraulic PTFs is provided by Wösten et al. (2001), and two general 

PTF reviews provided by McBratney et al. (2002) and Nanko et al. (2014). Many PTFs have 

been developed for soil physical and chemical attributes with soil organic matter (SOM), 

soil texture, structure, and bulk density (Db) as the most commonly used predictors 

(Moore et al., 1993).  
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PTF development requires a data set that is heterogenous in terms of soil types 

and site conditions, particularly varying parent materials, topographies, flora, and 

physiographic regions (varying mesoclimates), since these variables have been proven as 

dominant soil forming factors (Jenny, 1941; McBratney et al., 2003; Florinsky, 2012; 

Heung et al., 2014). Therefore, soil property variation will be dependent upon these 

factors. Developing PTFs over a wide range of soil conditions is more likely to result in 

higher predicting accuracy (Pollacco, 2008) with a readily-available source of information 

in the form of conventional soil surveys (McBratney et al., 2000, 2002; Balland et al., 

2008). In New Brunswick, Canada, there is a wealth of information available in 

conventional county-based soil surveys.  

The objectives of this article are: 

1. to determine how the survey-compiled data for individual soil physical chemical 

variables relate to one another through PTF analysis; 

2. to use the resulting best-fitted functions for filling the data gaps among the 

compiled data;  

3. to evaluate the general validity of the resulting functions based on theoretical 

limits and their predictive correspondences with respect to literature equivalents. 
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3.3. METHODS 

Prior to statistical analyses, the NB soil database (Chapter 2) had undergone 

rigorous amalgamation and harmonization procedures regarding detailed soil horizon and 

property assessments by soil associations and soil associates (Chapter 2). This included 

determining that general soil property range expectations were not exceeded. For 

example, the summation of specified sand, silt and clay % values (soil texture) cannot 

exceed 100%, soil Db should not exceed 2.4g/cm3, all percentages (CF, SOM, carbon (C), 

and base saturation) must remain between 0 and 100%, soil pH values should vary at most 

from 2.5 to 8. For some soils, only qualitative descriptions were provided for CF content 

while others were provided with CF ranges (e.g., CF = "30 - 50").  

Table 3.1 provides data frequencies, means and ranges for each database-listed 

soil variable prior to methodology and unit standardization. This standardization followed 

the variable-by-variable soil survey guidelines and specifications by McKeague (1978), the 

Mapping System Working Group (1981), the Expert Committee on Soil Survey (1982), 

Guertin et al. (1984), and GlobalSoilMap (http://www.isric.org/documents/document-

type/globalsoilmap-specifications-v24-07122015).  

 

 

 

 

 

http://www.isric.org/documents/document-type/globalsoilmap-specifications-v24-07122015
http://www.isric.org/documents/document-type/globalsoilmap-specifications-v24-07122015
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Table 3.1. Overview of soil physical and chemical attributes within the amalgamated database prior to 
attribute standardization and data filling. Bolded variables represent those of which are modeled in this 
study whilst non-bolded represent those requiring additional standardization. 

Attribute 
Sample 

Size 
% of 
total 

Mean Min Max Standardized 

Sand (%) 1306 52.5 47.4 1.2 100  

Silt (%) 1306 52.5 34.3 0 76.1  

Clay (%) 1306 52.5 18.3 0 72.1  

CF (%) 885 35.5 14.18 0 80.0  

Db (g/cm3) 938 37.7 1.4 0.11 2.8  

C (%) 1082 44.0 1.4 0 20.1 OM (%) 

OM (%) 121 4.9 1.7 0 12.4 OM (%) 

pH (H2O) 1757 68.6 5.2 2.9 8.1 pH (H2O and CaCl2) 

pH(CaCl2) 689 26.9 4.6 2.9 7.5 pH (H2O and CaCl2) 

CEC (meq/100g) 659 26.5 15.0 1.0 73.9  

FC (%, gravimetric) 678 27.2 27.0 2 94 
FC (volumetric and 

gravimetric) 

FC (%, volumetric) 168 6.5 26.5 6 43 
FC (volumetric and 

gravimetric) 

PWP (%, gravimetric) 455 18.3 9.9 1 58 
PWP (volumetric and 

gravimetric) 

PWP (%, volumetric) 283 11.4 8.7 1 28 
PWP (volumetric and 

gravimetric) 

Base Saturation (%) 466 18.7 23.0 0 100  

Ca (meq/100g) (NH4OAc) 990 38.7 2.5 0 65 Ca (meq/100g) (NH4OAc) 

Ca (kg/ha) (NH4OAc) 67 2.6 458.3 44.8 2847 Ca (meq/100g) (NH4OAc) 

Ca (meq/100g) (NaCL) 92 3.6 2.4 0.1 12.2 Ca (meq/100g) (NH4OAc) 

Mg (meq/100g) (NH4OAc) 974 38.0 0.5 0 8.2 Mg (meq/100g) (NH4OAc) 

Mg (kg/ha) (NH4OAc) 67 2.6 76.6 0 336.3 Mg (meq/100g) (NH4OAc) 

Mg (meq/100g) (NaCL) 92 3.6 0.7 0 6.3 Mg (meq/100g) (NH4OAc) 

K (meq/ 100g) (NH4OAc) 987 38.6 0.3 0 6.6 K (meq/ 100g) (NH4OAc) 

K2O (kg/ha) (NH4OAc) 67 2.6 97.1 22.4 336.3 K (meq/ 100g) (NH4OAc) 

K (meq/100g) (NaCL) 92 3.6 0.2 0 2.5 K (meq/ 100g) (NH4OAc) 

 

Once standardized, both simple and multiple linear regression analyses were 

conducted on each attribute to test the feasibility of modeling soil physical and chemical 

properties. Only the Table 3.1 variables in bold were subject to this analysis due to the 

lack of a consistent procedures for standardizing base cation measurements. The 

resulting PTF equations were evaluated in terms of their best-fitted intercept, regression 

coefficients, t- and p-values. The overall goodness-of-fit was expressed by the adjusted 
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coefficient of variation (R2), the root mean square error (RMSE), and mean absolute error 

(MAE), and was visualized by plotting actual versus best-fitted data values. The PTF 

equations were subsequently used to predict the values of bolded variables across the 

database for general confirmation, and this was also done for the same data using 

published PTF equations as a method of validation. 

3.4. RESULTS AND DISCUSSION 

Soil Texture: Soil texture refers to the proportion of sand, silt, and clay in the fine 

earth fraction (<2mm) of soil (Weil and Brady, 2017), as classified by way of the texture 

triangle (Fig. 3.1; (Working Group on Soil Survey Data, 1982). In general, soil texture 

influences many soil physical and chemical processes and resulting attributes pertaining, 

e.g., to the extent of organic matter accumulation, which, in turn, contributes to soil 

structure by increasing soil porosities while lowering soil Db (Birkeland, 1999; Gessler et 

al., 2000; McBratney et al., 2000; Azlan et al., 2013; Chaudhari et al., 2013). Clay in 

combination with fully decomposed SOM (humus) contributes to the soil colloidal fraction 

(Pitty, 1979; Fullen et al., 2007), and, hence, improves moisture and nutrient retention 

(Anderson, 1988; Pitty, 1979).  

The frequency of each texture class within the database was determined with 

results listed in Table 3.2. As seen above, pure silts, sandy clays, and the heaviest clays 

(clay percentage exceeding 80%) are absent from the soil surveys. This may be a result of 

surveying emphasis placed on agricultural soils, which would avoid surveying heavy 

textured wetlands, lacustrine and estuary deposits. Also missing from the data entries are 
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nearly pure sand- and silt-textured soils, as these are typically uncommon in forested 

landscapes. Some of the absent textural variations are likely due to:  

1. translocation of fine-textured minerals (silts and clays) from steep slopes to low-

lying positions and depressions (Simonson, 1959), and  

2. non-linear trends with respect to soil depth due to secondary clay enrichments 

(i.e., Luvisols) and differences in soil parent materials (i.e., ablation over basal till), 

and vertical variations in alluvial fine to coarse deposits. 

 

Figure 3.1. Representation of frequencies of each soil texture class with intermediates between classes 
overlain on soil texture triangle. Classes with no occurrence include silt (Si), sandy clay (SC), and heavy clay 
(uppermost portion of clay class, >80% clay). 
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Table 3.2. Frequency distribution of texture classes and ranges found within aspatial database.  

Texture Class Count Texture Class Count 

Clay (C) 37 Loam (L) 573 

Clay – Sandy Clay (C-SC) 0 Silt Loam – Loam (SiL-L) 16 

Sandy Clay (SC) 0 
Sandy Clay Loam – Sandy Loam (SCL – 

SL) 
0 

Clay – Silty Clay (C-SiC) 2 Clay – Clay Loam (C-CL) 0 

Silty Clay (SiC) 0 Loamy Sand – Sandy Loam (LS-SL) 14 

Silty Clay Loam (SiCL) 75 Loamy Sand (LS) 157 

Clay Loam – Silty Clay Loam (CL-SiCL) 2 Sand – Loamy Sand (S-LS) 3 

Silty Clay – Silty Clay Loam 1 Sand (S) 85 

Sandy Clay Loam – Clay Loam (SCL-
CL) 

1 Clay Loam – Silt Loam (CL-SiL) 0 

Clay Loam – Loam (CL-L) 1 Silt Loam (SiL) 329 

Clay Loam (CL) 190 Silt Loam – Silt (SiL-Si) 1 

Sandy Clay – Sandy Clay Loam (SC-
SCL) 

0 Silt (Si) 0 

Sandy Clay – Clay Loam (SC-CL) 0 Sandy Loam – Silt Loam (SL-SiL) 10 

Sandy Clay Loam (SCL) 53 Sandy Loam (SL) 519 

Sandy Clay Loam – Loam (SCL-L) 0 Sandy Loam – Loam (SL-L) 14 

Silty Clay Loam – Silt Loam (SiCL-SiL) 7   

 

Since the sand, silt and clay percentages within the mineral fraction of fine earth 

(i.e., gently crushed air-dried soil passing through a 2mm sieve) must add up to 100%, 

only two of these variables need to be modelled in order to fill the textural data gaps 

within the amalgamated and harmonized database. Since the texture-influencing 

variables within this database refer to soil depth, mode of surface deposition, and 

lithology (Anderson, 1988; Bui et al., 2006), the missing database entries for the sand and 

silt fractions were obtained by evaluating the following generalized regression 

formulation: 

𝑆𝑎𝑛𝑑 𝑜𝑟 𝑆𝑖𝑙𝑡 (%) =  𝑓(𝑀𝐷𝐸𝑃 + log(𝐷𝑒𝑝𝑡ℎ) + 𝑀𝑖𝑛𝑒𝑟𝑎𝑙 𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 + 𝑅𝑜𝑐𝑘 𝑇𝑦𝑝𝑒), 𝑛 = 1,138   (1) 
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Where Depth is the depth (cm) measured at the middle of the horizon from the bottom 

of the forest floor, Mineral Hardness is a numerical value determined by the Moh's 

hardness scale and assigned to the dominant mineral types of each parent material. If 

two rock types were present within the same parent material, then the hardness was 

averaged. MDEP (Mode of Deposition) and Rock Type are categorical variables 

describing the parent material’s mode of deposition and dominant lithology, respectively. 

The formulated least-squares fitting results are listed, variable-by-variable, in Tables 3.3 

and 3.4, represented with significant intercept, regression coefficients, t- and p-values, 

and with model performances (measured vs. fitted) presented in Fig. 3.2.  

Table 3.3. Least squares modeling results for sand by soil depth, and parent material mode of deposition 
and lithology (rock type and mineral hardness), including best-fitted PTF intercept, regression coefficients, 
and associated t- and p-values. 

Mode of 
Deposition 

Estimate t- value p- value Rock Type(s) Estimate t-value p-value 

Ablation/ Basal -19.0730 2.863 0.0043 
Conglomerate, 

sandstone 
40.4028 8.166 <0.0001 

Alluvium + 
Glaciofluvial 

29.9414 10.913 <0.0001 
Conglomerate, 

sandstone, 
mudstone 

21.5430 3.018 0.0026 

Colluvium + 
Water re-worked 

Till 
10.9177 3.540 0.0004 Sandstone 16.9196 3.069 0.0022 

Glaciofluvial 22.4670 10.486 <0.0001 Sandstone, shale 26.9470 5.928 <0.0001 

Glaciofluvial + 
Marine 

12.8926 3.900 0.0001 Shale 33.2131 4.436 <0.0001 

Glaciomarine -26.2909 6.399 <0.0001 Shale, mudstone 25.6190 2.792 0.0053 

Glaciomarine/ 
Basal 

37.7626 -7.024 <0.0001 
Shale, sandstone, 

conglomerate 
28.2841 4.931 <0.0001 

Glaciomarine/ 
Marine 

44.1617 5.542 <0.0001 
Shale, slate, 

quartzite 
27.4443 4.822 <0.0001 

Lacustrine 31.2234 2.666 0.0078 
Slate, argillite, 

quartzite 
27.1734 5.058 <0.0001 

Marine 34.9532 2.984 0.0029 Other Variables Estimate t-value p-value 

Residual + 
Colluvium 

-15.2584 -2.865 0.0042 Intercept -59.0462 -3.417 0.0007 

    Log10 Depth 6.4952 7.631 <0.0001 

    Mineral Hardness 15.3375 4.811 <0.0001 
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Table 3.4. Best-fitted model results for % silt, following the framework of the sand model with best-fitted 
PTF intercept, regression coefficients, and associated t- and p-values. 

Mode of 
Deposition 

Estimate t- value p- value Rock Type(s) Estimate t-value p-value 

Ablation/ Basal -17.5526 -3.520 0.0045 
Conglomerate, 

sandstone 
-30.8564 -8.331 <0.0001 

Alluvium + 
Glaciofluvial 

-12.2780 -5.978 <0.0001 
Conglomerate, 

sandstone, 
mudstone 

-19.7362 -3.694 0.0002 

Colluvium + 
Water Re-
worked Till 

-6.0150 -2.605 0.0093 Sandstone -13.6167 -3.299 0.0009 

Glaciofluvial -16.1226 -10.502 <0.0001 Sandstone, shale -22.2808 -6.547 <0.0001 

Glaciofluvial + 
Marine 

-12.1065 -4.893 <0.0001 Shale -30.9917 -5.529 <0.0001 

Glaciomarine -13.1527 -7.411 <0.0001 Shale, mudstone -32.8401 -4.781 <0.0001 

Glaciomarine/ 
Basal 

11.2622 4.019 <0.0001 
Shale, sandstone, 

mudstone 
-12.6824 -1.966 0.0496 

Glaciomarine/ 
Marine 

-29.5591 -5.794 <0.0001 
Shale, sandstone, 

conglomerate 
-26.7660 -6.234 <0.0001 

Lacustrine -30.9938 -4.267 0.0028 
Shale, slate, 

quartzite 
-20.4679 -4.803 <0.0001 

Residual -17.1535 -1.956 0.0397 
Slate, argillite, 

quartzite 
-25.0773 -6.235 <0.0001 

Residual + 
Colluvium 

8.2288 2.060 <0.0001 Other Variables Estimate t-value p-value 

    Intercept 114.9107 8.882 <0.0001 

    Log10 Depth -6.4266 -10.086 <0.0001 

    
Mineral 

Hardness 
-10.4199 -4.366 <0.0001 

 

Of the variables outlined in Tables 3.3 and 3.4, some modes of deposition and rock 

types were not significant and removed from the analysis. For the sand model, these 

included (with p-value) Ablation/ Residual (0.7887), Basal (0.4804), and Residual 

(0.6086) for mode of deposition, and Shale, Sandstone, Mudstone (0.3059), Rhyolite, 

andesite, granite (0.8152), Quartzite, sandstone (0.1958), Granite, gneiss, quartzite 

(0.7728), and Granite, gneiss, basalt, felsite (0.8725) for rock types. The sand versus silt 

intercept and regression coefficients, as to be expected, carry opposite signs except for 

the Ablation/Basal (both negative) and Glaciomarine/Basal (both positive) entries. The 

former is due to elevated clay content, and the latter due to sandy beach deposits with 
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low clay. Generally, sand % increases as silt content decreases, this is also reflected by the 

increasing regression coefficients that signal increasing sand and decreasing silt with 

increasing soil depth and mineral hardness, as to be expected. The results in Tables 3.3 

and 3.4 are due to the extent of glacial activity in NB, with 90% of the province influenced 

by glaciation (Pronk and Ruitenberg, 1991).  

 
Figure 3.2. Performance plots (measured vs. fitted) for the sand model (left) and silt model (right) including 
RMSE, MAE, and R2(adj.) as numerical performance indicators. 

Repeating the analysis for clay, by switching clay percentage for sand or silt in Eq. 

1 captured 51% of the variation in clay content. Hence, the combination of the silt and 

sand models are more effective at 59 and 68% (respectively) than using the combined 51 

to 68% sand – clay or silt - clay regression results for estimating the missing database 

entries for textural composition.  

In terms of literature comparison, there is no information about texture-informing 

PTFs. This is because soil texture specifications are generally used to quantify other 

sparsely sampled soil variables. Where geo-referenced texture data are not available, 
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DEM-derived topographic datasets have been used for computerized training purposes 

to estimate texture variations across landscapes (Zhao et al., 2009; Dobarco et al., 2016). 

In principle, this can also be done for this case study, but the amalgamated database 

provides only 223 texture entries with coordinate information.  

Coarse Fragment Content: CF content refers to the amount of rock fragment in a 

soil, measured as a percentage. The amount of rock fragments in any soil depends on 

both topography and parent material (both mode of deposition and lithology). As parent 

material weathers, unconsolidated material will move depending on topographic position 

and on deposition event (glaciation, gravity, floods) (Pitty, 1979; Birkeland, 1999; Weil 

and Brady, 2017). As such, CF is more influenced by soil forming factors, namely 

topography, geology, and climate, than other soil properties (although chemical 

weathering is influenced by soil pH and moisture content). Due to this, CF is typically not 

predicted by way of PTF and seldom assessed in digital soil mapping. Comparing CF to soil 

forming factors within the database yielded: 

𝐶𝐹 =  𝑓(𝑙𝑜𝑔10(𝑑𝑒𝑝𝑡ℎ) + 𝑀𝐷𝐸𝑃 + 𝑅𝑜𝑐𝑘 𝑇𝑦𝑝𝑒), 𝑛 = 857                     (2) 

Least squares fitting results are outlined in Table 3.5 and Fig. 3.3. As seen, surficial 

geology is the dominant influence on CF. Within the database, adequate information on 

topography is lacking, therefore, could not be included in predictions although believed 

to strongly influence CF.  
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Table 3.5. Best-fitted CF model results with best-fitted PTF intercept, regression coefficients, and associated 
t- and p-values. 

Mode of 
Deposition 

Estimate 
t- 

value 
p- 

value 
Rock Type(s) Estimate t-value p-value 

Ablation/ Basal -10.2375 -6.056 
<0.0001 Sandstone and 

Shale 
-6.0412 -3.619 0.0003 

Ablation/ 
Residual 

16.5645 5.224 
<0.0001 

Other Variables Estimate t-value p-value 

Alluvium -25.4281 -7.953 <0.0001 Intercept 7.6088 3.174 0.0016 

Ancient Alluvium -25.1229 -5.731 <0.0001 Log10 Depth 10.4534 11.284 <0.0001 

Basal -5.9695 -3.352 <0.0001 

 

Glaciofluvial 9.9784 4.903 <0.0001 

Glaciofluvial + 
Marine 

-19.3878 -9.224 
<0.0001 

Glaciomarine -20.1031 
-

11.769 
<0.0001 

Glaciomarine/ 
Basal 

-18.7318 -9.887 
<0.0001 

Glaciomarine/ 
Marine 

-24.4282 -6.610 
<0.0001 

Lacustrine -22.9514 -7.175 <0.0001 

Marine -25.7216 -7.404 <0.0001 

 

 

Figure 3.3. Performance plots (measured vs. fitted) for CF model including RMSE, MAE, and R2(adj.) as 
numerical performance indicators. 
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pH: pH is a measure of the hydrogen ion concentration in solution and represents 

the level of acidity (or akalinity) within a soil (Weil and Brady, 2017). This is a function of 

microbial activity, moisture content and retention (topography), and parent material 

weatherability and fertility. pH influences the rate of OM decomposition (by affecting 

microbial populations) and influences the availability of SOM and base cations for cation 

exchange and root uptake (Pitty, 1979; Bui et al., 2006). pH controls the retention of base 

cations via reduction reactions, with low pH reducing base cations into soluble form, 

which are lost with downward and laterally moving water. Therefore, pH has a strong 

influence on the cation exchange capacity (CEC) of a soil (Pitty, 1979; Weil and Brady, 

2017).  

As part of the soil surveying procedures, pH was measured for each soil horizon via two 

methods depending on moisture conditions: from dry (CaCl2) to moist/ wet (H2O). 

Typically, these determinations are well correlated to one another (as seen in Table 3.6 

and Fig. 3.4) such that: 

𝑝𝐻(𝐻2𝑂) =  𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑝𝐻(𝐶𝑎𝐶𝑙2)) 𝑛 = 464                         (3) 

𝑝𝐻(𝐶𝑎𝐶𝑙2) = 𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑝𝐻(𝐻2𝑂))𝑛 = 464                            (4) 

Table 3.6. Model standardization performance for pH measured in both H2O (left) and CaCl2 (right) including 
estimate, t-value, and p-value. 

pH (H2O) Estimate t- value p- value pH (CaCl2) Estimate t-value p-value 

Intercept 0.7924 10.53 <0.0001 Intercept -0.1934 -2.401 0.0167 

pH (CaCl2) 0.9719 59.04 <0.0001 pH (H2O) 0.9087 59.043 <0.0001 
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Figure 3.4. Performance plot (measured vs, fitted) for standardization of pH (H2O) (left) and pH (CaCl2) 
(right) including RMSE, MAE, and R2(adj.) for numerical determinations of performance. 

 

Many published PTFs exist for standardizing pH and an overview of such can be 

found in Appendix C, Table 11 (Example regression equations for converting values of pH 

between different methods) of Specifications Version 1 of GlobalSoilMap.net products. A 

difficulty with soil survey data is that the surveys typically do not specify the exact 

procedure applied when determining physical and chemical properties. The reports 

typically refer to a manual that specifies numerous sampling techniques. Alternatively, 

some of the published PTFs require additional information pertaining to chemical 

properties and these typically are not measured for each sample. Equations 3 and 4 were 

incorporated into the database to create two continuous measures of soil pH.   

Soil Organic Matter: Soil organic matter (SOM) is composed of organic residues at 

various stages of decomposition and is one of the key properties influencing soil fertility 
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and quality (Whitbread, 1992; Bui et al., 2006; Fullen et al., 2007; Azlan et al., 2013). SOM 

acts as a nutrient pool, aids in soil aggregation (thus improves aeration), decreases Db 

and facilitates infiltration (when not dry) while increasing water holding capacity. SOM is 

part of the colloidal fraction of soil (along with clay particles), aids in increasing the CEC 

for the retention of Ca, Mg, and K ions, and releases nitrogen, phosphorus, and sulfur to 

the soil solution as part of the decomposition process (Pitty, 1979; Whitbread, 1992; 

Birkeland, 1999; Kerry et al., 2012; Azlan et al., 2013). SOM is a function of biomass 

introduction and microbial decomposition which is dominantly controlled by pH, 

temperature, and moisture (Bui et al., 2006). Thus, SOM concentrations are a result of 

topography, climate, vegetation and weathering of parent material (Azlan et al., 2013).  

It is common to include the weight percentage of SOM when analyzing soil 

attribute relationships in relation with soil texture, depth and CF content (Balland et al., 

2008; Pollacco, 2008). As such, SOM has been determined through loss ignition at 500°C, 

through loss by wet-chemical oxidation, and/or direct elemental C analysis. The 

conversion factor from soil C to SOM takes the form of SOM = 1.72 C%. This implies that 

58% of SOM is organic C (Romano and Palladino, 2002; Pollacco, 2008; Chaudhari et al., 

2013; Poggio et al., 2013). Although this percentage can vary (Pribyl, 2010), it 

nevertheless serves as a means to convert all soil C to SOM. Through preliminary analyses, 

missing SOM data gaps were filled using the expression: 

log10(𝑆𝑂𝑀%) = 𝑓(log10(𝐷𝑒𝑝𝑡ℎ) + 𝐹𝐶 + ℎ + 𝑓), 𝑛 = 606                    (5) 
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Where FC is field capacity (gravimetric moisture retention, %, at -33kpa), Depth is depth 

of the center of the horizon from the surface (cm), and f and h are binary for whether the 

horizon is enriched in iron or humus (respectively). Alternatively, excluding FC from the 

analysis yields results with a slightly reduced performance, but increased sample size. 

log(𝑆𝑂𝑀%) = 𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + log10(𝐷𝑒𝑝𝑡ℎ) + 𝑓 + ℎ), 𝑛 = 1,177             (6) 

It is arguable that SOM is more easily measured in a laboratory setting than is field 

capacity (FC), therefore, FC should be excluded when modeling SOM. Table 3.7 represents 

the coefficients (with estimates, t-values, and p-values) for both SOM models with 

comparison of fitted plots outlined in Fig. 3.5. 

Table 3.7. Comparison of best-fitted model results for the two SOM PTFs, including intercept, regression 
coefficients, and associated t- and p-values. 

Model Variable Estimate t- value p- value 

All Variables  
(Eq.5) 

Intercept 0.2095 3.381 <0.0001 

Log10(Depth) -0.4428 -15.105 <0.0001 

FC 0.0120 9.276 <0.0001 

f 0.4744 18.159 <0.0001 

h 0.4737 9.586 <0.0001 

Exclude FC  
(Eq.6) 

Intercept 0.6178 17.09 <0.0001 

Log10 (Depth) -0.5475 -24.31 <0.0001 

f 0.5222 24.76 <0.0001 

h 0.6239 15.46 <0.0001 
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Figure 3.5. Comparison of PTF-derived performance plots (measured vs. fitted) for the OM model including 
all variables (left) and excluding FC (right), including RMSE, MAE, and R2(adj.) as numerical performance 
indicators. 

 

Bulk Density: Bulk density (Db) is the mass per unit volume of dry soil, including 

pore space, measured in g/cm3 (Birkeland, 1999; Weil and Brady, 2017). Db is therefore 

strongly related to soil texture, soil structure, SOM content, and soil depth (Pitty, 1979; 

Chaudhari et al., 2013, Nanko et al., 2014). These, in turn, are dependent on parent 

material, vegetation, and topography. Typically, Db in solid rock ranges between 2.5-

3g/cm3, whereas mineral horizons remain within the 0.5 < Db < 2.5 g/cm3 range 

(Birkeland, 1999). With increasing Db, soil infiltration, permeability and root penetration 

decrease with root extension ceasing when Db > 1.5 g/cm3 (Pitty, 1979). 

Typically, Db is determined by extracting a known volume of soil using, e.g., a non-

compressing soil corer, and drying and weighing the extracted soil. Since Db varies by 
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texture and SOM, it is important to convert the sand, silt, clay, and SOM percentages of 

the fine earth particle fraction into actual per soil weight percentages such that: 

𝑆𝑎𝑛𝑑% + 𝑆𝑖𝑙𝑡% + 𝐶𝑙𝑎𝑦% = 100                                       (7a) 

𝑆𝑎𝑛𝑑𝑊% + 𝑆𝑖𝑙𝑡𝑊% +  𝐶𝑙𝑎𝑦𝑊% +  𝑆𝑂𝑀𝑊% = 100                       (7b) 

𝑆𝑎𝑛𝑑𝑊 + 𝑆𝑖𝑙𝑡𝑊 + 𝐶𝑙𝑎𝑦𝑊 + 𝑆𝑂𝑀𝑊 = 1                              (7c) 

With this, preliminary analysis for predicting Db yielded: 

𝐷𝑏 = 𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + log10(𝐷𝑒𝑝𝑡ℎ) + log10(S𝑂𝑀𝑊) + 𝑔𝑙𝑒𝑦 + 𝐵𝑎𝑠𝑎𝑙 + (
𝐴𝑏𝑙𝑎𝑡𝑖𝑜𝑛

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
) +

𝑓 + 𝐹𝐶), 𝑛 = 653                                                       (8)                                                           

Where SOMW is soil organic matter (%) as particle fraction, gley is binary for whether the 

horizon is gleyed, f is binary for whether horizon is enriched in iron, and Basal and 

Ablation/ Residual are binary for whether the parent material mode of deposition is one 

of those two forms. Excluding information on parent material (if data on parent material 

is unavailable) yielded: 

𝐷𝑏 = 𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  log10(𝐷𝑒𝑝𝑡ℎ) +  log10(S𝑂𝑀𝑊)  +  𝑔𝑙𝑒𝑦 +  𝑓 + 𝐹𝐶), n =  65     (9) 

Alternatively, omitting FC while including parent material returned: 
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𝐷𝑏 = 𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝐿𝑜𝑔log10
(𝐷𝑒𝑝𝑡ℎ) +  𝑔𝑙𝑒𝑦 + 𝑓 +  log10

(S𝑂𝑀𝑊) + (
𝐴𝑏𝑙𝑎𝑡𝑖𝑜𝑛

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
) +

 𝐵𝑎𝑠𝑎𝑙 +  𝐺𝐿𝑀𝐴 +  (
𝐴𝑏𝑙𝑎𝑡𝑖𝑜𝑛

𝐵𝑎𝑠𝑎𝑙
) +  (𝐶𝑂𝐿 + 𝑊𝑊𝑇𝐿)), n =  795             (10) 

With GLMA (glaciomarine), Ablation/Residual, Ablation/Basal, COL + WWTL 

(colluvium and water re-worked till), and Basal representing additional landform-based 

predictors. Results for Eqs. 8 through 10 are outlined in Table 3.8 and Fig. 3.6.  

Table 3.8. Comparison of best-fitted model results for the three Db PTFs, including intercept, regression 
coefficients, and associated t- and p-values. 

Model Variable Estimate t- value p- value 

All Variables 
(Eq.8) 

Intercept 0.8359 15.608 <0.0001 

Log10 (Depth) 0.2592 13.228 <0.0001 

Log10 (SOMW) -0.1599 -7.044 <0.0001 

gley 0.1375 8.739 <0.0001 

Basal 0.1526 11.401 <0.0001 

Ablation/Residual 0.1774 5.888 <0.0001 

f -0.1141 -6.092 <0.0001 

FC -0.0096 -12.364 <0.0001 

Exclude Parent 
Material + Include 

FC 
(Eq.9) 

Intercept 0.8222 13.933 <0.0001 

Log10 (Depth) 0.2474 11.479 <0.0001 

Log10 (SOMW) -0.1957 -7.942 <0.0001 

gley 0.1639 9.621 <0.0001 

f -0.1035 0.0206 <0.0001 

FC -0.0083 -9.805 <0.0001 

Include Parent 
Material + Exclude 

FC 
(Eq.10) 

Intercept 0.3018 8.690 <0.0001 

Log10 (Depth) 0.2898 15.308 <0.0001 

gley 0.1303 8.253 <0.0001 

f -0.0927 -5.091 <0.0001 

Log10 (SOMW) -0.2838 -13.977 <0.0001 

Ablation/ Residual 0.1534 4.750 <0.0001 

Basal 0.1698 9.081 <0.0001 

GLMA 0.1879 4.252 <0.0001 

Ablation/ Basal 0.1334 4.476 <0.0001 

COL + WWTL 0.1288 3.365 0.0008 
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Figure 3.6. Comparison of PTF-derived Db performance plots (actual vs. fitted) for all variables (left), 
excluding parent material (center) and excluding FC (right). Fitted values were compared to measured 
values to determine performance.  

The results outlined in Table 3.8 and Fig. 3.6 shows that the model with all variables (Eq. 

8; R2 = 83.6%) fits best, followed by the model excluding parent material (Eq. 10; R2 = 

77.6%), then excluding FC (Eq.9; R2 = 77.4%). 

The overall results are consistent with those of Pitty (1979), Heuscher et al. (2005), 

Jutras and Arp (2010), Chaudhari et al. (2013), Nanko et al. (2014) in that depth and SOMW 

dominate Db predictions, with Db increasing with depth, and decreasing with increasing 

SOM due to the structure- building influence of SOM. Among the parent materials, Db 

values are higher for basal tills due to the compacted nature of these tills. In addition, the 

ablation till overlying residual formations have higher Db values due to the coarse nature 

of these parent materials. The same is noted via Eq. 10 for the coarse-textured 
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glaciomarine, ablation over basal till, and the colluvium and water re-worked till 

combinations. While sandy soils are expected to also have lower Db values, this trend is 

camouflaged by the negative correlation between Db and FC, whereby FC decreases with 

increasing sand content. 

The results outlined in Eq. 9 follow a similar trend to that of Balland et al. (2008) 

for New Brunswick and Nova Scotia soils.  

𝐷𝑏 =
1.23+(𝐷𝑝−1.23)(1−𝑒𝑥𝑝(−0.0106·𝐷𝑒𝑝𝑡ℎ))

1+6.83·S𝑂𝑀𝑊%
                                     (11) 

where Dp is the particle density (g/cm3). The Db model by Benites et al. (2007) based on 

19,651 Brazilian soil samples also indicated that SOM (in the form of % organic carbon, 

OC) is a dominant Db predictor, as follows: 

𝐷𝑏 = 1.660 − 0.318(𝑂𝐶%)0.5                                         (12) 

 

Comparing the results from Eq. 9 to those of Balland and Benites yield similar results (Fig. 

3.7). 
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Figure 3.7. Comparison of actual vs. predicted Db values (Eq. 9) (left) with Db predictions from Balland et 
al. (2008) (center) and Benites et al. (2007) (right) when compared to measured Db in database. 

All three models have similar predictive capabilities with the newly derived PTF 

performing best, followed by Balland Db, then Benites Db. All three results show the 

influence of SOM on determining bulk density but excluding depth in the Benites model 

likely results in the slightly poorer performance.  

 Field Capacity: water retention within a soil is significantly important to both soil 

property variation and productivity potential for vegetation (Pitty, 1979; Dobos et al., 

2001; Zhu and Mackay, 2001). The amount of water retained in a soil affects both nutrient 

and oxygen availability to roots (Pitty, 1979). Within a soil sample, water is acted on by 

different forces, with gravity driving water downward, cohesion attracting water to other 

water molecules, and adhesion (capillarity) moving water laterally and against gravity via 

electrostatic charges on soil particles. This results in negative forces responsible for 
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retaining water within soils, resulting in higher pressures (Pitty, 1979; Birkeland, 1999; 

Weil and Brady, 2017). FC (%) is regarded as the upper limit of available water for plants 

(low pressure gradient, -33kPa) and is generally attained 24 hours post soil-saturating 

precipitation event (Salter and Williams, 1965a, 1965b; Weil and Brady, 2017). Modeling 

FC yielded: 

𝐹𝐶𝑊 = 𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑆𝑎𝑛𝑑% + S𝑂𝑀% + (
𝐴𝑏𝑙𝑎𝑡𝑖𝑜𝑛

𝐵𝑎𝑠𝑎𝑙
) + (

𝐴𝑏𝑙𝑎𝑡𝑖𝑜𝑛

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
) + (𝐴𝑙𝑙𝑢𝑣𝑖𝑢𝑚 𝑎𝑛𝑑 𝐺𝐿𝐹𝐿) +

 𝐺𝐿𝐹𝐿 𝑎𝑛𝑑 𝑀𝐴 + 𝐺𝐿𝑀𝐴 + 𝐷𝑏 + 𝑀𝑖𝑛𝑒𝑟𝑎𝑙 𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠), 𝑛 = 657                     (13) 

Where FCW is gravimetric moisture content (%) at -33kPa, and Ablation/Basal, 

Ablation/Residual, Alluvium and GLFL, GLFL and MA, GLMA are parent material 

modes of deposition (GLFL = Glaciofluvial, MA = Marine). Excluding parent material 

returned: 

 𝐹𝐶𝑊 = 𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑆𝑎𝑛𝑑% + 𝑆𝑂𝑀% + 𝐷𝑏), 𝑛 = 670                    (14) 

while excluding Db resulted in: 

𝐹𝐶𝑊 = 𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑆𝑎𝑛𝑑% + 𝑂𝑀%), 𝑛 = 710                      (15) 

The best-fitted results so obtained are outlined in Table 3.9 and plotted in Fig. 3.8. Since 

FC has been reported in gravimetric as well as volumetric (FCV) data, the FC analysis was 

done for FCW because of small FCV sample size (n = 168). Where Db was entered, FCV 

values were converted to FCW by setting FCW = FCV / Db. 
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Table 3.9. Comparison of best-fitted model results for the three gravimetric FC PTFs, including intercept, 
regression coefficients, and associated t- and p-values. 

Model Variable Estimate t- value p- value 

All Variables 
(Eq. 13) 

Intercept 44.9953 23.562 <0.0001 

Sand% -0.2211 -13.367 <0.0001 

OM% 0.7081 10.060 <0.0001 

Ablation/Basal -4.0956 -3.331 <0.0001 

Ablation/Residual 5.3602 5.124 <0.0001 

Alluvium and GLFL -7.3702 -5.267 <0.0001 

GLFL and MA -5.7806 -4.356 <0.0001 

GLMA -7.0349 -4.292 <0.0001 

Db -14.4725 -17.263 <0.0001 

Mineral Hardness 1.2884 5.227 <0.0001 

No Parent 
Material (PM) 

(Eq. 14) 

Intercept 51.4764 37.737 <0.0001 

Sand% -0.2402 -20.634 <0.0001 

OM% 0.7097 9.673 <0.0001 

Db -14.3442 -17.962 <0.0001 

No PM, 
No Db 

(Eq. 15) 

Intercept 29.4223 40.700 <0.0001 

Sand% -0.2429 -17.160 <0.0001 

OM% 1.5607 22.900 <0.0001 

 

 

Figure 3.8. Comparison of PTF-derived FC performance plots (actual vs, fitted) for all variables (left), 
excluding parent material (center), and excluding both parent material and Db (right). Fitted values were 
compared to measured values to determine performance. 
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These results follow general expectations such that FCW increases with increasing SOM 

and decreases with increasing sand content and Db. Excluding Db from the analysis 

reduced the goodness-of-fit considerably. Including the entries for coarser soil parent 

material also lowered FCW. FC increases with increasing mineral hardness and where the 

soil parent material refers to ablation till on residuals is unexpected but dropping the soil 

parent material and mineral hardness entries altogether decreased the goodness-of-fit 

marginally, from R2 = 79.2% to 73.7%. This drop would even be smaller by excluding 

mineral hardness and the ablation till on residuals combination only. 

 

The results for FC (gravimetric and volumetric) are consistent with literature in 

that soil texture and SOM are important factors when predicting water retention (Pitty, 

1979; McBratney et al., 2002; Balland et al., 2008; Pollacco, 2008; Ostovari et al., 2015). 

When including Db in the model, predicted FCW values became less than 0, otherwise FCW 

values remained above 0. The results from Eq. 13 (all variables) were compared with 

published PTFs for gravimetric (FCW) and volumetric (FCV) field capacities, as follows: 

1. Balland et al. (2008): 

𝐹𝐶𝑊 = 𝑆𝑃𝑊%(1 − 𝑒𝑥𝑝 (
−0.588(1−𝑆𝑎𝑛𝑑𝑊%)−1.73·𝑆𝑂𝑀𝑊%

𝑆𝑃𝑊%
))                    (16) 

Where SPW% is moisture content at saturation point. 

2. Beke and MacCormick (1985): 
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𝐹𝐶𝑉 = 64.37 − 0.5(𝑆𝑎𝑛𝑑%) − 0.23(𝑆𝑖𝑙𝑡% · 𝐷𝑏)                   (17) 

3. Rawls and Brakensiek (1982): 

 𝐹𝐶𝑉 = 0.2576 − 0.002(𝑆𝑎𝑛𝑑%) + 0.0036(𝐶𝑙𝑎𝑦%) + 0.0299(𝑆𝑂𝑀%)      (18) 

4. Gupta and Larson (1979): 

𝐹𝐶𝑊 = 0.003075(𝑆𝑎𝑛𝑑%) + 0.005886(𝑆𝑖𝑙𝑡%) + 0.008039(𝐶𝑙𝑎𝑦%) + 0.002208(𝑆𝑂𝑀%) −

0.14340(𝐷𝑏)                                                      (19)        

5. Lal (1979): 

𝐹𝐶𝑊 = 0.065 + 0.004(𝐶𝑙𝑎𝑦%)                                       (20) 

Volumetric FCs (Eqs. 17-18) were converted to gravimetric by dividing volumetric FC by 

Db. FCs measured as weight fractions (Eqs. 16, 19-20) were converted to percentages by 

multiplying FC by 100. With this, model results are compared in Fig. 3.9.  
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Figure 3.9. Comparison of actual vs. predicted FC (Eq. 15) (top left), and published PTFs, namely Rawls and 
Brakensiek (1982) (top right), Balland et al. (2008) (mid left), Lal (1979) (mid right), Beke and MacCormick 
(1985) (bottom left), and Oosterveld and Chang (1980) (bottom right) when compared to measured FC in 
database.  

 
Permanent Wilting Point: Permanent wilting point (PWP, %) is the moisture 

content at the upper reaches of the pressure gradient (-1500kPa). At this pressure, 

moisture is held onto the soil particles so tightly via matric forces (adhesion) that it is no 

longer available for root uptake. As this occurs, plants reach a stage in which irreversible 

wilting occurs unless water is added to the soil (McBratney et al., 2002; Weil and Brady, 

2017). This limit is determined by applying a pressure of 1,500kPa on saturated soil 
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samples placed on a porous plate inside a pressure chamber, for 24 hours, and 

subsequently weight determining the remaining soil moisture content. The resulting PWP 

entries in the database were analyzed using the following formulation: 

𝑃𝑊𝑃𝑊 = 𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + S𝑂𝑀% + 𝐶𝑙𝑎𝑦% + 𝐵𝑎𝑠𝑎𝑙 + (
𝐺𝐿𝑀𝐴

𝐵𝑎𝑠𝑎𝑙
) + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 +

 𝐶𝑜𝑙𝑙𝑢𝑣𝑖𝑢𝑚), 𝑛 = 566                                (21) 

Where PWPW is the moisture percentage at -1500kPa and Residual + Colluvium is a 

binary field for that mode of deposition. Without reference to parent material, the 

formula becomes: 

𝑃𝑊𝑃𝑊 = 𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑆𝑂𝑀% + 𝐶𝑙𝑎𝑦%), 𝑛 = 582                   (22) 

The best-fitted results so obtained are listed in Table 3.10 and are plotted in Fig. 3.10. 

Table 3.10. Comparison of best-fitted model results for the two gravimetric PWP PTFs, including intercept, 
regression coefficients, and associated t- and p-values. 

Model Variable Estimate t- value p- value 

All Variables 
(Eq. 21) 

Intercept -0.16404 -0.317 0.7511 

SOM% 1.3018 34.222 <0.0001 

Clay% 0.2197 13.446 <0.0001 

Basal 1.4570 3.603 0.0003 

GLMA/Basal 3.1493 3.572 0.0004 

Residual and Colluvium 6.3863 5.193 <0.0001 

No Parent 
Material (PM) 

(Eq. 22) 

Intercept 1.3726 4.672 <0.0001 

SOM% 1.3289 36.570 <0.0001 

Clay% 0.1972 14.878 <0.0001 

 

The regression coefficients in Table 3.10 for SOM and Clay confirm their role in retaining 

soil moisture against vegetation uptake at the PWP. The added contributions by soil 

parent material are of significance, likely due to the influence of parent material on 
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texture composition, but the PWP model with all variables produces a statistically 

insignificant intercept whereas excluding PM yields more significant estimates. 

 

Figure 3.10. Comparison of PTF-derived PWP performance (actual vs. fitted) for all variables (left) and 
excluding parent material (right). Fitted values were compared to measured values to determine 
performance. 

 

In terms of PWP literature comparisons, the results agree with those of Rawls and 

Brakensiek (1982), Beke and MacCormick (1985), and Balland et al. (2008) in that clay and 

SOM are the two dominant predictors. However, applying the corresponding equations 

to the PWP database entries produced wider actual versus predicted scatter plots with a 

general trend towards higher than actual PWP values and therefore lower R2 values than 

noted in Fig. 3.10, as shown in Fig. 3.11. Arranging R2s in descending order reveals: 

Eq. 21 > Eq. 22 >> Balland et al. (2008) > Rawls and Brakensiek (1982) ≈ Beke and 

MacCormick (1985) >> Oosterveld and Chang (1980) > Lal (1979). 
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This sequence is somewhat determined by the combined inclusion of the SOM and clay 

variables. The advantage of the Balland et al. (2008) formulation is that it produces 0 < 

PWPW < FCW values only. The absence of PWP < 0 values is guaranteed by the other 

formulations except for the negative regression coefficient by soil depth in Oosterveld 

and Chang (1980). For Eq. 21, this can be enforced by setting the intercept equal to zero.  

The plots in Fig. 3.11, other than the top left entry obtained via Eq. 21, are based 

on the following equations, and noting the volumetric to gravimetric PWPW = PWPV/Db 

conversion. 

1. Balland et al. (2008):  

𝑃𝑊𝑃𝑊 = 𝐹𝐶𝑊(1 − 𝑒𝑥𝑝 (
−0.511(𝐶𝑙𝑎𝑦𝑊%)−0.865(𝑆𝑂𝑀𝑊%)

𝐹𝐶𝑊
))                (23) 

2. Beke and MacCormick (1985): 

𝑃𝑊𝑃𝑉 = 4.41 + 0.66(𝐶𝑙𝑎𝑦%) + 1.07(S𝑂𝑀% · 𝐷𝑏)                   (24) 

3. Rawls and Brakensiek (1982): 

𝑃𝑊𝑃𝑉 = 0.026 + 0.005(𝐶𝑙𝑎𝑦%) + 0.0158(S𝑂𝑀%)                   (25) 

4. Lal (1979): 

𝑃𝑊𝑃𝑉 = 0.006 + 0.003(𝐶𝑙𝑎𝑦%)                                        (26) 
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5. Oosterveld and Chang (1980): 

𝑃𝑊𝑃𝑊 = 4.035 + 0.299(𝐶𝑙𝑎𝑦%) − 0.034(𝑆𝑎𝑛𝑑%) − 0.016(𝐷𝑒𝑝𝑡ℎ)       (27) 

Where Depth (cm) is the depth of the mid-point of the horizon.  

Volumetric PWP results from of Beke and MacCormick and Rawls and Brakenseik 

were converted to gravimetric PWP as was FC. PWPs for Eqs. 24, 26, and 27 were 

converted to percentages by multiplying PWP by 100. Db was included in the analysis, but 

it was realized that this inclusion causes some PWP values to become less than zero, 

exceeding known thresholds for the moisture content. Thus, Db was excluded while 

modeling PWP. Once removed, PWP PTFs were compared to test conformance (Fig. 3.11). 
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Figure 3.11. Comparison of actual vs. predicted PWP PTF (Eq. 22) (top left), and published PTFs, namely 
Rawls and Brakensiek (1982) (top right), Balland et al. (2008) (mid left), Lal (1979) (mid right), Beke and 
MacCormick (1985) (bottom left), and Oosterveld and Chang (1980) (bottom right) when compared to 
measured PWP values in database.  

 

Cation Exchange Capacity: CEC, measured as meq/100g, is the total sum of 

negative charges within a soil and represents how many base cations can be held within 

that soil (Birkeland, 1999; Liao et al., 2015; Olorunfemi et al., 2016; Weil and Brady, 2017). 

CEC is recognized as the largest single indicator of soil fertility, nutrient holding capacity, 

and overall quality (Pitty, 1979; McBratney et al., 2000). CEC strongly influences the ability 
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of the soil to buffer against acidity, retain nutrients, and supply nutrients to roots (Krogh 

et al., 2000; Liao et al., 2015). 

Determination of CEC, like Db, is very costly and time consuming therefore it is 

common practice to employ PTFs to determine these values (Liao et al., 2015). 

Traditionally, the literature states that CEC is a linear function of carbon (SOM) and clay 

percentages (Syers et al., 1970; Brady, 1990; Meyer and Arp, 1994; Krogh et al., 2000; 

Olorunfemi et al., 2016). Building on this theory, CEC was tested against many soil 

properties resulting in Eq. 28: 

𝐶𝐸𝐶 =  𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝐶𝑙𝑎𝑦𝑊 + 𝑆𝑂𝑀𝑊 + 𝑓 + ℎ), n =  639                (28) 

CEC was also modeled comparing ClayW and SOMW with and without intercepts: 

𝐶𝐸𝐶 =  𝑓(𝐶𝑙𝑎𝑦𝑊 + 𝑆𝑂𝑀𝑊), 𝑛 =  639                               (29) 

 𝐶𝐸𝐶 =  𝑓(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝐶𝑙𝑎𝑦𝑊 + 𝑆𝑂𝑀𝑊), 𝑛 =  639                      (30) 

The best-fitted results obtained with these equations are listed in Table 3.11, with actual 

versus best-fitted values plotted in Fig. 3.12. 
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Table 3.11. Comparison of best-fitted model results for the three CEC PTFs, including intercept, regression 
coefficients, and associated t- and p-values. 

Model Variable Estimate t- value p- value 

All Variables 
(Eq. 28) 

Intercept 3.7244 5.346 <0.0001 

ClayW 22.3254 10.214 <0.0001 

SOMW 207.5449 16.090 <0.0001 

f 3.3563 5.255 <0.0001 

h 13.5131 8.439 <0.0001 

Clay + SOM 
(Eq. 29) 

ClayW 29.9340 21.57 <0.0001 

SOMW 306.1330 47.46 <0.0001 

Intercept + Clay 
+ SOM 
(Eq. 30) 

Intercept 3.4257 5.815 <0.0001 

ClayW 17.9277 7.262 <0.0001 

SOMW 292.1864 43.400 <0.0001 

 

The results listed indicate that the significance of the CEC-determining variables decrease 

as follows:  

𝑆𝑂𝑀𝑊 >>  𝐶𝑙𝑎𝑦𝑊 >>  h >  f 

Excluding the f and h binary variables would not affect the best-fitted results in a major 

way. Altogether, this leads to a best-fitted result with R2 = 88.9%.  
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Figure 3.12. Comparison of PTF-derived CEC performance (actual vs, fitted) for all variables (left), just clay 
and SOM (no intercept) (center), and clay and SOM (with intercept) (right). Fitted values were compared 
to measured values to determine performance.  

 

The modeled results for CEC agree with literature in that CEC is dominantly 

influenced by the amount of clay and SOM in a sample. This is because clay and SOM 

represent the colloidal fraction of the soil, with highest concentrations of negative 

electrostatic charges. These negative charges are what attract and hold base cations in 

the soil (Birkeland, 1999). Alternative equations were applied to the database to 

determine the feasibility of existing PTFs for determining CEC. These included: 

1. Brady (1990):  

𝐶𝐸𝐶 =  0.5(𝐶𝑙𝑎𝑦%) + 3.44(𝑂𝐶%)                                     (31) 
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2. Liao et al. (2015):  

𝐶𝐸𝐶 =  −7.9 − 0.01(𝑆𝑎𝑛𝑑%) + 0.01(𝑆𝑖𝑙𝑡%) + 0.52(𝐶𝑙𝑎𝑦%) + 2.75(𝑆𝑂𝑀%) +

1.44(𝑝𝐻(𝐶𝑎𝐶𝑙2)                                   (32) 

3. Syers et al. (1970):  

𝐶𝐸𝐶 =  1.68 + 3.33(𝑂𝐶%) + 0.06(𝐶𝑙𝑎𝑦%)                              (33) 

4. Olorunfemi et al. (2016):  

𝐶𝐸𝐶 =  −13.93 + 2.645(𝑝𝐻(𝐻2𝑂)) + 0.0446(𝐶𝑙𝑎𝑦%) + 2.267(𝑂𝐶%)     (34) 

5. Krogh et al. (2000): 

𝐶𝐸𝐶 =  0.95 + 0.53(𝐶𝑙𝑎𝑦%) + 4.99(𝑂𝐶%)                                (35) 

Plotting the actual CEC database entries versus the CEC model equations generated the 

scatter plots in Fig. 3.13. The goodness-of-fit sequence of these predictions is as follows: 

Eq. 29 > Eq. 28 > Eq. 30 > Syers et al. (1970)> Krogh et al. (2000) > Liao et al. (2015)  

> Brady (1990) > Olorunfemi et al. (2016) 
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Figure 3.13. Comparison of actual vs. predicted CEC predictions (Eq. 30) (top left) with CEC predictions from 
Syers et al. (1970) (top right), Brady (1990) (middle left), Olorunfemi et al. (2016) (middle right), Liao et al. 
(2015) (bottom left), and Krogh et al. (2000) (bottom right) when compared to measured CEC values within 
database. 

 

In this sequence, Brady (1990), Liao et al. (2015), and Krogh et al. (2000) predict higher 

than actual CEC values, while the opposite occurs with using the Syers et al. (1970) and 

Olorunfemi et al. (2016) models. These differences are, respectively, mainly due to high 

versus low regression coefficients for SOM, possibly related to temperate versus semi-

tropical to tropical soil conditions. In addition, the clay coefficients also vary by a factor 

of about 10 as follows: 
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Krogh et al. (2000) ≈ Liao et al. (2015) ≈ Brady (1990) >> Syers et al. (1970) ≈ Olorunfemi 

et al. (2016) 

These differences could be due to clay mineralogy, with CEC being low in soils or soil 

parent materials that developed under tropical conditions (e.g., Nigerian soils) or have 

very low clay content as in the sand chronosequence study of Syers et al. (1970). In 

addition, the negative intercepts and/or regression coefficients of the Liao et al. (2015) 

and Olorunfemi et al. (2016) models also lower overall CEC predictions.  

Differences in CEC across grasslands, forested lands, and for the organic portion 

of forest soils (litter fermentation and humification layers combined) have been noted by 

Meyer and Arp (1994) as follows: 

 

For the forest floor:  

𝐶𝐸𝐶 (𝑏𝑟𝑜𝑑𝑙𝑒𝑎𝑣𝑒𝑠) =  −38 + 1.21(𝑆𝑂𝑀%) + 10.3𝑝𝐻, 𝑅2 = 0.69           (36) 

𝐶𝐸𝐶 (𝑐𝑜𝑛𝑖𝑓𝑒𝑟𝑠) =  −31 + 0.58(𝑆𝑂𝑀%) + 12.1𝑝𝐻, 𝑅2 =  0.58           (37) 

For mineral soil layers: 

𝐶𝐸𝐶 (𝑓𝑜𝑟𝑒𝑠𝑡 𝑠𝑜𝑖𝑙𝑠) =  −7 + 0.29(𝐶𝑙𝑎𝑦%) + 1.4(𝑆𝑂𝑀%) + 1.4(𝑝𝐻), 𝑅2 = 0.72  (38) 

𝐶𝐸𝐶 (𝑤𝑜𝑜𝑑𝑒𝑑 𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑𝑠) =  −6 + 0.31(𝐶𝑙𝑎𝑦%) + 2.24(𝑆𝑂𝑀%) + 1.0(𝑝𝐻), 𝑅2 = 0.74    (39) 
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𝐶𝐸𝐶 (𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑𝑠) =  −8.3 + 0.24(𝐶𝑙𝑎𝑦%) + 3.66 (𝑆𝑂𝑀%) + 1.3(𝑝𝐻), 𝑅2 = 0.79  (40) 

These equations imply that CEC increases with increasing soil organic matter 

decomposition and humification, i.e., the SOM% contributions are generally lower in the 

forest floor of conifers than of broadleaves, and, in mineral soils, increase from forests to 

grasslands. There is also a CEC contribution with increasing pH, and this would mainly be 

due to the increasing dissociation of the organically bound carboxylic acid into 

carboxylates with increasing pH, e.g.: 

𝑅𝐶𝑂𝑂𝐻 + 𝐻𝐶𝑂3
− → 𝑅𝐶𝑂𝑂− + 𝐻2𝑂 + 𝐶𝑂2                                             (41) 

Hence, data-derived models for predicting CEC cannot be generalized globally, since the 

mineral and organic contributions to CEC depend on local to regional differences in 

climate, vegetation type, and clay mineralogy. In this regard, note that the CEC models by 

Meyer et al. (1994) apply across Eastern Canada, and are therefore like Eqs. 28 to 30 in 

quantitative expression, and especially so in terms of their overall clay and SOM 

contributions to CEC. 

3.5. CONCLUSIONS 

This paper has outlined the development of PTFs for sand, silt, clay, CF, pH, SOM, 

Db, FC, PWP, and CEC with necessary data acquired through the amalgamation and 

harmonization of soil surveys, as outlined in Chapter 2. It was ensured that PTFs were 

developed from original data and that the results of one PTF were not utilized in the 

development of another. The results also adhere to the first principle of PTF development, 
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predicted property must be more difficult to measure than the predictor properties 

(McBratney et al., 2002). These findings align with theoretical thresholds associated with 

each measured soil property, ensuring that FC and SOM do not exceed 100, the 

combination of sand, silt, and clay does not exceed 100, Db remains < 2.5, and FC > PWP 

> 0. PTFs were developed and utilized to fill gaps within the database pertaining to 

amalgamated soil surveys. With this, Table 3.12 represents the ability of these PTFs to fill 

in the gaps of the aspatial database: 

Table 3.12. Overview of representation of soil properties within database and gaps filled via developed PTFs 
as outlined in this study. Note that SOM is standardized from SOM% and OC%, FC is standardized from FCV 
and FCW, and PWP standardized from PWPV and PWPW. 

Property 
Sample 

Size 
% of Total Equation 

Number of 
Gaps Filled 

% Filled 
% of Total 

Filled 

Sand 1306 52.45 Eq. 1 1128 45.30 97.75 

Silt 1306 52.45 Eq. 1 1168 46.91 99.36 

Clay 1306 52.45 Eq. 1 1128 45.30 97.75 

CF 885 35.54 Eq. 2 1557 62.53 98.07 

pH (H2O) 1535 61.65 Eq. 3 183 7.35 61.72 

pH (CaCl2) 647 25.98 Eq. 4 1012 40.64 66.62 

SOM 1202 48.27 
Eq. 5 79 3.17 51.44 

Eq. 6 1282 51.49 99.76 

Db 938 37.67 

Eq. 8 0 0.00 37.67 

Eq. 9 0 0.00 37.67 

Eq. 10 332 13.33 51.00 

FC 846 33.98 

Eq. 13 149 5.98 39.96 

Eq. 14 161 6.47 40.45 

Eq. 15 504 20.24 54.22 

PWP 738 29.64 
Eq. 21 583 23.41 53.05 

Eq. 22 583 23.41 53.05 

CEC 659 26.47 

Eq. 28 596 23.94 50.41 

Eq. 29 596 23.94 50.41 

Eq. 30 596 23.94 50.41 

 

The derived PTFs for Db, FC, PWP, and CEC were compared to published PTFs from 

different geographical locations (Eastern Canada, USA, Brazil, Africa, and Australia) to test 
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performance and the applicability of PTF transferability. As outlined, PTFs from this article 

performed better than published PTFs, but the fundamental underlying relationships 

between soil properties are similar between models. With this, it is apparent that SOM 

plays a dominant role in influencing Db, FC, PWP, and CEC with texture as being the 

second dominant factor (sand for Db and clay for FC, PWP, and CEC). Likely reasons for 

varying performance with changing geographic location is the variable influences that 

each soil forming factor play on soil formation. Soils in an area with recent glacial activity 

are more-likely influenced by surficial geology than those unaffected by glacial activity 

during the past ice age. Additionally, these unaffected areas are likely more influenced by 

other soil forming factors, namely topography and climate. 

Some PTFs developed within this article, namely those incorporating parent 

material and soil horizon descriptors, differ from other PTFs due to the incorporation of 

these factors. These factors, although increasing model accuracy, limits the applicability 

of the model because the predictors may not be measured for a soil, or may differ from 

those in which the model was derived. Therefore, alternative models only using measured 

soil properties were also included. For all models developed, only the original, measured 

soil properties were used in model development and performance testing. Building 

models on modelled results will compound errors and likely lead to overfitted 

relationships. All models developed are based on simple and multiple linear regression 

analyses. Incorporating machine learning algorithms in the modeling process will likely 

result in higher predicting capabilities but doing so limits the ability to ensure results stay 
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within theoretical thresholds. Also, using simple models allows one to see the 

relationships between soil properties.  

Soil surveys have long been recognized as useful sources of soil information for 

PTF development. Through soil survey amalgamation and data harmonization, soil 

properties can be predicted from a few more easily measured properties to a certain 

degree of confidence. Focusing on data amalgamation and harmonization improved 

model performances by increasing sample sizes and removing outliers. 
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4.1. ABSTRACT 

Improving the accuracy of digital elevation models is essential for reducing 

topographic derivation errors pertaining to, e.g., flow direction, basin borders, channel 

networks, depressions, flood forecasting, and soil drainage. This article demonstrates 

how a gain in this accuracy is improved through digital elevation model (DEM) fusion and 

using LiDAR-derived elevation layers for conformance testing and validation. This 

demonstration is done for the Province of New Brunswick (NB, Canada) as a case study, 

using five province-wide DEM sources (SRTM 90m; SRTM 30m; ASTER 10m; CDED 30m; 

NB-DEM 10m) and a five-stage process that guides the re-projection of these DEMs while 

https://doi.org/10.4236/jgis.2017.95035
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minimizing their elevational differences relative to LiDAR-captured bare-earth DEMs, 

through calibration and validation. This effort decreased the resulting non-LiDAR to LiDAR 

elevation differences by a factor of two, reduced the minimum distance conformance 

between the non-LiDAR and LiDAR-derived flow channels to ± 10 m at 8.5 times out of 10, 

and dropped the non-LiDAR wet-area percentages of false positives from 59 to 49 %, and 

of false negatives from 14 to 7 %. While these reductions are modest, they are 

nevertheless not only consistent with already existing hydrographic data layers informing 

about stream and wetland locations, they also extend these data layers across the 

province by comprehensively locating previously unmapped flow channels and wet areas.  

Key words: DEM fusion, LiDAR-based calibration, hydrographic interpretations, stream 

network, wet-areas mapping. 

4.2. INTRODUCTION 

There is a growing demand for high-resolution datasets representing the Earth’s 

surface as technology and applications of spatial modeling advance. Among these 

datasets are digital elevation models (DEMs), gridded datasets representing continuous 

elevation change spatially across landscapes at both local and global extents (Moore et 

al., 1991; Yue et al., 2007). In this regard, DEM elevation accuracies and resolutions vary 

based on differences in mode of elevation capture, processing, point-to-point 

interpolations, and timing of capture (Skidmore, 1989; Carrara et al., 1997; Bater and 

Coops, 2009; Erdoğan, 2010; Smith, 2010). Thus, as DEMs are used for spatial visualization 

and modeling of topographic, geomorphologic, and hydrological properties (e.g., slopes, 
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soil erosion, basin borders, stream and river networks, and stream discharge), their ability 

to represent such topographic features vary in considerable detail (Wolock and Price, 

1994; Thompson et al., 2001; Shary et al., 2002; Hengl, 2006; Wu et al., 2008; Hopkinson 

et al., 2009; Wilson, 2012).  

In terms of acquisition and availability, DEMs of varying origins are becoming more 

and more freely accessible, with those utilized in this study listed in Table 4.1 (for details, 

see Carrara et al., 1997; Carlisle, 2005; Chaplot et al., 2006; Erdoğan, 2010; El-Sammany 

et al., 2011; Florinsky, 2012). Of these, some provide global coverage, e.g., the Shuttle 

Radar Topography Mission (SRTM), and the Advanced Spaceborne Thermal Emission and 

Reflectance Radiometer (ASTER). Others provide national coverage, e.g., the Canadian 

Digital Elevation Model (CDED), and finally, provincial coverage, e.g., the New Brunswick 

DEM (NB DEM). The SRTM and ASTER DEMs are satellite-derived whereas the CDED was 

derived from elevation contours and spot heights (Center for Topgraphic Information 

Customer Support Group, 2000; Farr et al., 2007; ASTER GDEM Validation Team, 2011). 

The NB DEM was derived through stereo-photogrammetry (Pegler, 1999; Service New 

Brunswick, 2001). Also becoming increasingly available are Light Detection and Ranging 

(LiDAR) DEMs, which, at 1m resolution, provide a convenient reference DEM with a 

vertical accuracy of ±15cm (Cunningham et al., 2006). The accuracies of these DEMs vary 

greatly, depending on specifications of each DEM (Carrara et al., 1997; Chaplot et al., 

2006) as outlined in Table 4.1. NB was selected as a case study due to the number of 

available DEMs and the amount of accessible LiDAR coverage.  
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Table 4.1. Overview of five open-sourced DEMs and one privately-acquired DEM utilized in this study. Note 
the variation in coverage, resolution, and vertical error. Also note that DSMx represents digital surface 
models whereas DSM represents digital soil models. 

 DEM 

 SRTM1 SRTM1 ASTER1 CDED2 NB DEM3 LiDAR4 

Coverage Global Global Global National Provincial Site-Specific 

Resolution 
(m) 

90 30 30 22 10 1 

Vertical Error 
(m) 

±16 ±7 ±17 ±6 ±3 ±0.15 

Reference 
(Sun et al., 

2003) 

(Santillan 
and 

Makinano-
Santillan, 

2016) 

(ASTER 
GDEM 

Validation 
Team, 
2011) 

(Happi 
Mangoua 
and Goïta, 

2008) 

(Pegler, 1999; 
Service New 
Brunswick, 

2001) 

(Cunningham 
et al., 2006) 

Data Type DSMx DSMx DEM DEM DEM DEM 

Format Integer Integer Integer Integer Floating Point Floating Point 

Acquisition 
Year 

2000 2000 2000 2000 1999 Ongoing 

Technology Radar Radar 
Stereo 
Pairs 

Contours, 
Spot 

Heights 
Stereo Pairs Laser 

Original 
Spacing 

3 arc 
second 

1 arc 
second 

1 arc 
second 

0.75 arc 
second 

75m 1m 

1. http://www.snb.ca/gdam-igec/e/2900e_1c.asp 
2. https://earthexplorer.usgs.gov/ 
3. http://geogratis.gc.ca/site/eng/extraction/ 
4. http://www.snb.ca/geonb1/e/DC/catalogue-E.asp 

Elevation differences between LiDAR and other DEMs (hereby referred to as non-

LiDAR DEMs) relate to data acquisition methodology which influence accuracy and 

resolution (Sun et al., 2003; Cunningham et al., 2006; Happi Mangoua and Goïta, 2008; 

ASTER GDEM Validation Team, 2011; Santillan and Makinano-Santillan, 2016). Non-LiDAR 

DEMs such as SRTM30 and STRM90 are based on surface reflections, while ASTER, CDED, 

NB-DEM attempt to capture bare-earth elevations. In this regard, the former refer to 

Digital Surface Models (DSMxs), while the latter refer to Digital Elevation Models (DEMs). 

http://www.snb.ca/gdam-igec/e/2900e_1c.asp
https://earthexplorer.usgs.gov/
http://geogratis.gc.ca/site/eng/extraction/
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Both are subsets of Digital Terrain Models (DTMs) (Wilson, 2012). LIDAR point cloud data 

can be used to generated DSMxs as well as DEMs through determining the elevation 

differences between the first and last laser pulse returns, generally at a vertical accuracy 

of ±0.15m (Cunningham et al., 2006). 

All DEMs can be used to generate topographic interpretations pertaining to, e.g., 

flow directions, flow accumulation, stream channel networks, upslope basin areas and 

borders, location of depressions, and extent of areas subject to flooding and well-to-poor 

soil drainage. These interpretations are, however, influenced by DEM accuracy (Tarboton, 

1997; Murphy et al., 2007, 2008, 2009, 2011; Hobi and Ginzler, 2012; Mukherjee et al., 

2013). For example, 10 to 20 m resolution DEMs are preferable to determine seamless 

flow channel connectivities across roads, but lead to underestimating slope steepness 

especially along shorelines, road cuts and deeply incised stream valleys. High-resolution 

LiDAR DEMs can serve both purposes, by using them at their finest resolution to 

determine where roads potentially block channel flow and therefore need to be 

breached, or where the need to be re-sampled towards coarser resolutions to 

approximately connect flow channels across barriers without breaching. In contrast, 

attempts to increase the resolution of photogrammetrically-derived non-LiDAR DEMs 

through re-interpolation alone does not generate more information, but introduces DEM 

artifacts such as “ridging” (Mukherjee et al., 2011).  

Several approaches are available to reduce vertical and lateral DEM errors through 

fusion. These involve DEM re-projecting, re-sampling, re-interpolation, amalgamation, 
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and hydrological enforcement (e.g., Costantini et al. (2005); Karkee et al. (2008); 

Papasaika et al. (2008); Schindler et al. (2011); Robinson et al. (2014)). For example, the 

extent of “ridging” can be reduced through DEM editing by way of TIN Random 

Densification (Pegler, 1999) and/or Kalman spatial filtering (Wang, 1998; Albani and 

Klinkenberg, 2003). Luedeling et al. (2007) applied a DEM fill technique to fill SRTM voids 

with ASTER data. Fusing DEMs for the purpose of DEM-error reduction was reviewed by 

Schindler et al. (2011). Apart from DEM fusion, hydrological enforcement (Soille et al., 

2003; Callow et al., 2007; Al-Muqdadi and Merkel, 2011; Zhang et al., 2013; Tran et al., 

2014) is needed to guide DEM-based flow-direction and flow-accumulation algorithms 

towards already delineated streams, rivers, lakes and shorelines. This enforcement is 

done by (i) lowering the elevation of all stream and open-water referenced pixels to their 

immediate lowest neighborhood elevations, and (ii) ensuring that all streams and rivers 

drop monotonously in elevation towards their nearest shorelines. This enforcement is 

generally applied to non-LiDAR DEMs, but topographical adjustments are also needed for 

high-resolution LiDAR-DEMs to remove artifacts due to low laser pulse returns from open 

water surfaces such as lakes, rivers and shores. 

The objective of this article was to generate a non-LiDAR DEM at 10m resolution 

with resulting hydrological data sets via DEM fusion with which the generated DEM has 

reduced elevation errors and is relatively free of surface artifacts in comparison to original 

non-LiDAR DEMs. This was done comprehensively for the Province of NB as a case study 

by way of:  



 

89 

1. non-LIDAR DEM fusion; 

2. using bare-earth 1m LiDAR elevation data as reference DEM; 

The extent of the DEM-based hydrological interpretation improvements was analyzed in 

terms of: 

1. nearest-distance conformance testing of non-LiDAR versus LiDAR-derived flow 

channels;  

2. evaluating false positives and false negatives within DEM-derived cartographic 

depth-to-water indices (DTW; (Murphy et al., 2008, 2009)) for each DEM. 

4.3. METHODOLOGY 

Located in Eastern Canada and spanning an area of 7,282,014 ha, the Province of 

NB encompasses an array of diverse geomorphologies and landforms and has province-

wide non-LiDAR DEM and hydrographic network coverages available from Service New 

Brunswick’s GeoNB data catalogue as well as LiDAR coverages for parts of the province 

(Fig. 4.1, Table 4.1). The SRTM and ASTER DEMs were acquired through the United States 

Geological Survey Branch’s EarthExplorer application. The CDED data were obtained from 

Natural Resources Canada.  



 

90 

 
Figure 4.1. LiDAR DEM coverages (~11%) used for improving non-LiDAR DEMs across all of NB by way of a 
5-stage process. Also shown: latest LiDAR-DEM acquisition for New Brunswick, LiDAR coverage used for 
optimization and process validation, and scan line (green) used to represent elevation differences 
associated with each non-LiDAR DEM. Background: hill-shaded NB-DEM. LiDAR-DEM source: 
http://www.snb.ca/geonb1/e/DC/DTM.asp. 

 

A semi-automated five-stage process (Fig. 4.2) was developed (utilizing ArcGIS 

10.1) as follows and tested in areas with available LiDAR coverage:  

Stage 1. Homogeneity between the non-LiDAR DEMs in terms of the spatial reference and 

resolution was ensured through re-projection. All downloaded open-sourced DEM tiles 

were combined into seamless coverages and re-projected (CSRS NAD 1983 New 

Brunswick Stereographic) in three ways (bilinear, cubic, nearest) for three cell sizes (10m, 

default, 90m). These resolutions were chosen to align with the variability in resolution of 

available DEMs. Stage 1 was done to determine which projection matches the NB-DEM 

and LiDAR data the best.  

http://www.snb.ca/geonb1/e/DC/DTM.asp
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Stage 2. The Stage 1 data layers, resampled at 8, 10, 12, 14, 16, 18, 20 m cell size, were 

randomly point sampled to generate a point shapefile containing n = 86,915 for each 

layer. 

Stage 3. The points of the Stage 2 shapefile were re-interpolated using three interpolation 

methods (Inverse Distance Weighting, Kriging, Nearest Neighbor) and three cell sizes (5, 

10, 20m). 

Stage 4. The best-fitted non-LiDAR to LiDAR match was generated through  

1. determining which of the Stage 3 generated data layers had the least non-LiDAR 

to LiDAR elevation differences, by DEM source (done through basic statistics and 

box plot comparisons); for this purpose, the bare-earth LiDAR-DEM, with the last-

return points originally interpolated to 1 m, was re-sampled at 10 m resolution; 

2. determining which combination and weighting of the best Stage-3 non-LiDAR 

DEMs should be used for the NB-DEM fusion process; 

3. obtaining the best-fitted non-LiDAR combination through linear regression 

analysis, with the least-elevation generating DEM-layers including the fused NB-

DEM layer as independent LiDAR-DEM predictor variables. This analysis was done 

based on a systematic selection of evenly-spaced points across the non-LiDAR 

DEMs within the LiDAR coverages, done at 1 point per 1 km2, yielding 7,255 points 

for each layer. The output of the regression analysis included the best-fitted 

coefficients as well as their standard error of estimate, Student’s t-value (best-
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fitted regression coefficient estimate / stand error of estimate), and p-value (the 

probability that the best-fitted regression coefficient is significantly different from 

zero).  

Stage 5. The best-fitted regression result (hereby referred to as “NBDEM-Optimized”) 

was applied province-wide. With this, flow channel and associated DTW datasets were 

derived across the province. The results so produced were validated using a 40 by 40 

km tile within a newly acquired LiDAR coverage (Fig. 4.1). 

 

Figure 4.2. A 5-stage workflow developed for unifying both spatial reference and resolution and reducing 
non-LiDAR to LiDAR elevation differences in bare-earth elevation. The preferred technique for each stage 
is high-lighted in red. 
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The progressive non-LiDAR to LiDAR elevation difference reduction was achieved 

by selecting the best-fitting permutations from stages 1 and 2 based on layer-to-layer 

differences in terms of averages, standard deviations, minimum and maximum values, 

root mean square error (RMSE), and elevation difference percentages falling within the ± 

2m and ± 4m LiDAR elevation ranges. Also obtained were percentile box plots for the 

elevation differences, by layer and by stage. The sequence of best choices so generated 

is high-lighted in Fig. 4.2. In detail, using default cell sizes and the cubic resampling 

technique for re-projection generally led to better results than using the bilinear, nearest, 

and majority re-projection methods (Stage 1). Similarly, randomly extracting re-projected 

DEM elevation points at 12 points per hectare (Stage 2), followed by IDW re-interpolation 

(Stage 3) at 10 instead of 5 or 20m resolution generally led to better re-interpolation 

results than using the kriging and natural neighbor methods. 

Each of the non-LiDAR DEMs resulting from the 5-stage process and the LiDAR 

DEMs were used to derive continuous flow channel networks and associated cartographic 

depth-to-water (DTW) indices across New Brunswick. These processes involved using: 

1. the D8 algorithm for deriving flow direction and flow accumulation datasets 

(Tarboton, 1997), with stream channels defined to have a minimum upslope flow 

accumulation area of 4 ha;  

2. a least-cost algorithm to determine the extent of the least upward elevation change 

away from each flow channel and shore line (Murphy et al., 2009). 
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The resulting DTW pattern generally reflects soil drainage patterns, with DTW ≤ 10cm 

very poorly drained, 10 < DTW ≤ 25cm poorly drained, 25 < DTW ≤ 50cm imperfectly 

drained, 50 < DTW ≤ 100cm moderately well drained, and DTW > 100cm well to 

excessively well drained. The distances between the nearest non-LiDAR to LiDAR-

derived flow channels for each DEM were conformance tested by plotting their 

cumulative frequency distributions. The differences in each non-LiDAR- versus LiDAR-

derived DTW (< 1m) coverages were evaluated by determining the area extent of false 

negatives and positives (predicted high DTW on dry site and predicted low DTW on wet 

site, respectively). 

4.4. RESULTS 

Elevation differences, by DEM Layer. The layer-by-layer non-LiDAR to LIDAR 

elevation differences are overlaid on the layer-corresponding hill-shaded DEMs in Fig. 4.3. 

Among these, the contour-derived CDED differences are smoothest, the NB-DEM 

differences are ridged, and the ASTER differences are the most variable. Across the LiDAR-

DEM coverages, the differences tend to be largest on forested ridges and valleys (where 

steep elevation changes occur), and smallest on open areas. Negative SRTM and ASTER 

elevation differences relative to the LiDAR-DEM occur along steep slopes (valleys, shores, 

forest edges), undoubtedly due to the differences in resolution (1m versus 30 and 90 m). 

Owing to the general terrain and changing forest practices across New Brunswick, there 

are almost as many negative SRTM and ASTER to LiDAR-DEM differences as there are 

positive differences. As a result, their mean differences only have a small positive bias at 
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1.62 and 1.47m for ASTER and SRTM (90m) respectively. The extent of the elevation 

differences within and across the non-LiDAR generated data layers from the 5-stage 

process are summarized in Table 4.2. In comparison, the standard deviation and root 

mean square errors are largest for the ASTER DEM, with only 23.2% of its elevation range 

remaining within the ± 2m LiDAR elevation range, and least for the best-fitted NB-DEM 

Optimized regression result. For the latter, the remaining elevation differences with 

respect to the LiDAR DEM are within ± 2m at 70.1%, and within ± 4m at 92.9%. 

Stage 1 to 4 non-LiDAR to LiDAR elevation difference reductions. The entries in 

Table 4.2 and the box plots in Fig. 4.4 concerning the non-LiDAR to LiDAR-DEM elevation 

differences display a narrowing towards the 0m difference. The fused and regression 

optimized DEMs for NB were obtained as follows: 

𝑁𝐵𝐷𝐸𝑀˗𝐹𝑢𝑠𝑒𝑑 =  0.3 𝑁𝐵 𝐷𝐸𝑀 +  0.375 𝑆𝑅𝑇𝑀90 +  0.325 𝐶𝐷𝐸𝐷             (1) 

and 

𝑁𝐵𝐷𝐸𝑀 − O𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 =  𝑎 +  𝑏 𝑁𝐵𝐷𝐸𝑀 𝐹𝑢𝑠𝑒𝑑 +  𝑐 𝑆𝑅𝑇𝑀 90 +  𝑑 𝑆𝑇𝑅𝑀 30 +  𝑒 𝐶𝐷𝐸𝐷       (2) 

(a, b, c, d, and e refer to intercept and regression coefficients). The weights for the 

NBDEM-Fused were chosen by systematically comparing different weight combinations 

to underlying LiDAR-derived elevation values. The best-fitted regression results for Eq. 2 

are compiled in Table 4.3. In combination, the influence of stepwise non-LiDAR layer 

inclusion into the regression analysis generated the following sequence: 
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𝑁𝐵𝐷𝐸𝑀˗𝐹𝑢𝑠𝑒𝑑 >>  𝑆𝑅𝑇𝑀30 >  𝑆𝑅𝑇𝑀90 >  𝐶𝐷𝐸𝐷 >  >  𝐴𝑆𝑇𝐸𝑅. 

Hence, the SRTM, CDED and DEM Fused accounts for most of the non-LiDAR to LiDAR 

elevation difference reductions. Entering the selected CDED and SRTM elevations 

individually into the stepwise regression process is of further benefit, but only marginally 

so, but not so when entering the corresponding ASTER points. The main benefit of Eq. 1 

stems from partially cancelling the elevation differences among NB-DEM, CDED, and 

SRTM while omitting qualitative errors associated with each, especially “ridging” 

embedded in the NB-DEM. In detail, the NBDEM-Fused and NBDEM-Optimization layers 

matched the LiDAR-DEM with the least bias, least minimum and maximum differences, 

and around 70% (i.e., 90th percentiles) of the elevation differences falling within the ±2 m 

LiDAR elevation range (Fig. 4.3).  
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Figure 4.3. Example for non-LiDAR to LiDAR elevation differences (color-coded) draped over DEM-derived 
hill-shade for each non-LiDAR DEM, including hill-shaded bare-earth LiDAR DEM (bottom right). 

 
Figure 4.4. Box plots for the non-LiDAR to LiDAR elevation differences for SRTM90, SRTM30, CDED, NB-
DEM, NBDEM-Fused, and NBDEM-Optimized across the DEM optimization extent, showing the 10th, 25th, 
50th, 75th and 90th percentiles, the points above and below the 10th and 90th percentiles, and a reference 
line at 0m. 
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Table 4.2. Non-LiDAR and LiDAR DEM elevation difference comparison across the DEM optimization extent: 
statistical summary, in m, including increase in ≤ ±2 to ±4m elevation difference percentages. 

DEM 
Mean 

Difference 
(m) 

Minimum 
Difference 

(m) 

Maximum 
Difference 

(m) 

Standard 
Deviation 

(m) 

± 2m 
(m) 

± 4m 
(m) 

RMSE 

ASTER 1.47 -47.51 46.78 6.78 23.21 44.53 6.93 

SRTM (90) 1.62 -33.81 45.44 3.14 49.94 77.69 3.53 

SRTM (30) 1.64 -16.91 28.66 3.04 49.89 77.84 3.46 

CDED 0.58 -33.11 38.79 3.77 48.13 76.75 3.81 

NB DEM 0.66 -24.06 30.70 2.76 66.88 87.83 2.84 

DEM Fused 1.00 -18.10 27.13 2.42 68.31 88.89 2.62 

DEM 
Optimized 

-0.13 -18.09 21.81 2.31 70.11 92.85 2.32 

 

Table 4.3. Stepwise regression results with LiDAR- DEM as dependent variable and non-LiDAR DEMs as 
predictor variables SRTM90, SRTM30m, CDED, and NBDEM-Fused (in m; R2 values near 1), across DEM 
optimization extent. 

Regression 
Models 

Predictor 
Variables 

Regression 
Coefficients 

Std. Error t-value p-value 

Model 1 
RMSE = 2.26 

 

Intercept -0.308 0.120 -2.6 <0.0001 

CDED -0.04 0.003 -13.3 <0.0001 

SRTM 30 0.702 0.012 58.5 <0.0001 

SRTM 90 -0.598 0.013 -46.0 <0.0001 

NB DEM-Fused 0.930 0.006 155.0 <0.0001 

Model 2 
RMSE = 2.27 

Intercept -0.228 0.011 -20.7 <0.0001 

SRTM 30 0.537 0.007 76.7 <0.0001 

SRTM 90 -0.500 0.008 -62.5 <0.0001 

NB DEM-Fused -.957 0.004 239.3 <0.0001 

Model 3 
RMSE = 2.32 

Intercept -0.206 0.012 -17.2 <0.0001 

NB DEM-Fused 0.994 0.001 994.0 <0.0001 
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Table 4.4. Non-LiDAR and LiDAR DEM elevation difference comparison: statistical summary for validation 
site, in m, including percentage of elevation differences ≤ ±2m and ≤ ±4m. 

DEM 
Mean 

Difference 
(m) 

Minimum 
Difference 

(m) 

Maximum 
Difference 

(m) 

Min-
Max 

Range 

Standard 
Deviation 

(m) 
RMSE 

± 2m 
(%) 

± 4m 
(%) 

RMSE 

ASTER 4.88 -83.98 66.99 151.0 7.12 8.63 20.30 38.85 8.63 

SRTM 
(90m) 

2.45 -36.60 57.17 93.8 4.52 5.13 36.13 63.48 5.13 

SRTM 
(30m) 

2.42 -16.32 27.20 43.5 2.93 3.80 43.93 71.14 3.80 

CDED 1.06 -29.43 27.69 57.1 5.65 5.74 30.65 55.41 5.74 

NB DEM 1.03 -25.08 35.90 61.0 2.91 2.92 62.95 94.54 2.92 

DEM 
Fused 

1.31 -20.22 35.96 56.2 3.12 3.39 55.49 80.48 3.39 

DEM 
Optimized 

0.58 -18.07 29.64 47.4 2.84 2.90 60.49 95.43 2.90 

 

Hydrological interpretations (flow channels, wet-areas), by DEM layer. Examples 

of the DEM–produced flow channel and DTW patterns are presented in Fig. 4.5, by data 

layer. As shown, the patterns obtained with the SRTM 90 and SRTM 30 DEMs are narrow, 

are widely pixelated and somewhat terraced across the ASTER DEM, and are ridged across 

NB-DEM. In contrast, the CDED, NBDEM-Fused, and NBDEM-Optimized and LiDAR DEM 

layers follow fairly consistent patterns. 
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Figure 4.5. Comparison of flow channel and cartographic depth-to-water patterns overlaid on the hill-
shaded non-LiDAR and LiDAR DEMs. 
 
 

The 3,000m scan line in Fig. 4.6 (see Fig. 4.1 for location) provides an example of how the 

non-LiDAR to LiDAR elevation differences change across a forest management area in 

relation to a recent surface image and the corresponding hill-shaded LiDAR DEM. Also 

shown are: (i) the 0 to 1m cartographic depth-to-water index (DTW) pattern, shaded dark 

to light blue from, 0 to 1m, respectively, and (ii) the DTW and LiDAR-derived canopy 
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height profiles along the scan line. In detail, the LiDAR elevation profiles correspond 

closely with image- and hill-shaded DEM features, e.g., low tree height across recent cuts 

and wetlands, incised flow channel locations, elevated or incised roadbeds, and bare 

transmission corridors. The same, however, does not occur across the non-LiDAR 

elevation profiles. For these, the ASTER and CDED profiles have the widest excursions 

from the general elevation pattern. In contrast, the SRTM and NB-DEM profiles follow a 

similar pattern and reflect, in part, forest to non-forest tree-heights except for recent 

image-revealed forest cuts. The SRTM to LiDAR elevation differences in Fig. 4.6, however, 

only amount to about one-half to one third of the LiDAR-generated tree height maxima.  
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Figure 4.6. Non-LiDAR to LiDAR elevation differences along a 3,000m scan line (Fig. 4.1) related to the DTW 
pattern overlaid on recent surface image (bottom) and hill-shaded LiDAR DEM (top). Also shown, scan line 
for LiDAR-generated DTW and vegetation heights. 

 

Validation results regarding flow-channel and wet-area mapping. The DEM 

validation results, completed for the tile outside Stage 3 and 4 processing areas (Fig. 4.1), 

are compiled in Tables 4.4 and 4.5. For this tile, all layers are upwardly biased, but least 

so for NBDEM-Optimized at 0.58m, with standard deviation and mean square root 

differences also being least at 2.84 and 2.90m, respectively. The ≤ ±2 and ±4m 

percentages of the elevation differences remained about the same overall across the DEM 



 

103 

optimization and validation extents but dropped somewhat from 70.1 to 60.5 % for ≤ ±2m 

and increased from 92.9 to 95.4% for ≤ ±4m (compare Table 4.2 with Table 4.4). 

The conformance results for the nearest flow channel distances between the non-

LiDAR and LiDAR-derived DEMs in Fig. 4.7 improved by layer as follows: 

ASTER < NB-DEM < CDED < SRTM90 < SRTM30 < NBDEM-Fused < NBDEM-Optimized. 

 
Figure 4.7. Cumulative frequency of nearest distances between the non-LiDAR- and LiDAR-derived flow 
channel networks, across validation extent. 

There is a similar performance increase from ASTER to the NBDEM-Optimized layers in 

terms of false positive and false negative DTW < 1m reductions, with the optimized NB-

DEM layer being closest to the corresponding 10 m re-sampled LiDAR DEM derivation 

(Table 4.5).  
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Table 4.5. Reduction in area (as percentage) of false positive and false negative DTW <1m relative to the 
10m LiDAR-derived DTW pattern across validation extent.  

DEM Conformance (Wet) False Positive Conformance (Dry) False Negative 

ASTER 31.76 68.22 82.56 17.43 

SRTM (90) 41.46 58.5 85.91 14.09 

SRTM (30) 41.42 58.51 85.76 14.23 

CDED 46.37 53.47 86.48 13.51 

NB DEM 40.65 59.33 91.30 8.70 

DEM Fused 49.55 50.42 92.29 7.71 

DEM Optimized 50.50 49.50 92.69 7.31 

  

In summary, the 5-stage process of combining the original NB DEM with the CDED 

and SRTM DEMs and subsequently calibrating the result with available LiDAR DEM 

coverages therefore not only improved but also extended the flow-channel delineation 

across New Brunswick in a systematic and comprehensive manner. This is illustrated in 

Fig. 4.8 by way of an example within validation tile. 
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Figure 4.8. NBDEM-Optimized (bottom left) and LiDAR-DEM (bottom right) derived flow channel and 
DTW < 1m delineations versus the watercourses for the New Brunswick Hydrographic Network (purple). 
These delineations are overlain on aerial imagery and hill-shaded LiDAR-DEM (top right only). 
Correspondence between the DEM-derived flow channels and the riparian vegetation buffer is apparent. 
The New Brunswick Hydrographic Network is incomplete in this regard. Location: part of the validation 
tile in Fig. 4.1. 

 

4.5. DISCUSSION 

The above analysis demonstrates that the fusion of non-LiDAR DEMs can lead to 

systematic elevation difference reductions, which can be further enhanced through 

regression calibration with available LiDAR datasets. The DEM so optimized can then be 

used to generate province or region-wide hydrographic DEM interpretations that are 

similar to what can be derived from LiDAR-generated DEMs, at 10 m resolution at least.  
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The non-LiDAR-DEM error reductions by way of the 5-stage process appear to be 

small numerically at a 20% reduction of false positives and a 10% reduction of false 

negatives (Table 4.4). There is, however, a substantial 8 times out of 10 distance-to-flow-

channel improvements from ±25 m (NB-DEM) to ±5m (NBDEM-Optimized) (Fig. 4.7). This, 

by itself, and in view of the illustrations in Fig.’s 4.5 - 4.7, has led to considerable 

improvements in comprehensively mapping flow channels and wet areas across NB. In 

turn, this has many potential positive effects on local and regional operations planning in, 

e.g., forest management (harvest block layout and access), transportation and trail 

routing, environmental impact assessments, land transactions, and emergency 

responses. In part, some of the province-wide benefits would accrue from improved DEM 

delineations and determinations of upslope basin areas. In turn, these areas are used to 

estimate, e.g., potential stream discharge rates and required culvert and bridge 

dimensions at any road-stream crossing by extreme weather events (e.g., 100mm or 

stream discharge per day, roughly equivalent to a 100-year storm event). In this regard, 

DEM error reductions are especially important across flat terrain, where minor elevations 

changes (artificial, natural, or man-made) can lead to substantial errors in determining 

storm water flow directions. 

The optimized NB-DEM layer is also useful for checking province-wide wetland 

coverages. In general, already delineated wetlands fall into the DTW< 0.5m range 

(Murphy et al., 2007). Extending the conformance checking between DEM-delineated and 

actual wetland border using the original NB-DEM layer amounted to ±80m, 8 times out of 

10. Air-photo delineated wetland borders generally conform to distances within ±40m, 8 
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times out of 10. In contrast, LiDAR-DEM derived DTW = 0.5m contours conform to actual 

wetland borders within ±10m, 8 times out of 10 (details not shown). The optimized DEM, 

while somewhat less accurate than the LiDAR-DEM, can nevertheless be used to trace and 

survey-check wetland-to-wetland connections across the province.   

It has been shown in literature that DEM fusion leads to DEM improvements in 

terms of vertical and lateral error reductions has been demonstrated repeatedly (e.g., 

Karkee et al. (2008), Papasaika et al. (2008), Al-Muqdadi and Merkel (2011), Zhang et al. 

(2013)), but the fusion processes pertaining to cell re-sizing, re-projection, re-sampling 

re-interpolation, DEM mix, weighting and noise filtering all vary. For example, Robinson 

et al. (2014) were able to produce “a nearly-global, void-free, multi-scale smoothed, 90m 

digital elevation model” called EarthEnv-DEM90 

(http://geomorphometry.org/content/earthenv-dem90). Tran et al. (2014) fused ASTER 

with SRTM30 data through (i) DEM quality assessment and pre-processing, (ii) hydrologic 

DEM enforcement, (iii) void filling and projection shifting, (iv) DSM versus DTM bias 

elimination by landform, and (v) DEM de-noising. The 5-stage process in this study varies 

from Tran et al. (2014) by way of systematic cell size and DEM re-processing (re-projecting 

and re-interpolation), and using the regression process for bias removal. The reference 

DEMs also differ: using a DEM generated from the 1:10,000 topographic map 5m intervals 

and spot-height elevation data (i.e., similar to CDED) versus using 1m LiDAR DEM re-

sampled at 10m.  

http://geomorphometry.org/content/earthenv-dem90
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In terms of applying the above approach to other areas with similar and/or 

different DEM including LiDAR DEM coverages, it is important to examine each re-

projected, re-sampled and re-interpolated DEM with reference to artifacts and 

hydrographic correctness. In this regard, all open water surfaces need to be rendered flat, 

and streams and rivers need to drop monotonously through their surrounding terrain 

towards their receiving shores.  

4.6. CONCLUSION 

The systematic fusion of currently available DEM layers for all of NB not only led 

to considerable non-LiDAR-to LiDAR DEM elevation difference reductions, but also 

produced a closer and verifiable correspondence between the resulting flow-channels 

and wet-area derivations. In summary, the Stage 1 to 5 process as described in this article 

has shown that:  

1. Non-LiDAR elevation differences relative to LiDAR DEMs can be reduced through 

careful analysis requiring re-projecting, re-sampling, and re-interpolation, 

followed by selective non-LiDAR DEM amalgamation.  

2. The amalgamation process of the SRTM90, CDED and NB-DEM layers was effective 

in generating a much-improved non-LiDAR-DEM coverage across New Brunswick, 

resolving the issue of ‘ridging’ while slightly reducing vertical elevation error. 

Using the ASTER DEM as well did not improve the best-fitted fusion result so 

obtained. 
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3. The fusion process removed many layer-specific artifacts and large layer-to-layer 

elevation differences, while the non-LiDAR- to LiDAR-DEM regression process 

reduced the NBDEM-Optimized elevation bias to less than 1m.   

4. While the results are specific to, and applied comprehensively across New 

Brunswick, similar non-LiDAR DEM improvements can be incurred elsewhere 

following the outlined procedure with open-sourced DEM coverages as long as 

precise elevation data is available, whether it be ground points of elevation data 

sets.  
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CHAPTER 5 – UTILIZING SOIL FORMING FUNDAMENTALS FOR HIGH-

RESOLUTION SOIL PROPERTY MAPPING FOR NEW BRUNSWICK, CANADA 

Shane Furze, Paul Arp 

Faculty of Forestry and Environmental Management 

University of New Brunswick, Fredericton, NB, Canada, E3B 6C2 

5.1. ABSTRACT 

This article presents an approach to modeling continua of soil property variation 

across New Brunswick, Canada by comparing field-collected soil profiles to underlying 

data sets representing soil forming factors, namely topography, climate, and surficial 

geology. Soil profiles were acquired and amalgamated from different sources into a 

spatial database (n=12,058) that was used for developing models for predicting the 

following soil properties: (i) drainage and horizons depths for A, B, and solum depth, and 

(ii) texture (sand, silt, and clay), coarse fragment (CF) content, soil organic matter (SOM) 

content, and bulk density (Db) at depth intervals of 0-15cm, 15-30cm, 30-60cm, 60-90cm, 

and on a solum basis. Procedures are outlined on how spatial data sets of topographic, 

climatic and geological features were updated and how variables were selected for 

statistical modeling using the machine learning algorithm Random Forest. Modeling 

results were evaluated on one third of the soil profile database by way of Kappa scores 

for soil drainage and RMSE and R2 for remaining soil properties with validation 

performance ranging between 70-90%. 
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Key words: digital soil mapping, soil forming factors, multi scale, machine learning, digital 

elevation model, topography, surficial geology, climate. 

5.2. INTRODUCTION 

With traditional soil mapping techniques, high-resolution datasets of soil 

attributes either do not exist or are geographically limited to locally-defined extents. 

Instead, soils have been mapped as broad tesselated boundaries representing 

hierarchical, multi-component soil associations with each component representing a 

defined soil type. Each soil type is distinguished by soil drainage but not spatially 

represented within the association delineations (Pitty, 1979; Moore et al., 1993; Zhu and 

Mackay, 2001; Heung et al., 2014; Odgers et al., 2014). This form of mapping represents 

a generalized simplification of soil property variation (Mora-Vallejo et al., 2008) and 

contradicts continuous soil heterogeneity, both spatially across the landscape, and 

vertically with increasing depth (Pitty, 1979; Odgers et al., 2011; Adhikari et al., 2012). 

Thus, there is a growing interest toward digital soil mapping (DSM), modeling soil 

properties continuously via relationships with additional data sources representing soil 

forming factors (McBratney et al., 2003; Smith et al., 2006). 

Numerous statistical models have been used for digital modeling of soil properties 

and drainage classes. The use of machine learning algorithms in DSM has been well-

documented in literature with emphasis on regression trees, artificial neural networks, 

and support vector machines. Regression trees have been used in Henderson et al. (2005), 

Scull et al. (2005), Schmidt et al. (2008), and Behrens et al. (2010) for modeling soil 
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properties and in McKenzie and Ryan (1999) for predicting soil thickness. Regression trees 

have also been used for predicting soil types (Moran and Bui, 2002; Scull et al., 2005; 

Schmidt et al., 2008; Lemercier et al., 2012). Alternatively, Odgers et al. (2014) applied 

classification trees for soil map disaggregation. Behrens et al. (2005), Zhao et al. (2010), 

and Zhao et al. (2013) have utilized artificial neural networks for predicting soil properties 

and soil drainage patterns. Additionally, Zhu (2000), Behrens et al. (2005), and 

Bodgahabadi et al. (2015) have used artificial neural networks for predicting soil classes.  

This paper presents a framework for mapping individual soil properties spatially 

across the landscape at 10m resolution. This was completed by comparing a spatial 

database of amalgamated soil samples to underlying data sets representing soil forming 

factors, namely topography, surficial geology (mode of deposition, and lithology), and 

climate. Emphasis was placed on re-delineating soil forming factors prior to statistical 

modeling to mitigate the influence of error on predictions. Soil property mapping focused 

on soil texture (sand, silt, and clay), depth, CF content, SOM content, Db, horizon depths 

(A, B, and depth to C horizon (solum depth)), and soil drainage, all of which influence the 

medium for root growth and development. 

5.3. METHODS 

 Study Extent: Spanning an area of 7.5 million ha, New Brunswick (NB) shares 

borders with the state of Maine (USA, west), Quebec (northwest) and Nova Scotia 

(southeast), the Nothumberland Straight (East), Chaleur Bay (Northeast), and the Bay of 

Fundy (South). As the northern range of the Appalachian Mountain range, NB ranges in 
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elevation from sea level along the coast to 811m above sea level in the north (Mount 

Carleton) (Happi Mangoua and Goïta, 2008) (Fig.5.1). 

 
Figure 5.1. Outline of geographic location and elevation change of New Brunswick, Canada with surrounding 
provinces, state, and oceanic features. Background basemap retrieved from ESRI basemap portal within 
ArcGIS. “A” represents location used for representing DSM results and MRVBF comparison, “B” represents 
location used for LiDAR and curvature classification comparisons, and “C” represents location used for 
comparing surficial geology vector data sets. 

 
This change in elevation results in varying climatic conditions from the coast to inland and 

higher elevations. Annual average rainfall ranges from 788mm in the northwest (higher 

elevations) to 895mm in the south and southeast. Annual average temperature follows a 

different trend with 0.4°C in the higher elevations (north and northwest) to 7.1°C in the 

south and southwest (Environment Canada, 2018).  
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Spatial Profile Database: Five datasets representing field-collected soil profiles for 

NB were acquired and amalgamated into a seamless spatial database (n = 12,058, Fig. 

5.2). Table 5.1 outlines the datasets with sample size and source. 

Table 5.1. Overview of acquired profiles (spatially-defined soil profiles) utilized in developing spatial 
database, including source and associated sample size.  

Data Set Source Sample Size % of Total 

Permanent Sample Plots 
(PSPs) 

NB Department of Natural Resources 2,594 21.5 

Tri-Nations Sample Plots Natural Resources Canada 123 1.0 

National Pedon Database 
Canadian Soil Information Service 

(CANSIS) 
285 2.4 

NB Soil Survey Plots CANSIS 222 1.8 

Till Geochemistry Site Cards NB Department of Energy and Mines 8,834 73.3 

 

 
Figure 5.2. Spatial representation of profiles acquired for database with colours representing data sources, 
overlaying hill-shaded relief of NB.  

 
Of these, only the till geochemistry site cards lack horizon-specific information for each 

sample, instead, properties for C horizon and general site attributes (drainage, landform, 
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etc.) were provided. Data harmonization followed the framework as outlined in Chapters 

2 and 3. From this, it was ensured that correct classifications for texture and drainage 

were assigned to all samples and horizons. Finally, it was ensured that both spatial 

database and all spatial data sets aligned in terms of extent, resolution, and spatial 

reference (10m and NAD 1983 New Brunswick Stereographic).  

Soil drainage, mineral horizon depths, texture, CF content, SOM content, and Db 

were chosen for analyses. Texture (sand, silt, and clay), CF, SOM, and Db were 

summarized by solum depth (A and B horizons) and depth intervals of 0-15, 15-30, 30-60, 

and 60-90cm (Table 5.2). Samples exceeding 90cm were not analyzed due to the 

infrequent occurrence of soil profiles reaching these depths.  

 

 

 

 

 

 



 

116 

Table 5.2. Summary of soil properties to be modeled via DSM including minimum, maximum, mean, and 
standard deviation, separated by depth intervals in which they are being modeled. Values for sand, silt, and 
clay retrieved from texture classes.  

Property Depth Min Max Mean Std. Dev. # of profiles 

Coarse 
Fragment 

Content (%) 

0-15 0.00 100.00 30.95 21.84 2660 

15-30 0.00 100.00 36.12 23.29 2660 

30-60 0.00 100.00 42.32 25.54 2512 

60-90 0.00 100.00 35.17 28.74 711 

Solum 0.00 100.00 33.09 21.61 2660 

Sand (%) 

0-15 5.00 93.00 53.39 17.86 9064 

15-30 5.00 93.00 53.74 17.34 9093 

30-60 5.00 93.00 52.59 21.40 2580 

60-90 5.00 93.00 55.69 14.03 544 

Solum 5.00 93.00 53.46 17.17 9113 

Silt (%) 

0-15 4.00 90.00 30.76 13.73 9064 

15-30 4.00 90.00 30.09 12.98 9093 

30-60 4.00 90.00 28.80 16.02 2580 

60-90 4.00 65.00 26.39 7.21 544 

Solum 4.00 90.00 30.61 13.01 9139 

Clay (%) 

0-15 3.00 75.00 15.84 8.15 9064 

15-30 3.00 50.00 16.17 8.38 9093 

30-60 3.00 50.00 18.61 12.02 2580 

60-90 3.00 50.00 17.92 5.06 544 

Solum 3.00 75.00 15.93 8.19 9139 

Organic 
Matter 

Content (%) 

0-15 0.02 91.13 8.48 2.49 218 

15-30 0.00 93.57 4.13 1.44 335 

30-60 0.00 86.86 1.82 1.25 319 

60-90 0.00 81.18 1.85 1.00 131 

Solum 0.00 25.40 4.55 1.27 411 

Bulk Density 
(g/cm3) 

0-15 0.10 2.25 1.05 0.17 227 

15-30 0.10 2.10 1.23 0.22 279 

30-60 0.10 2.10 1.50 0.26 280 

60-90 0.10 2.30 1.72 0.20 124 

Solum 0.10 2.05 1.17 0.23 360 

A Horizon 
Depth (cm) 

- 1.00 45.00 9.67 6.38 2889 

B Horizon 
Depth (cm) 

- 2.00 59.00 15.48 7.41 2899 

Depth to C 
Horizon (cm) 

- 4.00 250.00 42.06 14.96 6683 

Drainage - - - - - 9223 
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5.3a Spatial Data Quality Assessment 

 Spatial data sets representing soil forming factors of surficial geology, 

topography, and climate were updated as follows, yielding gridded data sets at 10m 

resolution: 

Surficial Geology: Surficial geology data for NB were mapped directly via photo-

interpretation with road cuts and bore holes, and indirectly via soil association maps, with 

the underlying similarity of tessellated delineations. Five vector data sets representing 

surficial geology were acquired and compared via a similarity model for re-delineating 

boundaries, including:  

1. Soil Associations of NB (NB Department of Energy and Resource Development, 

2012), 

2. Forest Soil Associations of New Brunswick (NB Department of Energy and 

Resource Development, 2016), 

3. Soil landscapes of Canada (Version 3.2) (Soil Landscapes of Canada Working 

Group, 2010), 

4. NB Generalized Surficial Geology (NR8) (Rampton, 1984), 

5. NB Granular Aggregate Database (New Brunswick Department of Energy and 

Resource Development, 2018). 

The similarity model was applied as follows: mode of deposition and lithology information 

within each vector data set were extracted to a randomly-generated spatial point grid 
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with a spacing of 3 points per hectare. At each point the classifications from each vector 

data set were compared and uncertainty values assigned based on how many of the data 

sets provided the same classifications. If three or more were the same, then it was 

assumed that the geology at that site was known. If only half, or less, had the same 

information then additional research was conducted via geological reports (NB 

Department of Energy and Resource Development, 2018a). This occurred for 20% of the 

randomly-generated points. 

With each point assigned classes, thiessen polygons were delineated and the 

boundaries of adjacent polygons dissolved if they shared the same class, completed for 

both mode of deposition and lithology. Using Moh’s mineral hardness scale, mineral 

hardness values were assigned to each lithology class (Table 5.3). Additionally, primary 

lithology was used to group lithological types by dominant grain size (very fine to coarse), 

dominant rock type (i.e., sandstone, shale, granite), and dominant geology (igneous, 

sedimentary, metamorphic) (Fig. 5.3).  
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Table 5.3. Mineral hardness values assigned to each lithological class within spatial database based on 
Moh’s mineral hardness scale.  

Lithology Hardness Lithology Hardness 

Sandstone, gritstone, shale 6.75 Igneous, Slate 4.8 

Mafic volcanics, gabbro, diorite 6.6 Calcareous sandstone and shale 4.5 

Granite and metamorphic 6.5 
Non-calcareous shale, some 

sandstone 
4.5 

Granite, some quartzite, sandstone 6.5 
Sandstone and Conglomerate 
(calcareous if un-weathered) 

4.5 

Sandstone 6.5 
Sandstone and conglomerate 

(some quartz) 
4.5 

Sandstone, some granite, quartzite, 
gneiss 

6.5 
weakly calcareous Sandstone and 

shale 
4.5 

Sandstone/ Undifferentiated 6.5 
Metamorphosed non- to weakly-

calcareous slate, quartzite, 
argillite, sandstone 

4.2 

Metamorphosed rhyolite, andesite, 
schist, slate, granite 

6.4 Sandstone, conglomerate, shale 4.0 

Granite, gneiss, basalt, felsite 6.3 
Slate and argillite and sandstone 

and schist 
4.0 

Calcareous sandstone and 
quartzite, some argillite, shale 

6.0 
Weakly- to calcareous shale, slate, 

quartzite, some sandstone 
4.0 

Granite, quartzite, gneiss, argillite, 
volcanics, some sandstone 

6.0 
Sandstone, conglomerate, 

mudstone 
3.8 

Non- to weakly-calcareous 
sandstone, shale, quartzite 

6.0 Sandstone, shale, mudstone 3.8 

Non-calcareous sandstone and 
quartzite, some argillite, slate, 

shale, schist 
6.0 

Calcareous shale and slate 
with/without limestone, argillite 

3.5 

Sandstone/Sandstone and shale or 
siltstone 

5.8 Slate 3.5 

Sandstone/ clay from calcareous 
shale 

5.5 
Calcareous shale, slate, quartzite, 

argillite 
3.3 

Strongly metamorphosed slate, 
quartzite, volcanics 

5.3 Calcareous Shale 3.0 

Highly calcareous shale, quartzite, 
argillite, sandstone 

5.0 
Weakly calcareous shale, 

mudstone 
2.75 

Quartz, Schist, Igneous 5 Clay 2.0 
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Figure 5.3. Visual examples of variability in dominant grain size, mineral hardness, and geological type for 
NB, derived from updated lithological representations via the similarity model.  

 

Topography: Both primary and secondary topographic derivatives were derived 

from a 10m DEM for NB. This was completed in both ArcGIS and SAGA GIS software 

(Conrad et al., 2018; Environmental Systems Research Institute, 2018) utilizing the DEM 

derived in Chapter 4. Prior to calculating the topographic derivatives, the DEM was hydro-

conditioned to ensure correct flow patterns from ridge to valley (Saunders and 

Maidment, 1996; Murphy et al., 2008). Next, a suite of derivatives were calculated with 

emphasis on those representing soil-landscape relationships, namely those influencing 

the rate, dissipation, and accumulation of nutrients, water, and minerals across the 

landscape. Also included were derivatives that represent atmospheric exposure (position 



 

121 

on landscape, open and flat areas). Appendix III outlines both topographic and hydrologic 

derivatives incorporated into the modeling procedure. 

Climate: To develop continuous maps of climatic variables of interest, 

meteorological stations within NB and Ontario, Canada (n = 151) were spatially plotted. 

Next, annual average values for temperature (annual average and annual daily maximum, 

°C) and precipitation (annual average rainfall, mm) calculated for the past 29 years (1981 

– 2010) were assigned to each weather station (retrieved from Environment Canada 

(2018)). The measured climatic properties were compared to DEM-derived topographic 

derivatives (those believed to influence environmental exposure, i.e., topographic 

openness, elevation, topographic position, aspect, slopes, and horizontal distance to 

coast) and spatial data sets representing variations of latitude and longitude, for NB and 

Ontario, via linear regression analyses. Regression results were applied spatially at 10m 

resolution resulting in gridded data sets representing climatic variation.  

DEM Resolution and Multi-Scale Analysis: Since landscape processes are scale 

dependent, some of the above DEM derivatives were calculated multiple times at 

different resolutions due to the artificial presence of many small-scale mounds and pits 

within the 10 m DEM (Fig. 5.4). This was in part resolved through resampling the DEM at 

30 m resolution. Some of the resulting derivatives were smoothed further based on a 

determining their average values within their 5 x 5 cell neighborhoods, followed by 

subsequent re-interpolation at 10 m. This procedure was applied to all topographic data 

sets representing curvatures and the results utilized in following analyses. 
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Figure 5.4. Comparison of hill-shaded relief for NB fused DEM (10m, right) and LiDAR-Derived DEM (1m, 
left) representing the omission of topographic variation and the presence of pits and peaks, particularly on 
hill sides within the fused DEM. 

5.3b Statistical Analyses 

Variable Correlation Analysis: Spatial gridded data sets pertaining to topography, 

hydrology, climate, and surficial geology (hereby titled “covariates”) were compared via 

Pearson correlation analysis (Table 5.4) to determine the extent of multicollinearity. 

Correlations ≥ 70% were considered significant to ensure correlation and to help aid in 

variable reduction. For each covariate, counts were calculated to determine the number 

or correlated covariates. Those with the highest counts were retained while their 

correlated counterparts were removed. This process was conducted iteratively until all 

remaining covariates were un-correlated. The first covariates assessed were those 

calculated at different neighborhood sizes, including topographic position index (200, 

300, 500, 700m search radius) and terrain surface texture, terrain surface convexity, 

terrain surface concavity, and terrain ruggedness index (each calculated at 60m, 200m, 

500m search radii). The search radii applied were selected based on qualitative inspection 

of the resulting data set and how it corresponds with changing hillslope. Overall, this 

technique resulted in a variable reduction of 50%, from 56 to 30 covariates.  
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Table 5.4. Overview of Pearson correlation results on covariates, with results of recursive covariate removal 
depending on correlation values. Covariates considered correlated if absolute correlation values were at 
least 70%.  

Covariates Retained Code Correlated Covariates Correlation % 

Slope (Degrees) SLP 

Slope Length 86 

Real Surface Area 88 

Topographic Negative Openness -85 

Topographic Positive Openness -86 

Terrain Surface Texture (220m search) -70 

Terrain Ruggedness Index (110m Search) 88 

Topographic Position Index 
(110m Search) 

TPI 

Downslope Curvature 81 

General Curvature 72 

Local Downslope Curvature 71 

Local Curvature 75 

Upslope Curvature 77 

Local Upslope Curvature 73 

Daily Maximum High 
Temperature 

Admax 

Annual Average Rainfall (mm) 89 

Annual Average Temperature (°C) 100 

Digital Elevation Model -82 

Latitude -87 

Curvature Classification Cur_Cls 

Catchment Slope 100 

Horizontal Distance to Stream 84 

SAGA Wetness Index 100 

Catchment Area CA 
Specific Catchment Area 100 

Modified Catchment Area 86 

Tangential Curvature Tan_Curve Cross-sectional Curvature 97 

Terrain Surface Convexity Ts_Conv Terrain Surface Concavity -90 

Planar Convexity Plan_Conv Profile Convexity 100 

Longitude Long_10 Horizontal Distance to Coast -73 

Landform Land - - 

Lithology Lithology - - 

Grain Size Grain_Size - - 

Rock Type Rock_Type - - 

Geology Type Geo_Type - - 

Aspect ASP - - 

Diurnal Anistropic Heating Di_Heat - - 

Downslope Distance 
Gradient 

Down_Grade - - 

Flow Accumulation FA - - 

Flowline Curvature Flw_Curve - - 

Mineral Hardness Hardness - - 

Longitudinal Curvature Lng_Curve - - 

Maximum Curvature Max_Curve - - 

Minimum Curvature Min_Curve - - 

Planar Curvature Plan_Curve - - 

Profile Curvature Prof_Curve - - 

Total Curvature Tot_Curve - - 

Cartographic Depth-to-
water Index 

DTW - - 

Multi-resolution Index of 
Valley Bottom Flatness 

MRVBF - - 

Multi-resolution Index of 
Ridgetop Flatness 

MRRTF - - 

Valley Depth Val_Depth - - 
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Each soil profile within the database was then compared to underlying covariates 

via the Random Forest machine learning algorithm (Breiman, 2001) in the ‘caret’ package 

for R (Kuhn, 2017; R Core Team, 2018). In this, a randomly-selected 30% of the database 

was set aside as a validation dataset to assess all modeling results. During modeling, the 

training data was partitioned so that 70% of each drainage class was randomly sampled 

for training while the remaining 30% was used for model validation. With Random Forest, 

instead of assigning a specific number of predictors to test at each node, a tuning grid was 

developed which tests a matrix of predictor variables (ranging from 3 to 24 at intervals of 

3) at each node within the decision trees of the random forest model. Model training was 

repeated with k-fold cross validation using 20 replicates. Each random forest run was 

completed with a tree size of 10 (number of regression trees to develop and test). 

 Model performance was assessed via two methods, RMSE and R2 for continuous 

predictions (depth, texture, CF, SOM, and Db), and confusion matrix with Kappa index for 

categorical predictions (drainage class). Model performance was determined by 

comparing predictions within training data to the separate validation data. Variable 

importance for the 5 dominant predictors of each model are provided in Appendix IV. 

5.4. RESULTS 

Soil Drainage: Soil drainage is represented as 7 classes, ranging from very poor to 

excessively drained, as outlined by Working Group on Soil Survey Data (1982). The rate at 

which water passes through soils is a function of topographic position, soil physical 
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properties, and geomorphology (Wilson and Gallant, n.d.; Gallant and Hutchinson, 1997; 

Zhu and Mackay, 2001; Taylor et al., 2013).  

The distribution of soil drainage classes within the database is biased toward soils 

on moderately well- to well- drained sites (Table 5.5) due to the different objectives of 

each project in which the soil profile data were collected. Drainage classes were grouped 

into broader classes to increase sample size of each group for better representation, 

omitting transitions between classes.  

Table 5.5. Representation of technique applied to amalgamate individual soil drainage classes (at the profile 
level) into groups representing the dominant drainage classes. This result was necessary to increase the 
sample sizes of the under-sampled classes to improve model predictions. 

Original Classification New Classification 

Class Count Class Count 

VP 33 
VP 34 

VP-P 1 

P 226 
P 229 

P-I 3 

I 982 
I 983 

I-MW 1 

MW 2450 
MW 2455 

MW-W 5 

W 4890 
W 4895 

W-R 5 

R 648 

R 658 R-EX 9 

EX 1 

 

Soil drainage model results yielded a Kappa score of 79.8% with the confusion 

matrix outlined in Table 5.6. The imperfectly-, moderately well-, and well-drained classes 

had the greatest variations in predictions, but still performed well in predicting the proper 

class. Overall, model performance and visual inspection do coincide with theoretical 
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expectations of changes in soil drainage in relation to changes in topography for most of 

the landscape, low lying areas have poorer drainage than steeper slopes and ridgetops. 

Qualitatively, performance decreases in northern portions of the province where 

variations in topography are more frequent and intense (Fig. 5.5). This is likely due to the 

lack of samples on more poorly-drained soils within both the training and validation data 

as well as the influence of climate and longitude on predicting drainage. Additionally, 

coarser DEM resolution (10m) results in the inability to capture small depressional and 

low-lying areas where drainage is likely to be classified as poor or very poor. Also, coarser 

DEM resolution results in small and frequent variations in elevation (pits and peaks) over 

short distances. This results in abruptly changing drainage classes over short distances, 

and at times, one cell may be allocated a drainage class whereas all adjacent cells have 

the same, but different drainage class from the initial cell.  

Table 5.6. Confusion matrix results of soil drainage class predictions via the Random Forest Model.  

Prediction 
Reference 

VP P I MW W R 

VP 6 0 2 0 0 0 

P 0 38 4 3 1 1 

I 2 2 184 9 13 2 

MW 1 5 10 428 48 8 

W 1 8 31 64 1030 21 

R 0 0 5 4 15 115 
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Figure 5.5. Visual example of soil drainage model result located in Northwestern NB. Note the tendency to 
predict well- and moderately well- drained classes.  

 
 

There are few articles on predicting soil drainage classes via DSM, with most 

focusing on predicting soil hydraulic properties. Campling et al. (2002) utilized logistic 

modeling to map the similar soil drainage classes as outlined in this study, but at 25m 

resolution within Southeastern Nigeria. Their results performed well at predicting hydric 

vs. non-hydric soils (99%), but model performance decreased (65%) when predicting 

imperfect- vs. moderately well-drained soil classes. Bell et al. (1994) determined the 

probability of drainage classes in Pennsylvania, USA, via multivariate discriminant 

analysis. Their results agreed with published soil drainage maps at 67%. Murphy et al. 

(2011) compared the cartographic depth-to-water index (DTW) and topographic wetness 

index (TWI) from LiDAR data for mapping soil drainage classes for NB, with results 

explaining 64% and 25% of the variability in drainage classes, respectively. Their study 

only focused on three drainage classes, very poor, poor, and imperfectly-well-drained. 
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Finally, Zhao et al. (2018) utilized artificial neural networks to predict soil drainage classes 

for New Brunswick. Their results yielded a correct prediction for 52% of the data, but their 

study did not mention what resolution or source of the DEM used.  

 Depth: Each mineral horizon sampled was provided an upper and lower depth at 

which they occur (i.e., 0-6cm). With this, profiles were summarized by depth to C horizon 

(solum), and average depth of each horizon (i.e., A and B horizon depth). Additionally, soil 

properties of each profile were averaged by depth classes representing 0-15cm, 15-30cm, 

30-60cm, 60-90cm, 90-150cm, and >150cm (Fig. 5.6). Doing so allowed for soil properties 

to be summarized by these classes to not only represent how soil properties vary by 

depth, but also how they compare from site to site on specific depth intervals. 

Additionally, the influence of topography on soil properties varies with increasing depth, 

thus, better predictions of soil may result from separating properties into depth intervals 

(Florinsky et al., 2002). Analyses were not conducted on samples exceeding 90cm 

(labelled as ‘150’ in Fig. 5.6) due to the infrequent occurrence of soil profiles reaching 

these depths. Fig. 5.7 represents the Random Forest modeled depths for A and B horizon 

thickness, and depth to C horizon (solum depth). Alternatively, spline functions could be 

used to incorporate the influence of depth on soil properties, but it becomes difficult 

when developing spatial predictions of soil property variation. 
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Figure 5.6. Frequency distribution of defined depth classes within spatial database for profiles in which soil 
horizons were provided (23%). Depths exceeding 90cm (labeled as ‘150’) were not analyzed but shown to 
represent the lack of profiles reaching these depths. 

 
Figure 5.7. Comparison of performance plots (measured vs. fitted) for A-horizon depth (left), B-horizon 
depth (center), and solum depth (right) predictions. 

 

Modeling A horizon, B horizon, and solum depth to underlying covariates yielded 

strong relationships with the B horizon model explain the greatest variation. In 
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comparison to these findings, Florinsky et al. (2002) were able to explain 20% of the 

variation in solum thickness for an agricultural area in the Canadian prairies. Hengl et al. 

(2004a) compared different techniques to correct DEM errors with which these were used 

to predict solum thickness in Eastern Croatia. Their best performing model explained 40% 

of the variation in solum thickness. Taylor et al. (2013) compared imagery with 

topographic derivatives, both ranging from 10 and 90m resolution for mapping soil depth. 

Using a multi-scale approach, they were able to predict 91% of the variation in soil depth 

in the Peyne Watershed, Southern France. Gessler et al. (1995) developed models for 

predicting both solum depth and A-horizon depth from curvatures and the compound 

topographic index with which they explained 63% and 68% of the variation in A-horizon 

and solum depths, respectively. Similarly, Moore et al. (1993) utilized the compound 

topographic index to explain 55% of the variation in A-horizon depth. 

 
Texture: Texture classes were converted to average proportions of sand, silt, and 

clay (70.4% of database, Table 5.7) and values summarized by depth class intervals. The 

frequencies of the resulting sand, silt, and clay percentages are plotted in Fig. 5.8. The 

resulting best-fitted sand, silt, and clay percentage emulations with varying depth 

intervals are shown in Fig. 5.9, capturing > 85 % of the percentage values for each class. 
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Table 5.7. Distribution of texture classes sampled on a horizon basis within database with average 
proportions of sand, silt, and clay within each class, by increasing sand content. 

Texture Class Abbreviation % Sand % Silt % Clay 
Sample 

Size 
% of Total 

Silty Clay SiC 5 49 46 32 0.18 

Silt Si 5 90 5 5 0.03 

Silty Clay Loam SiCL 10 56 34 67 0.37 

Heavy Clay HC 12 13 75 2 0.01 

Silt Loam SiL 20 65 15 1847 10.22 

Clay C 25 25 50 396 2.19 

Clay Loam CL 32 34 34 1375 7.61 

Clay Loam – Loam CL-L 35 39 40 1 0.01 

Loam L 41 40 19 5295 29.29 

Silt Loam – Sandy 
Loam 

SiL – SL 45 50 5 1 0.01 

Sandy Clay SC 53 4 43 5 0.03 

Loam – Sandy Loam L - SL 53 36 11 6 0.03 

Sandy Clay Loam SCL 60 13 27 1270 7.02 

Sandy Clay Loam – 
Sandy Loam 

SCL – SL 65 15 20 5 0.03 

Sandy Loam SL 68 22 10 5851 32.36 

Sandy Loam – Loamy 
Sand 

SL – LS 77 14 9 7 0.04 

Loamy Sand LS 80 13 7 1512 8.36 

Loamy Sand – Sand LS – S 88 7 5 3 0.02 

Sand S 93 4 3 400 2.21 
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Figure 5.8. Comparison of sand (black), silt (green), and clay (red) composition for changing depth intervals 
from 0-15cm (top left), 15-30cm (top right), 30-60cm (bottom left), and 60-90cm (bottom right). Note the 
reduced sample sizes of the finer-textured soils (silts and clays) even with increasing depth.  

 



 

133 

 

Figure 5.9. Comparison of performance plots (measured vs. fitted) for sand (left), silt (center) and clay 
(right) models at defined depth intervals of 0-15cm (top row), 15-30cm (second row), 30-60cm (third row), 
and 60-90cm (bottom row). Proportions of sand, silt, and clay assigned from texture class.  

From this, it is apparent that model performance increases with increasing depth due to 

increasing influence of parent material and topography on texture. Near the surface 
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texture is influenced by environmental factors in the form of water and acidity, altering 

the texture composition of the soil.  

In comparison, Odeh et al. (1994) were able to explain 51% of the variation in 

subsoil clay content using a few topographic derivatives. Their study focused on an area 

with minimal change in lithology and at coarse resolutions (500m to 1km). Adhikari et al., 

(2012) predicted silt, clay, and sand (fine and coarse) both spatially and vertically, using 

depth intervals, for Denmark utilizing the cubist model. They found that the ability to 

model soil texture decreased with increasing depth (best performance was 54% of the 

variation explained for clay at 0-5cm). Zhao et al. (2013a) utilized artificial neural 

networks to predict clay content then used the results to predict soil nutrient regimes for 

Nova Scotia, Canada. This study utilized a 10m DEM and soil information from existing soil 

polygons. Again with the use of artificial neural networks, Zhao et al. (2018) modeled sand 

and clay contents within the Black Brook watershed in Northwestern NB, Canada. This 

study also utilized existing soil association polygons and lookup tables for soil information 

to include in the modeling. Akumu et al. (2015) predicted soil texture within the clay belt 

of Ontario using a fuzzy logic approach with a 10m LiDAR-derived DEM. They predicted 

six textural classes at 79% accuracy. At a broader scale, Mansuy et al. (2014) applied k-

nearest neighbors to predict soil texture within the top 15cm of forest soils at 250m 

resolution across Canada. With this, they were able to explain up to 43% of the variation 

in topsoil clay content, with weaker results for sand and silt (20 and 13%, respectively).  
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Coarse Fragment Content: Reviewing the changing CF content with depth, it 

became apparent that soil profiles exceeding 60cm typically coincide with deep parent 

materials lacking CF’s (i.e., deep alluvial floodplains, Fig. 5.10). The distributions also show 

that CF content increases with increasing depth from 0 to 60cm. Actual vs. fitted model 

results for CF content at defined depth intervals are depicted in Fig. 5.11.  

 

Figure 5.10. Frequency distributions for coarse fragment content at defined depth intervals of 0-15cm (top 
left), 15-30cm (top right), 30-60cm (bottom left), and 60-90cm (bottom right). 
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Figure 5.11. Comparison of performance plots (measured vs. fitted) for CF models at defined depth intervals 
of 0-15cm (top left), 15-30cm (top right), 30-60cm (bottom left), and 60-90cm (bottom right).  

 
Limited research has been conducted on DSM for CF content. Mosleh et al. (2016) 

attempted to model CF content along with additional physical and chemical properties 

within topsoil within the Chaharmahal-Va-Bakhtiari province of Iran, but they were 

unable to retrieve any significant relationship. Vaysse and Lagacherie (2015) tested 

different DSM techniques for mapping a suite of soil properties across Europe at 100m 

resolution at different soil depth intervals. The best RMSE achieved for CF% was 8.37 at a 

depth interval of 15-30cm with an R2 of 16%.  

Soil Organic Matter Content: In comparison to the other soil properties, SOM data 

were sparse. The actual versus best-fitted emulation results using the log (ln) transformed 

SOM are shown in Fig. 5.12 by soil depth class, accounting for about 80% variations within 

the 0-15 and 15-30 cm soil layers, but only about 30 to 13 % for the 30 -60 and 60-90 cm 

data layers, for which the organic matter accumulations are also decidedly lower, as to 
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be expected. The literature reviewed explained 28-67% of the variation in SOM content 

and 69-80% of the variation in C content (Table 5.8). 

 

Figure 5.12. Comparison of log-transformed performance plots (measured vs. fitted) for SOM models at 
defined depth intervals of 0-15cm (top left), 15-30cm (top right), 30-60cm (bottom left), and 60-90cm 
(bottom right).  

Table 5.8. Overview of literature in which DSM was applied for modeling both carbon and SOM content at 
different resolutions and varying geographic extents, with accuracy represented as percentage of variation 
explained.  

Source Location Resolution (m) 
Property 
(SOM, C) 

Accuracy (% var. 
Explained) 

Florinsky et al. (2002) Manitoba, Canada 15 SOM 37 

Hengl et al. (2004b) Croatia 100 SOM 
53.3 (OK), 66.5 

(RK) 

Gessler et al. (2000) California, USA 1 C 80 

Bui et al. (2006) Australia 250 C 69 

Thompson et al. 
(2006) 

Kentucky, USA 10 SOM 28 

Zushi (2006) Japan 10 SOM 50.4 
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 Bulk Density: The frequency distribution of the profile-based Db data is plotted in 

Fig. 5.13, indicating a shift towards higher densities with increasing depth, as to be 

expected for (i) a generally glaciated landscape with extensive areas subject to glacial 

regolith compaction, and (ii) for the general decreasing in soil-aggregating SOM content 

with increasing soil depth. The actual versus best-fitted results (Fig 5.13) account for 

about 85% of the of the profile reported data. 

 
Figure 5.13. Frequency distributions for Db at defined depth intervals of 0-15cm (top left), 15-30cm (top 
right), 30-60cm (bottom left), and 60-90cm (bottom right). Note how bulk density increases with 
increasing depth.  
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Figure 5.14. Comparison of performance plots (measured vs. fitted) for Db models at defined depth 
intervals of 0-15cm (top left), 15-30cm (top right), 30-60cm (bottom left), and 60-90cm (bottom right). 

 

Only few studies have applied DSM techniques for modeling Db of which Ballabio 

et al. (2016) modeled topsoil sand, silt, and clay and used this to predict Db over the 

extent of the European Union at 100m resolution. Mansuy et al. (2014) predicted 17% of 

the variation in Db at 250m resolution for the Canadian forested land base.  

Solum-based model results for actual vs. fitted predictions of sand, silt, clay, CF, 

SOM, and Db are represented in Fig. 5.15 with resulting spatial predictions depicted in 

Fig. 5.16. 
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Figure 5.15. Comparison of performance plots (measured vs. fitted) for sand (top left), silt (top right), clay 
(mid left), CF (mid right), SOM (bottom left), and Db (bottom right) measured on the solum basis.  
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Figure 5.16. Visual representation of model predictions of drainage (A), solum depth (B), and sand (C), silt 
(D), clay (E), CF (F), SOM (G), and Db (H) measured on the solum basis within the study extent outlined in 
Fig. 5.1. 
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With respect to texture and CF content, there is a bias to over-predict low values, and to 

under-predict high values by about 10%. The RMSE values range from ± 3.7 (clay) to ± 8.7 

(CFs). Actual data for SOM and Db were sparse. The associated RMSE values amounted to 

1.8% and 0.12 g cm-3, respectively. For the bottom A-, B- and solum depths (Fig. 5.7), high-

value under-predictions amounted to 10 to 20 cm, while low-value over-predictions 

amount to 5 to 10 cm. Overall RMSE values amounted to ± 3.1, ± 3.1 and ± 7.2 cm, 

respectively. 

5.5 DISCUSSION 

The DSM results outlined above represent a limitation to modeling in which model 

performance is dependent on input data and performance cannot be assessed by 

quantitative measures only. Having limited data on the poor, very poorly-, and rapidly-

drained sites results in a biased drainage model which seldom predicts those drainage 

classes. Additionally, model performance is limited when small sample sizes are utilized. 

Of 12,058 samples, Db at 60-90cm was only measured 124 times whereas texture was 

measured 544 times. Both small samples are a result of infrequent occurrence of profiles 

reaching these depths, but it is likely that these limited samples do not capture the full 

variability of soil-forming factors as they change throughout NB. Thus, model 

performance will be biased toward the sites with soil forming factors similar to those in 

which the samples were measured.  

Soil samples were acquired and amalgamated from different sources increasing 

the likelihood of inconsistencies between data sets. It is assumed that soil and site 
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properties were measured in the same manner, but, it is likely that some measurements 

were done so incorrectly, namely those measured in the field such as drainage 

classification and field-based texture and CF assessments.  

Surficial Geology (Parent Material): Photogrammetrically-derived spatial 

datasets representing surficial geology tend to be crude in nature, omitting small-scale 

variations in both mode of deposition and lithology. This is particularly true when dealing 

with heavily-glaciated landscapes. Invariably, surficial geology maps with sufficient detail 

are generally unavailable at provincial extents. The rationale behind using the soil 

polygons as predictors in surficial geology delineations is that these vector data sets are 

based on diverse expert knowledge and on soil-landscape relationships, although not fully 

conforming with topographic changes in the landscape. Additionally, as depicted in Fig. 

5.17, there are many inconsistencies between data sets when delineating the same 

landform types, i.e., ablation till, within the same geographic location.  



 

144 

 
Figure 5.17. Visual comparison of ablation till delineations from different vector data sets representing 
surficial geology within NB with all data sets overlain (bottom right). As seen, many inconsistencies occur 
between delineations for extent outlined as “C” in Fig. 5.1.  

Therefore, combining soil delineations with original surficial geology maps via similarity 

modeling may yield better representations of variations in landforms (mode of 

deposition) and lithologies.  

Topography: Prior to topographic development, the DEM was hydro-conditioned 

to ensure hydrologically-correct flow patterns, particularly in low-lying and flat areas 

(Saunders and Maidment, David, 1996; Murphy et al., 2008). This process is necessary 

prior to developing hydrological derivatives from any DEM. Once hydrologically-
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corrected, the hydrologic derivatives were developed while topographic derivatives were 

produced from the original DEM.  

With the fused DEM from Chapter 4, the influence of coarser resolutions and 

interpolation is evident in the form of abrupt changes in elevation at small scales (‘pits 

and peaks’) (Fig. 5.4). From this, computed topographic derivatives recognize these 

variations as changes in hillslope position, resulting in noise which is then inputted into 

statistical modeling. Higher resolution DEMs, namely LiDAR, may yield better predictions 

in soil property variation due to its ability to adequately represent varying topographic 

positions at high resolution and the scale at which soil properties vary is finer than the 

DEM resolution of 10m. Adversely, due to its high resolution, topographic derivatives 

from LiDAR DEMs under-represent the full hillslope from ridge to valley due to the broad 

extent at which these occur. Thus, it is likely that topographic derivatives from LiDAR 

would require a smoothing technique and/or larger search neighborhood to fully capture 

the hillslope.  

 As a case study, the curvature classification, utilized as one of 30 covariates for 

DSM, was developed under varying DEM resolutions and neighborhood sizes. Retrieved 

from Birkeland (1999) and originally from Dikau (1988), curvature classification 

distinguishes different forms of a hillslope, ranging from 0-8 depending on the concavity 

and convexity in both planar and profile form (Fig. 5.18). 
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Figure 5.18. Visual representation of the 8 curvature classifications derived from “Curvature Classification” 
script in SAGA (Conrad et al., 2018), with the value of each class shown. Classes and figure retrieved from 
Dikau (1988) and Birkeland (1999) respectively.  

 

At 10m resolution, the curvature classification shows much variation over a 

locally-defined spatial extent (Fig. 5.19). Smoothing the curvature classification grid using 

a 5 x 5m rectangular neighborhood (search window) yields different classifications at a 

slightly broader extent. Alternatively, aggregating the DEM from 10 to 30m and re-

calculating the curvature classification, both on the original DEM at 30m and smoothed 

DEM, shows how the curvature classification begins to conform with changing 

topographic features at the hillslope extent. This shows that topographic derivatives from 

one DEM resolution and at one neighborhood size may not be suitable for DSM, instead, 

there is a need for a multi-scale approach in which both DEM resolution and 

neighborhood size vary depending on the derivative being produced.  
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Figure 5.19. Comparison of curvature classifications derived from varying DEM resolutions and 
neighborhoods of original 10m DEM (A), 10m DEM smoothed via 5 x 5 cell window (B), 10m DEM aggregated 
to 50m (C), and 50m DEM smoothed via 5 x 5 cell search window (D) for study extent “B” outlined in Fig. 
5.1. Note how the ability to delineate hillslope positions increases with increasing cell size from 10m to 50m 
smoothed.  

 

Alternatively, the DEM could be smoothed, by either one or multiple neighborhood sizes 

prior to developing topographic derivatives. Although feasible, this approach may lose 

representation of subtle variations in topography which explain soil property variation.  

 Varying resolutions and neighborhood sizes influences the depictions of hillslope 

positions and the scale at which these features are delineated. This approach can be 

applied to any topographic derivative, depending on derivative, allowing for a multi-scale 

approach to DSM. This is necessary because the influence of hillslope on soil properties 

occurs over multiple scales. Adversely, some existing algorithms which apply a multi-scale 
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approach, namely “Multi Resolution Index of Valley Bottom Flatness” (MRVBF) and its 

counterpart, “Multi-Resolution Index of Ridgetop Flatness” (MRRTF), result in different 

values for the same location depending on the scale in which they are applied. For 

example, MRVBF was calculated for a 600,000ha test area in Northern NB (Fig. 5.20) and 

compared to MRVBF that was calculated for the entire province and extracted to the test 

area. It is apparent that the resulting data sets provide different values for the same site. 

In terms of DSM, this difference could result in incorrect, or missed, relationships.  

 

Figure 5.20. Comparison of Multi Resolution Index of Valley Bottom Flatness (MRVBF) derived at two 
different scales, one for a 600,000ha test site in Northern NB outlined in Fig. 5.1. (left) and one at full 
provincial extent (7.2million ha) (right), both overlaying hill-shaded relief of 10m DEM. The results show 
how the same algorithm developed different results for the same area, depending on the extent in which 
it is produced.  

The multi-scale approach was assessed by Smith et al. (2006) for use in digital soil 

surveys, and Behrens et al. (2010) and Zhu et al. (2008) for use in DSM. All studies have 

concluded that there is an optimal threshold for different topographic derivatives to 

capture the spatial variation in soil properties. With this, it is possible to develop the same 

topographic derivative at one resolution, but at multiple neighborhoods, and utilize these 
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in combination for DSM since the influence in which topography affects soil property 

variation changes with scale.  

Climate: Although influential to soil formation and nutrient retention, climatic 

attributes are typically not included in DSM studies likely due to their coarse resolution in 

comparison to high-resolution variability of soil properties. Instead, as mentioned, 

topography is used as a surrogate for climate. Climate attributes were incorporated into 

this study by comparing climate ‘normals’ (from 1989-2010) to underlying elevation, 

latitude, and longitude, allowing for the development of models and the prediction of 

temperature and precipitation variables at 10m resolution, as outlined in Table 5.9.  

Table 5.9. Model results for annual average temperature, daily maximum high temperature, and annual 
average rainfall from comparing climate normal from 21 years for 150 weather stations to elevation and 
geography. 

Predicted Variables Estimate t- value p- value Adj. R2 (%) 

Annual Average 
Temperature 

°C 

Intercept 48.2867 41.043 <0.0001 

92.1 
Elevation -0.0048 -9.621 <0.0001 

Latitude -1.0059 -44.591 <0.0001 

Longitude -0.0537 -6.457 <0.0001 

Daily Maximum 
Temperature 

°C 

Intercept 46.7065 29.134 <0.0001 

81.8 
Elevation -0.0044 -6.491 <0.0001 

Latitude -0.8397 -27.315 <0.0001 

Longitude -0.0415 -3.659 0.0003 

Annual Average 
Rainfall 

mm 

Intercept 2762.5580 22.910 <0.0001 

63.4 Latitude -27.5780 -11.250 <0.0001 

Longitude 9.5540 13.270 <0.0001 

 

Weather stations for Ontario were included in the analysis to help increase sample size 

(n=39 for NB) and to help quantify the influence of geography on varying climatic 

patterns. 
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Variable Selection: Incorporating all 60 data sets (48 topographic, 3 climatic, 5 

geological) into spatial analyses for modeling soil properties at a provincial extent would 

be both computationally- and time- intensive. Appendix I outlines all variables developed 

in this study, and from this, it is apparent that some topographic derivatives are very 

similar, if not the same, to others. The differentiating factor being the model used to 

calculate the derivative.  

As an alternative to the correlation technique, all derivatives could be 

incorporated into the modeling phase and have the training procedure remove 

insignificant variables. This can be completed via assessment of variable inflation factors 

(VIFs), utilizing variable importance plots (depending on modeling approach), or using 

principle components analysis. Principle components analysis (PCA) can be an effective 

technique, but limitations arise in which the technique groups input predictors into 

components, thus, it is challenging to apply the model result spatially afterwards.  

Prediction Results: Model results (variable importance) for A, B, and solum depth, 

drainage, and sand, silt, clay, CF, SOM, and Db on solum basis are shown in Table 5.10.   
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Table 5.10. Random forest model results (variable importance for 5 most dominant predictors) for horizon 
depths (A, B, and solum), drainage, and sand, silt, clay, CF, SOM, and DB on a solum basis. Results for each 
analysis shown for 5 dominant predictors using abbreviations outlined in Table. 5.4.  

A Depth B Depth Solum Depth Drainage 

Covariate Importance Covariate Importance Covariate Importance Covariate Importance 

Admax 100.00 CA 100.00 Admax 100.00 SLP 100.00 

FA 91.10 MRVBF 96.65 Cur_Cls 93.37 Max_Curve 87.95 

TPI 90.22 Cur_Cls 87.31 CA 76.53 Admax 78.61 

Geo_Type 85.66 Admax 77.84 Tan_Curve 69.86 TPI 77.35 

Max_Curve 82.13 TPI 75.99 Di_Heat 68.43 Down_Grade 71.32 

Sand Silt Clay CF 

Covariate Importance Covariate Importance Covariate Importance Covariate Importance 

Admax 100.00 Admax 100.00 Wetland 100.00 Val_Depth 100.00 

Rock_Type 69.31 Lng_Curve 66.70 Rock_Type 80.94 MRVBF 85.45 

Prof_Curve 58.77 Geo_Type 55.59 Cur_Cls 68.09 Admax 71.98 

Land 48.10 SLP 54.72 Crs_Curve 63.06 Rock_Type 61.93 

Lithology 41.50 Prof_Curve 54.21 DTW 62.17 MRRTF 60.48 

SOM Db 

 

Covariate Importance Covariate Importance 

Geo_Type 100.00 Admax 100.00 

Val_Depth 91.71 Crs_Curve 92.05 

Rock_Type 83.54 SLP 91.73 

Max_Curve 52.80 Ts_Conv 91.11 

Crs_Curve 73.40 MRVBF 80.15 

 

Covariates produced within this study, both climatic and geological, are dominant 

predictors for all soil properties. It is accepted that geological covariates influence the 

physical properties of the soil including texture and CF content. These covariates also 

strongly influence SOM within the solum and this is likely due to the influence these have 

on texture composition, and in turn, how texture influence SOM retention. As expected, 

daily maximum high temperature (“Admax”) was a dominant predictor for all properties 

except clay and SOM. This is likely due to the influence of environmental factors on soils 

properties within the solum, with stronger environmental influence within topsoil and 

this influence decreasing with depth. Although decomposition and mineralization of SOM 

is controlled by climate, both SOM and clay are the two particles frequently transported 

with moving water through the soil.  
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 In addition to climatic and geolgical covariates, topographic covariates, namely 

those representing curvature, appear as dominant predictors in all models except CF 

content. This is expected as curvature influences the rate of movement, accumulation, 

and dissipation of nutrients, minerals, and water across the landscape. For modeling soil 

depth, these results are in agreement with other literature (Moore et al., 1993; Boer et 

al., 1996; Florinsky et al., 2002; Hengl et al., 2004a; Ziadat, 2010; Taylor et al., 2013) in 

that surface curvature strongly influences soil depth. In addition, Mansuy et al. (2014) had 

shown that curvature, in combination with other topographic derivatives, has proven 

useful for measuring soil texture, Db, and SOM content across Canada. Also, Creed et al. 

(2002), Pennock (2003), and Terra et al. (2004) discovered that surface curvature were 

useful in predicting SOC contents. Finally, Romano and Palladino (2002), Mulder et al. 

(2011), and Taylor et al. (2013) discovered the curvature helped explain water 

redistribution, water table depth, and water retention, respectively.  

5.6. CONCLUSIONS 

This study presented an approach to multi-scale digital soil mapping of select soil 

properties using New Brunswick, Canada as a case study. Input predictor variables 

represented the dominant soil-forming factors of topography, climate, and surficial 

geology with the number of variables reduced via correlation analyses. The soil modeling 

results present access to soil information previously unavailable with traditional soil 

mapping techniques as confirmed in Fig. 5.21 with provincial representation shown in Fig. 

5.22.  
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Figure 5.21. Comparison of conventional soil association mapping (left) and digital soil mapping (right) using 
bulk density measured on the solum basis for study extent outlined in Fig. 5.1. Note the variability of soil 
properties now assessable within confines of conventional, polygon-based soil maps.  

 
Figure 5.22. Visual example of DSM results representing changing solum depth at 10m resolution for NB, 
Canada.  

 
The projected soil property maps are in reasonable agreement with the 30% of 

the amalgamated soil profile database used for model validation. As such, soils on ridges 
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are seen to be thinner and coarser than soils in floodplains. Soil Dbs also vary as expected 

by being denser on ridges tops and in areas with high sand content, and lower in areas 

with high SOM content. Texture is sandier in the upper reaches of floodplains while silt 

content appears to be higher in higher than in lower lying areas. These trends, however, 

vary by landform. To confirm this, additional testing will be required, especially at the 

practical level of field operations, to the effect that the soil properties maps generated by 

the above approach lead to quantitative improvements in soil and land management. This 

testing should also involve generating profile data for landforms and drainage conditions 

that are under-represented. 

The precision of a DEM significantly influences the ability to model soil properties, 

and DEM derivatives require calculation at different resolutions and at different 

neighborhood search windows. The curvature classification example shows how noise in 

the DEM skews the output of topographic derivatives. This results in unrealistic 

relationships between underlying topographic features and soil properties. The same is 

true for the extent in which these derivatives are produced. Producing topographic 

derivatives at a small geographic extent shows much different results than the same 

derivative produced at a much larger extent. The example of MRBFV and MRRTF are 

provided. Thus, there is a need for a multi-scale approach to DSM in which topographic 

derivatives are developed at multiple scales. This holds true due to the influence in which 

topography plays on soil property variation. This is not static but varies with scale. Thus, 

better representing these relationships at different scales will likely yield better predictive 

models.  
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Amalgamated soils information from different sources resulted in a meaningful, 

harmonized database for application in DSM. With this database, soil properties were 

able to be modeled at the provincial extent. These individual data sets had not been used 

for application in DSM prior to this study. Much additional work can be done by further 

broadening this mapping efforts, e.g., by expanding this work to other soil properties such 

as pH, CEC, base saturation, and exchangeable base cations. In part, this can be done using 

the PTFs described in Chapter 3 and evaluating the same with corresponding soil profile-

captured data. Also of interest is to determine the extent to which the above approach 

can be further improved by using province-wide LiDAR DEM coverages generated at 1m 

resolution.  

With growing complexity and availability of data sets representing soil-forming 

factors, non-parametric DSM techniques are necessary when trying to model soil 

property variation. The relationship between soil property and underlying soil-forming 

factors is seldom linear in nature. Thus, advanced statistical models are necessary in trying 

to understand these relationships. Although linear modeling can explain some variation, 

machine learning algorithms are likely to capture more of the variation. Adversely, model 

transferability becomes more difficult with increasing complexity of statistical models and 

software. 

With updated soil property maps, digital soil assessments can be conducted for 

use in many fields, i.e., soil erosion modeling, habitat suitability mapping, floodplain 

delineations, forest and crop productivity assessments, and carbon stock assessments.  
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CHAPTER 6 – SUMMARY, CONTRIBUTIONS, AND RECOMMENDATIONS 

6.1. DISSERTATION SUMMARY 

This dissertation presented an approach to digital soil mapping of soil physical and 

chemical properties from numerous data sources for NB, Canada. Soil properties of 

interest were those of which influence rooting, namely soil drainage, texture, CF content, 

Db, SOM content, CEC, and water retention at FC and PWP. This was accomplished by: 

1. Amalgamating and harmonizing county-based soil surveys into a complete 

aspatial database focusing on general site characteristics (drainage, stoniness, 

rockiness, vegetation, and parent material) and soil profile descriptions with lab-

measured soil properties on a soil associate basis (Chapter 2), 

 
2. Utilizing the aspatial database to develop PTFs for soil properties with changing 

depth, namely texture, CF content, Db, SOM content, CEC, and water retention at 

FC and PWP (Chapter 3), 

 
3. Developing a new provincial DEM at 10m resolution via fusion of open-sourced 

DEMs (ASTER, SRTM at 30 and 90m resolution, CDED, and original NB DEM) with 

LiDAR-derived DEM calibration (Chapter 4), 
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4. Developing a spatial database of soil profiles, compiled from different sources, and 

re-delineating data sets representing soil forming factors, namely topographic 

derivatives (from DEM in Chapter 4), surficial geology, and climate data sets, and 

 
5. Comparing soil properties within database to underlying representations of 

topography, surficial geology and climate. The results allowed for the modeling 

and mapping of soil properties across the landscape at 10m resolution. PTFs 

(Chapter 3) can be applied to the spatial soil property maps to predict additional 

soil properties of CEC and moisture retention at FC and PWP.  

6.2. ORIGINAL CONTRIBUTIONS 

This dissertation established a framework for digitally mapping soil properties, 

which influence root development, across the landscape at 10m resolution. Original 

contributions to this framework involved: 

1. Developing an aspatial database from soil surveys with unified terminology and 

harmonized attributes (Chapter 2), 

 
2. Developing robust PTFs relating soil attributes to one another and to soil parent 

material while comparing these to published equations as a performance measure 

(Chapter 3), 
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3. Creating a semi-automated procedure for fusing open-sourced DEMs across 

provincial boundaries, resulting in an improved DEM for NB at 10m resolution with 

substantially decreased vertical errors (Chapter 4), 

 
4. Utilizing the fused DEM from (3) to develop a suite of topographic and hydrological 

derivatives for NB (Chapter 5), 

 
5. Updating NB-wide geological data sets pertaining to landforms and lithology 

(mineral hardness, grain size, and rock type) per landform, 

 
6. Generating continuous province-wide data sets for climate ‘normals’ (annual 

average temperature, annual average rainfall, and annual average daily maximum 

high temperature) at 10m resolution by comparing 150 weather stations from NB 

and Ontario to underlying DEM and changes in latitude and longitude (Chapter 5),  

 
7. Producing a spatial database representing soil profiles within NB with original data 

retrieved from numerous government agencies (Chapter 5), with 60 data columns 

to include information about dominant topographic, geologic and climatic soil 

forming influenced at each spatial location, and  

 
8. Developing data-validated NB-wide spatial models for predicting soil drainage and 

soil properties (horizon depths, and sand, silt, clay, CF, SOM, and Db at multiple 

depth intervals (Chapter 5).  
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6.3. RECOMMENDATIONS 

Although this project was completed for NB, similar approaches can be applied to 

any geographical location depending on access, and quality, of available data. The 

underlying principles of the outlined framework are applicable elsewhere. The idea was 

to predict soil properties by way of soil forming factors based on the assumption that 

relationships between soil properties and underlying soil-forming factors would remain 

the same, although the combined influence of topography, geology and climate would 

vary. The lessons learned, and limitations realized in doing this led to the following 

recommendations for further study: 

1. There is a need for a systematic and fully standardized surveying approach to soil 

sampling and analysis. Developing this dissertation revealed many difficulties 

associated with compiling soil data and related data layers from various sources. 

Apart from being labour intensive, a substantial portion of the collected data was not 

found to be useful for several reasons:  

• too vague,  

• too much missing data,  

• data entries being categorical instead of numerical,  

• analytical protocols differ from report to report,  

• geographic positions unavailable,  

• over–representation of certain soil types, while under-representation of 

others.  
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2. There is also a need to address organic soils. This, however, could not be completed 

because only 3% of the 12,500 samples within the spatial database occurred on very 

poorly- or poorly-drained sites with bogs, marshes, and swamps excluded as well. 

Adding wet-area soil data to the database and ensuring equal data representation by 

drainage class would greatly improve the general applicability of the DSM approach 

as proposed in Chapter 5. 

 

3. Additionally, there is a need for using LiDAR-derived DEMs for DSM, because LiDAR-

generated DEMs reflect the elevation of the terrain at ground level. As indicated in 

Chapter 4, fusing the non-LiDAR DEMs improved the vertical accuracy of the fused 

DEM from about ± 20 m to ± 2 m 8 times after LiDAR DEM calibration. This advance 

generated much-improved DEM-derived hydrographic layers in terms of their 10 m 

alignments with existing flow channels, river, lake, shoreline and wetland 

delineations.  

 
4. In the same way, one can expect that LiDAR-based landform delineations will also 

become more accurate than what is currently available by locations, extent and form. 

The most easily recognized landforms refer to upland ridges, steep slopes, 

floodplains, eskers, and drumlins. The delineation of moraines and other localized 

glacio-fluvial deposits will require the development of specialized landform 

recognition algorithms, likely in the form of machine-based learning procedures like 

the approach taken in Chapter 5. 



 

161 

5. With the consistent increases in DEM resolutions, thought must be put into choosing 

an appropriate resolution for the scope of the project. Ideally, DSM developments 

should be evaluated based on a multi-scale and multi-window approach in which 

DEMs of different resolutions, each with topographic derivatives developed at 

different window sizes, be assessed in a DSM framework. This is because the 

relationships between soil forming factors and soil property variability change with 

both scale and study extent. Thus, this needs to be adjusted for when modeling soil 

properties as depicted in Chapter 5.  

 

6. There needs to be further assessment on the choice of statistical model for DSM 

because this study only applied one of many machine learning approaches. 

Alternatively, geostatistical techniques could be applied. A comparison of how 

different models compare using the data in this project would be very useful.  

 
7. Further improvements and expansions can be made in terms of assessing which PTFs 

are most accurate for capturing more difficult to measure soil properties. The 

reliability of existing PTFs also needs to be assessed for each new area/ region under 

investigation, as demonstrated in Chapter 3. 

 
8. More needs to be done on delineating features across boundaries, whether 

provincial or soil survey boundaries. (i) end abruptly at adjacent borders in a non-

seamless fashion, and (ii) following differing soil terminology conventions. These 
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differences need to be resolved prior to cross-border DMS applications. Natural 

processes are continuous in nature and do not abide by these borders. Thus, 

meaningful relationships between spatially-derived datasets and natural processes 

may be missed due to the lack of continuity in spatial datasets across borders. 

 

9. Finally, continuous improvements can be made in updating the borders of landform- 

and lithology-defined soil associations by correctly placing them in the context of 

topographically-correct digital terrain models. Once delineated, soil associations can 

then be disaggregated into individual soil types by changing drainage and soil 

property patterns, i.e., wet vs. dry, shallow vs. deep, fine-textured vs. coarse, and 

high vs. low CF content. Doing so allows for quick determinations of overall soil and 

site conditions for land management practices.  

6.4. CONCLUSION 

The chapters in this dissertation present the requirements to shift from 

conventional soil mapping techniques to a DSM framework by spatially determining how 

soil properties vary with local and regional variations in topography, climate, surficial 

geology, and other soil properties. The development of this framework proceeded from 

the compilation of aspatial and spatial soil information and the re-delineation of spatial 

data sets deemed essential for modeling and mapping soil properties. The results outlined 

have feasible application in land use management, namely forestry due to the variability 

of soil properties within stands, which, was otherwise omitted from conventional soil 



 

163 

mapping approaches. The information generated and documented will be helpful for 

allowing further scientific studies and continuing DSM improvements.  
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APPENDIX I. OVERVIEW OF NEW BRUNSWICK SOIL ASSOCIATIONS 

Landform Lithology 
Soil 

Association 

Soil Associate 

W-R I-MW VP-P 

Residual 

Weakly calcareous 
Sandstone and shale 

Undine Undine - - 

Sandstone, gritstone, 
shale 

Riley Brook Riley Brook - - 

Cornhill Cornhill - - 

Granite, gneiss, basalt, 
felsite 

Big Bald 
Mountain 

Big Bald 
Mountain 

- - 

Residual & 
Colluvium 

Strongly metamorphosed 
slate, quartzite, volcanics 

Serpentine Serpentine Jenkins Adder 

Ablation 

Sandstone and 
Conglomerate 

(calcareous if un-
weathered) 

Anagance Anagance Dusinane Dusinane 

Jeffries Corner Jeffries Corner - - 

Aulac Aulac Tidnish Tidnish 

Granite, quartzite, gneiss, 
argillite, volcanics, some 

sandstone 

Irving Irving Goodfellow Halls Brook 

Juniper Juniper Jummet Brook McKiel 

Calcareous shale and 
slate with/without 
limestone, argillite 

Caribou Caribou Carlingford Washburn 

Thibault Thibault Guercheville Lauzier 

Sandstone and quartzite, 
some argillite, slate, 

shale, schist 
Monquart Monquart - - 

Sandstone 

Big Hole Big Hole Beaver Lake - 

Fair Isle Fair Isle Black Brook - 

Sunbury Sunbury Hoyt Cork 

Highly calcareous shale, 
quartzite, argillite, 

sandstone 
Jardine Jardine Nickel Mill Five Fingers 

Sandstone, shale, 
mudstone 

Becaguimec Becaguimec Snyder Snyder 

Metamorphosed rhyolite, 
andesite, schist, slate, 

granite 
Jacquet River Jacquet River - - 

Ablation/ 
Residual 

Calcareous sandstone 
and shale 

Harquail Harquail - - 

Calcareous Shale Erb Settlement Erb Settlement - - 

Metamorphosed non- to 
weakly-calcareous slate, 

quartzite, argillite, 
sandstone 

Glassville Glassville Temiscouata Foreston 

Metamorphosed rhyolite, 
andesite, schist, slate, 

granite 
Lomond Lomond - - 

Sandstone and 
conglomerate (calcareous 

if unweathered) 

Parleeville Parleeville Midland Midland 

Queenville Queenville Deed Deed 



 

182 

Sandstone and quartzite, 
some argillite, slate, 

shale, schist 
Quisbis Quisbis Dube Big Spring 

Sandstone, gritstone, 
shale 

Tobique Tobique - - 

Slate and argillite and 
sandstone and schist 

Boston Brook Boston Brook Skin Gulch 
Yellow 
Brook 

Alluvium 
Undifferentiated 

Interval Interval Waasis 
East 

Canaan 

Sussex Sussex Hampton - 

- Bottomland Bottomland - - 

Ancient 
Alluvium 

Undifferentiated Flemming Flemming Martial Kelly 

Alluvium & 
Glaciofluvial 

Calcareous shale, slate, 
quartzite, argillite 

Maliseet Maliseet Wapske Wapske 

Strongly metamorphosed 
slate, quartzite, volcanics 

Benedict Benedict - - 

Basal 

Calcareous sandstone 
and quartzite, some 

argillite, shale 
Siegas Siegas Salmon Bourgoin 

Calcareous shale 
Kedgwick Kedgwick - - 

Saltspring Saltspring Byrns Byrns 

Granite, gneiss, basalt, 
felsite 

Parry Parry Midway Midway 

Granite, quartzite, gneiss, 
argillite, volcanics, some 

sandstone 

Rogersville Rogersville Acadieville Rosaireville 

Tuadook Tuadook Redstone Lewis 

Granite, some quartzite, 
sandstone 

Pinder Pinder Coronary McAdam 

Catamaran Catamaram - - 

Sandstone and 
conglomerate (calcareous 

if un-weathered) 
Wakefield Wakefield - - 

Sandstone and quartzite, 
some argillite, slate, 

shale, schist 

Holmesville Holmesville Johnville Poitras 

Violette  Violette Violette 

Sandstone, 
conglomerate, mudstone 

Parsons Brook Parsons Brook - - 

Sandstone, 
conglomerate, shale 

Petitcodiac Petitcodiac Kings Kings 

Salisbury Salisbury Harewood Hicksville 

Salem Salem - - 

Sandstone, shale, 
mudstone 

Dorchester Dorchester - - 

Knightville Knightville Byrns Byrns 

Tracy Tracy Wirral Rooth 

Strongly metamorphosed 
slate, quartzite, volcanics 

Long Lake Long Lake Blue Mountain 
Colter 

Mountain 

weakly calcareous 
Sandstone and shale 

Shemogue Shemogue - - 

Stony Brook 
Stony Brook 

(Queens) 
Blackville 

Cambridge 
(Kings) 

Tormentine Tormentine Tidnish Tidnish 
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Weakly calcareous shale, 
mudstone 

Kingsclear Kingsclear Plaster Rock Nackawic 

Weakly- to calcareous 
shale, slate, quartzite, 

some sandstone 

Carleton Carleton Canterbury Canterbury 

Green Road Green Road - - 

 Lower Ridge Lower Ridge - - 

Mafic volcanics, gabbro, 
diorite 

Kingston Kingston Deed Deed 

Tetagouche Tetagouche - - 

Metamorphosed rhyolite, 
andesite, schist, slate, 

granite 
Popple Depot Popple Depot - - 

Basal/ Residual 

Metamorphosed non- to 
weakly-calcareous slate, 

quartzite, argillite, 
sandstone 

Green River Green River - - 

Colluvium & 
Water re-

worked till 

Granite, gneiss, basalt, 
felsite 

Clearwater Clearwater Ogilvie Lake Yellow Lake 

Metamorphosed non- to 
weakly-calcareous slate, 

quartzite, argillite, 
sandstone 

McGee McGee Nason Trafton 

Non- to weakly-
calcareous sandstone, 

shale, quartzite 
Victoria Victoria McCluskey Cote 

Strongly metamorphosed 
slate, quartzite, volcanics 

Britt Brook Britt Brook Babbit Brook 
Portage 

Lake 

Glaciofluvial 

Granite 
Gagetown Gagetown Geary Penobsquis 

Island Lake Island Lake Pennfield Pennfield 

Metamorphosed non- to 
weakly-calcareous slate, 

quartzite, argillite, 
sandstone 

Grand Falls Grand Falls Sirois Cyr 

Sandstone 
Kennebecasis Kennebecasis Quispamsis 

Nevers 
Road 

Lord and Foy Lord and Foy - - 

Sandstone and 
conglomerate (some 

quartz) 
Gulquac Gulquac - - 

Sandstone, some granite, 
quartzite, gneiss 

Guimond River Guimond River St. Oliver 
St. 

Theodule 

Weakly- to calcareous 
shale, slate, quartzite, 

some sandstone 
Muniac Muniac Ennishore Cyr 

- Bransfield Bransfield - - 

- Chockpish Chockpish - - 

Glaciofluvial & 
Marine 

Sandstone 

Aldouane Aldouane Marquant  

Baie du Vin Baie du Vin Napan Fontaine 

Kouchibouguac Kouchibouguac Potters Mill Vautour 

Caissie Caissie Robichaud  
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Richibucto Richibucto Cap Limiere 
Nevers 
Road 

Riverbank Riverbank Oromocto 
Nevers 
Road 

Glaciolacustrine 
Undifferentiated/ weakly 

calcareous clay 
Bellefleur Bellefleur - - 

Glaciomarine 

Calcareous sandstone 
and shale 

Tracadie Tracadie Bouleau Sheila 

Non-calcareous shale, 
some sandstone 

Mount Hope Mount Hope Boland Cambridge 

Sandstone 

Babineau Babineau - - 

Escuminac Escuminac Baie St. Anne - 

Galloway Galloway Smelt Brook 
Briggs 
Brook 

Glaciomarine/ 
Basal 

Sandstone/ clay from 
calcareous shale 

Upper 
Caraquet 

Upper 
Caraquet 

Little 
Shippegan 

Shediac 

Sandstone/Sandstone 
and shale or siltstone 

Barrieau Barrieau Cote D’or Shediac 

Buctouche Buctouche Michaud Neguac 

Bretagneville Bretagneville - - 

 St. Charles St. Charles - - 

Glaciomarine/ 
Marine 

Sandstone/ clay from 
calcareous shale 

Caraquet Caraquet 
Middle 

Caraquet 
Neguac 

Lacustrine Clay Fundy - Fundy Canobie 

Marine/ Basal Undifferentiated 
Research 
Station 

Research 
Station 

Baker Brook - 

Marine Undifferentiated 

Belledune Belledune - - 

Blackland Blackland - - 

Acadia Acadia Acadia Acadia 

Ablation/ Basal 
Sandstone/Sandstone 
and shale or siltstone 

Reece Reece Chipman Pangburn 

Harcourt Harcourt Coal Branch Grangeville 

Organic Undifferentiated 

Lavilette - - Lavilette 

Acadie Siding - - 
Acadie 
Siding 

Bog - - Bog 

Fen - - Fen 

SDTWp - - SDTWp 

Legaceville - - Legaceville 

Chelmsford - - Chelmsford 

St. Quentin - - St. Quentin 
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APPENDIX II. OVERVIEW OF SPATIAL REPRESENTATION OF SOIL ASSOCIATIONS WITH 
OVERALL PROFILE REPRESENTATION FOR EACH SOIL ASSOCIATE WITHIN ASPATIAL 
DATABASE. 

Soil Association 
% Spatial 
Coverage 

Soil Associates # of Profiles % Representation 

Acadia 3.83 

Acadia (w) 0 

0.36 Acadia (I) 2 

Acadia (P) 0 

Aldouane - 
Aldouane 3 

0.71 
Marquant 1 

Anagance - 

Anagance 2 

0.36 Dusinane (I) 0 

Dusinane (P) 0 

Aulac - 

Aulac 0 

- Tidnish (I) 0 

Tidnish (P) 0 

Babineau - Babineau 0 - 

Baie du Vin - 

Baie du Vin 5 

1.07 Napan 0 

Fontaine 1 

Barrieau 1.31 

Barrieau 6 

2.50 Cote D’or 5 

Shediac 3 

Becaguimec 0.18 

Becaguimec 0 

- Snyder (I) 0 

Snyder (P) 0 

Belledune - Belledune 0 - 

Bellefleur - 

Bellefleur 3 

1.07 Rob 1 

St. Amand 2 

Benedict - Benedict 1 0.18 

Big Bald Mountain 0.67 Big Bald Mountain 0 - 

Big Hole - 
Big Hole 3 

0.71 
Beaver Lake (I) 1 

Blackland - Blackland 0 - 

Boston Brook - 

Boston Brook 7 

1.96 Skin Gulch 3 

Yellow Brook 1 

Bottomland - Bottomland 1 0.18 

Bransfield - Bransfield 1 0.18 

Bretagneville - Bretagneville 1 0.18 

Britt Brook 3.28 

Britt Brook 2 

0.71 Babbit Brook 1 

Portage Lake 1 

Buctouche 1.31 

Buctouche 3 

0.54 Michaud 0 

Neguac 0 
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Caissie - 
Caissie 0 

- 
Robichaud 0 

Caraquet - 

Caraquet 0 

0.36 Middle Caraquet 2 

Neguac 0 

Caribou 2.74 

Caribou 11 

3.75 Carlingford 6 

Washburn 4 

Carleton 3.33 

Carleton 1 

1.07 Canterbury (I) 3 

Canterbury (P) 2 

Catamaran 1.62 Catamaran 0 - 

Chockpish - Chockpish 1 0.18 

Clearwater - 

Clearwater 3 

 Ogilvie Lake 1 

Yellow Lake 1 

Cornhill 0.33 Cornhill 1 0.18 

Dorchester - Dorchester 1 0.18 

Erb Settlement 0.12 Erb Settlement 1 0.18 

Escuminac - 
Escuminac 0 

- 
Baie St. Anne 0 

Fair Isle 0.88 
Fair Isle 1 

0.36 
Black Brook 1 

Flemming - 

Flemming 3 

1.79 Martial 4 

Kelly 3 

Fundy - 
Fundy (I) 2 

0.54 
Canobie (P) 1 

Gagetown 1.17 

Gagetown 8 

1.79 Geary 1 

Penobsquis 1 

Galloway - 

Galloway 3 

0.71 Smelt Brook 1 

Briggs Brook 0 

Glassville 2.68 

Glassville 9 

2.14 Temiscouata 1 

Foreston 2 

Grand Falls 1.00 

Grand Falls 6 

1.61 Sirois 2 

Cyr 1 

Green River - Green River 1 0.18 

Green Road - Green Road 2 0.36 

Guimond River - 

Guimond River 3 

0.54 St. Oliver 0 

St. Theodule 0 

Gulquac - Gulquac 2 0.36 

Harcourt 7.33 

Harcourt 5 

2.68 Coal Branch 6 

Grangeville 4 
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Harquail - Harquail 3 0.54 

Holmesville 4.47 

Holmesville 18 

7.50 Johnville 12 

Poitras 12 

Interval 0.55 

Interval 4 

1.25 Waasis 2 

East Canaan 1 

Irving 1.67 

Irving 1 

0.54 Goodfellow 1 

Halls Brook 1 

Island Lake - 

Island Lake 1 

0.18 Pennfield (I) 0 

Pennfield (P) 0 

Jacquet River 1.37 Jacquet River 0 - 

Jardine - 

Jardine 3 

1.43 Nickel Mill 2 

Five Fingers 3 

Jeffries Corner - Jeffries Corner 1 0.18 

Juniper 3.37 

Juniper 3 

1.07 Jummet Brook 1 

McKiel 2 

Kedgwick 1.28 Kedgwick 4 0.71 

Kennebecasis 0.33 

Kennebecasis 2 

0.36 Quispamsis 0 

Nevers Road 0 

Kingsclear - 

Kingsclear 4 

1.61 Plaster Rock 2 

Nackawic 3 

Kingston 0.87 

Kingston 0 

- Deed (I) 0 

Deed (P) 0 

Knightville - 

Knightville 1 

0.36 Byrns (I) 1 

Byrns (P) 0 

Kouchibouguac - 

Kouchibouguac 2 

0.54 Potters Mill 0 

Vautour 1 

Lomond 2.30 Lomond 2 0.36 

Long Lake 4.63 

Long Lake 2 

0.71 Blue Mountain 1 

Colter Mountain 1 

Lord and Foy - Lord and Foy 1 0.18 

Lower Ridge - Lower Ridge 1 0.18 

Maliseet - 

Maliseet 6 

1.43 Wapske (I) 1 

Wapske (P) 1 

McGee 4.64 

McGee 6 

1.96 Nason 3 

Trafton 2 
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Monquart - Monquart 8 1.43 

Mount Hope - 

Mount Hope 5 

1.79 Boland 1 

Cambridge 4 

Muniac 0.40 

Muniac 4 

1.07 Ennishore 2 

Cyr 0 

Organic 11.38 

Acadie Siding 3 

6.43 

Lavilette 6 

Muck 4 

St. Quentin 5 

Legaceville 2 

Bog 6 

Fen 3 

SDTWp 5 

Parleeville 0.08 

Parleeville 7 

1.61 Midland (I) 1 

Midland (P) 1 

Parry 2.14 

Parry 5 

1.07 Midway (I) 1 

Midway (P) 0 

Parsons Brook - Parsons Brook 4 0.71 

Petitcodiac - 

Petitcodiac 0 

0.18 Kings (I) 1 

Kings (P) 0 

Pinder 0.53 

Pinder 1 

0.36 Coronary 1 

McAdam 0 

Popple Depot 2.71 Popple Depot 0 - 

Queenville - 

Queenville 2 

0.36 Deed (I) 0 

Deed (P) 0 

Quisbis - 

Quisbis 4 

1.07 Dube 1 

Big Spring 1 

Reece 7.18 

Reece 6 

1.96 Chipman 3 

Pangburn 2 

Research Station - 
Research Station 0 

- 
Baker Brook (I) 0 

Richibucto - 

Richibucto 9 

1.79 Cap Limiere 0 

Nevers Road 1 

Riley Brook - Riley Brook 1 0.18 

Riverbank 2.05 

Riverbank 9 

1.79 Oromocto 1 

Nevers Road 0 

Rogersville 0.54 
Rogersville 1 

0.54 
Acadieville 1 
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Rosaireville 1 

Salem - Salem 2 0.36 

Salisbury 2.30 

Salisbury 6 

2.14 Harewood 3 

Hicksville 3 

Saltspring 0.13 

Saltspring 1 

0.71 Byrns (I) 2 

Byrns (P) 1 

Serpentine 0.56 

Serpentine 2 

0.71 Jenkins 1 

Adder 1 

Shemogue - Shemogue 2 0.36 

Siegas 0.60 

Siegas 3 

2.14 Salmon 6 

Bourgoin 3 

St. Charles - St. Charles 1 0.18 

Stony Brook 6.38 

Stony Brook 
(Queens) 

11 

4.11 
Blackville 6 

Cambridge (Kings) 6 

Sunbury 3.85 

Sunbury 7 

1.43 Hoyt 1 

Cork 0 

Sussex - 
Sussex 2 

0.54 
Hampton 1 

Tetagouche 0.60 Tetagouche 0 - 

Thibault 2.95 

Thibault 10 

2.50 Guercheville 2 

Lauzier 2 

Tobique - Tobqiue 2 0.36 

Tormentine - 

Tormentine 7 

2.86 Tidnish (I) 5 

Tidnish (P) 4 

Tracadie 0.47 

Tracadie 1 

0.89 Bouleau 1 

Sheila 3 

Tracy 0.74 

Tracy 4 

1.96 Wirral 5 

Rooth 2 

Tuadook 1.96 

Tuadook 2 

0.71 Redstone 1 

Lewis 1 

Undine 0.24 Undine 6 1.07 

Upper Caraquet - 

Upper Caraquet 0 

0.18 Little Shippegan 0 

Shediac 1 

Victoria 1.99 

Victoria 6 

2.14 McCluskey 3 

Cote 3 



 

190 

Violette - 
Violette (I) 2 

0.71 
Violette (P) 2 

Wakefield - Wakefield 1 0.18 
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APPENDIX III. COVARIATES ASSESSED FOR USE IN DSM WITH DESCRIPTION, REFERENCE, 
AND SOFTWARE UTILIZED. 

Derivative Definition Reference 
Software 

Used 

Catchment Area 
Upslope area contributing 

discharge into any given cell, 
calculated from flow accumulation 

Freeman (1991), 
Tarboton (1997) 

ArcGIS 

Flow Accumulation  
Total number of cells flowing into 

any given cell 

O’Callaghan and Mark 
(1984), Fairfield and 

Leymarie (1991), 
Freeman (1991), Quinn 

et al. (1991) 

ArcGIS 

Horizontal Distance 
to Stream  

Euclidean distance to nearest 
stream 

This study ArcGIS 

Vertical Distance to 
Stream 

Vertical distance from nearest 
stream based on increasing 

elevation 

O’Callaghan and Mark 
(1984), Nobre et al. 

(2011) 
ArcGIS 

Cartographic Depth-
to-Water Index 

Index of depth-to-water table for 
any given cell 

Murphy et al. (2007, 
2009) 

ArcGIS 

Distance to Coast 
Euclidean distance to nearest 

coastal shore 
This study ArcGIS 

Distance to Wetland 
Euclidean distance to nearest 

mapped wetland feature 
This study ArcGIS 

Slope (degrees) 
Rate of elevation change between 

adjacent cells (in °) 

Zevenbergen and 
Thorne (1987), Wilson 

and Gallant (2000) 
SAGA GIS 

Slope (%) 
Rate of elevation change between 

adjacent cells (as %) 

Zevenbergen and 
Thorne (1987), Wilson 

and Gallant (2000) 
SAGA GIS 

Aspect (degrees) Cardinal direction of slope 
Zevenbergen and 

Thorne (1987), Wilson 
and Gallant (2000) 

SAGA GIS 

Annual Average 
Rainfall 

Annual average rainfall (mm) 
retrieved from weather stations, 

interpolated from elevation, 
latitude and longitude 

This study ArcGIS 

Annual Average 
Temperature 

Annual average temperature (°C) 
retrieved from weather stations, 

interpolated from elevation, 
latitude and longitude 

This study ArcGIS 

Average Daily 
Maximum High 
Temperature 

Annual average daily maximum 
high temperature (°C) retrieved 

from weather stations, 
interpolated from elevation, 

latitude and longitude 

This study ArcGIS 

Latitude 
Gridded representation of 

changing latitude from north to 
south (decimal degree format) 

This study ArcGIS 
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Longitude 
Gridded representation of 

changing longitude from west to 
east (decimal degree format) 

This study ArcGIS 

Landform 
Gridded representation of parent 
material (surficial geology) mode 

of deposition 
This study ArcGIS 

Lithology 
Gridded representation of parent 

material (surficial geology 
lithology) 

This study ArcGIS 

Mineral Hardness 
Gridded representation of the 

hardness of lithologic types based 
on Moh’s hardness scale 

This study ArcGIS 

Grain Size 
Gridded representation of 

changing mineral sizes from very 
fine to coarse based on lithology 

This study ArcGIS 

Rock Type 
Gridded representation of 

changing rock types based on 
lithology 

This study ArcGIS 

Geology Type 

Gridded representation of 
changing geological types 

(sedimentary, igneous, 
metamorphic) 

This study ArcGIS 

Elevation 
Representation of elevation 

change across landscape, height 
above sea level 

Moore et al. (1991), Yue 
et al. (2007) 

ArcGIS 

Diurnal Anistropic  
Heating 

Influence of topography on diurnal 
heat balance 

Hengl and Hannes 
(2009) 

SAGA GIS 

Real Surface Area Calculation of ‘real’ cell area Grohmann et al. (2011) SAGA GIS 

Catchment Slope 
Slope of catchment, derived as 

intermediate with SAGA Wetness 
Index 

Boehner et al. (2002), 
Boehner and Selige 

(2006) 
SAGA GIS 

Modified Catchment 
Area 

Adjustment to catchment area 
calculation to correct for flow in 

low-lying flat areas. 

Boehner et al. (2002), 
Boehner and Selige 

(2006) 
SAGA GIS 

Specific catchment 
area 

Catchment area divided by cell 
width 

Freeman (1991) ArcGIS 

Topographic 
Position Index 

Position on hillslope in relation to 
adjacent cells 

Guisan et al. (1999), 
Wilson and Gallant 

(2000) 
SAGA GIS 

Multi-resolution 
index of valley 

bottom flatness 
(MRVBF) 

Delineation of valley bottom 
flatness from surrounding 

hillslopes 

Gallant and Dowling 
(2003) 

SAGA GIS 

Multi-resolution 
index of ridgetop 
flatness (MRRTF) 

Delineation of ridgetops flatness 
from surrounding hillslopes, 

intermediate of MRVBF 

Gallant and Dowling 
(2003) 

SAGA GIS 

Terrain Surface 
Convexity 

Determines percentage of upward 
and convex cells within a defined 

radius 

Iwahashi and Pike 
(2007) 

SAGA GIS 

Terrain Surface 
Concavity 

Determines percentage of upward 
and concave cells within a defined 

Iwahashi and Pike 
(2007) 

SAGA GIS 
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radius, same algorithm as terrain 
surface convexity 

Terrain Surface 
Texture 

Determines the variability in 
frequency and intensity of pits and 

peaks within a defined radius 

Iwahashi and Pike 
(2007) 

SAGA GIS 

Topographic 
Positive Openness 

Represents landscape exposure to 
atmosphere 

Yokoyama and 
Shirasawa (2002), Prima 

et al. (2006) 
SAGA GIS 

Topographic 
Negative Openness 

Represents landscape enclosure/ 
protection from atmosphere  

Yokoyama and 
Shirasawa (2002), Prima 

et al. (2006) 
SAGA GIS 

Curvature 
Classification 

Representation of surface 
curvature/ 9 geometric forms of 

hillslopes 

Dikau (1988), Birkeland 
(1999), Hugget (2007) 

SAGA GIS 

Maximum Curvature 
Calculates the maximum slope of 

the slope on a defined search 
radius (secondary derivative) 

Zevenbergen and 
Thorne (1987), Irvin et 
al. (1997), Petry et al. 
(2005), Olaya (2006) 

SAGA GIS 

Minimum Curvature 
Calculates the minimum slope of 

the slope on a defined search 
radius (secondary derivative) 

Zevenbergen and 
Thorne (1987), Irvin et 
al. (1997), Petry et al. 
(2005), Olaya (2006) 

SAGA GIS 

Upslope Curvature 
Average local curvature of upslope 
contributing area for any given cell 

Freeman (1991) SAGA GIS 

Downslope 
Curvature 

Like profile curvature Freeman (1991) SAGA GIS 

General curvature 
Combination of planar and profile 

curvature 
Zevenbergen and 

Thorne (1987) 
SAGA GIS 

Local Downslope 
Curvature 

Same as local curvature but only 
looks at downslope cells 

Freeman (1991) SAGA GIS 

Local Upslope 
Curvature 

Same as local curvature but only 
looks at upslope contributing cells 

Freeman (1991) SAGA GIS 

Local Curvature 
Calculates the total gradient to 

neighboring cells 
Freeman (1991) SAGA GIS 

Profile Curvature Curvature parallel to slope 
Zevenbergen and 

Thorne (1987) 
SAGA GIS 

Planar Curvature Curvature perpendicular to slope 
Zevenbergen and 

Thorne (1987) 
SAGA GIS 

Longitudinal 
Curvature 

Like profile curvature 
Zevenbergen and 

Thorne (1987) 
SAGA GIS 

Cross-sectional 
Curvature 

Like planar curvature 
Zevenbergen and 

Thorne (1987) 
SAGA GIS 

Tangential 
Curvature 

Determines areas of convex and 
concave flows, calculated from 

planar and profile curvature 

Wilson and Gallant 
(2000) 

SAGA GIS 

Flow Line Curvature Like profile curvature Freeman (1991) SAGA GIS 

Total Curvature Curvature of the surface 
Wilson and Gallant 

(2000) 
SAGA GIS 

Downslope Distance 
Gradient 

Measures impact of local slope on 
hydraulic gradient 

Hjerdt et al. (2004) SAGA GIS 
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SAGA Wetness 
Index 

Computes a modified topographic 
wetness index  

Boehner et al. (2002), 
Boehner and Selige 

(2006) 
SAGA GIS 

Slope Length and 
Steepness 

Calculates slope length factor, 
typically used in Revised Universal 

Soil Loss Equation (RUSLE) 

Desmet and Govers 
(1996), Kinnell (2005), 

Boehner and Selige 
(2006) 

SAGA GIS 

Terrain Ruggedness 
Index 

Total change in elevation within a 
defined radius of any given cell 

Riley et al. (1999) SAGA GIS 

Valley Depth 
Like inverse of vertical distance to 

channel network 
- SAGA GIS 
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APPENDIX IV. RANDOM FOREST-DERIVED VARIABLE IMPORTANCE FOR 5 DOMINANT 
PREDICTORS FROM MODEL RESULTS FOR SAND, SILT, CLAY, CF, SOM, AND DB AT 
DEFINED DEPTH INTERVALS AND BY SOLUM DEPTH.  

Property 

Depth 

0-15cm 15-30cm 30-60cm 60-90cm Solum 

Var. Imp. Var. Imp. Var. Imp. Var. Imp. Var. Imp. 

Sand 

Rock_Type 100 Rock_Type 100.00 SLP 100 Val_Depth 100 Admax 100.00 

Admax 77.17 Admax 97.33 Rock_Type 98.06 Land 71.57 Rock_Type 69.31 

Min_Curve 69.06 Lithology 91.13 Max_Curve 91.79 Max_Curve 71.16 Prof_Curve 58.77 

Land 68.51 Max_Curve 70.01 Admax 88.69 Cur_Cls 58.76 Land 48.10 

Lithology 66.08 Di_Heat 66.42 MRRTF 82.15 Geo_Type 52.75 Lithology 41.50 

Silt 

Admax 100.00 Admax 100.00 Lithology 100.00 Val_Depth 100.00 Admax 100.00 

DTW 53.83 Min_Curve 64.04 Admax 89.94 Geo_Type 97.79 Lng_Curve 66.70 

Rock_Type 45.40 Max_Curve 63.73 Grain_Size 76.29 Rock_Type 75.33 Geo_Type 55.59 

CA 44.36 SLP 63.65 DTW 73.75 Dwn_Grade 78.06 SLP 54.72 

Cur_Cls 34.10 Lng_Curve 55.34 SLP 64.35 Wetland 72.12 Prof_Curve 54.21 

Clay 

Wetland 100.00 Rock_Type 100.00 TPI 100.00 Admax 100.00 Wetland 100.00 

MRRTF 74.72 Admax 94.72 Val_Depth 94.58 Max_Curve 80.41 Rock_Type 80.94 

Lng_Curve 48.95 MRVBF 78.65 Rock_Type 71.45 Val_Depth 76.17 Cur_Cls 68.09 

MRVBF 44.12 Lithology 70.69 Max_Curve 70.24 Cur_Cls 66.26 Crs_Curve 63.06 

Rock_Type 40.94 Geo_Type 57.36 Admax 67.23 Wetland 62.79 DTW 62.17 

CF 

Admax 100.00 SLP 100.00 Admax 100.00 Admax 100.00 Val_Depth 100.00 

MRRTF 73.29 Admax 71.57 Tan_Curve 52.38 Land 76.40 MRVBF 85.45 

Cur_Cls 50.56 Dwn_Grade 67.77 Prof_Curve 47.84 Min_Cuve 74.49 Admax 71.98 

MRVBF 43.71 Max_Curve 63.97 Max_Curve 45.40 Geo_Type 67.07 Rock_Type 61.93 

Rock_Type 39.04 ASP 62.09 DTW 42.84 DTW 66.61 MRRTF 60.48 

OM 

Wetland 100.00 Land 100.00 Admax 100.00 Plan_Curve 100.00 Geo_Type 100.00 

Dwn_Grade 94.37 CA 98.38 TPI 53.46 Admax 95.22 Val_Depth 91.71 

Lng_Curve 86.35 Lng_Curve 92.63 ASP 53.26 ASP 91.18 Rock_Type 83.54 

Land 83.18 Rock_Type 92.09 Land 53.19 Crs_Curve 8694 Max_Curve 82.80 

Crs_Curve 77.21 FA 90.95 Wetland 53.02 Tan_Curve 86.28 Crs_Curve 73.40 

Db 

MRVBF 100.00 Lithology 100.00 Admax 100.00 Lithology 100.00 Admax 100.00 

MRRTF 75.72 Max_Curve 94.27 SLP 57.71 ASP 54.59 Crs_Curve 92.05 

Prof_Curve 72.07 Rock_Type 91.55 Cur_Cls 51.95 DTW 54.29 SLP 91.73 

Val_Depth 72.01 Wetland 87.03 CA 45.34 Land 53.67 Ts_Conv 91.11 

Lng_curve 71.17 DTW 77.10 ASP 45.02 Cur_Cls 49.55 MRVBF 80.15 

Others 

A Depth B Depth Solum Depth Drainage 

 

Admax 100.00 CA 100.00 Admax 100.00 SLP 100.00 

FA 91.10 MRVBF 96.65 Cur_Cls 93.37 Max_Curve 87.95 

TPI 90.22 Cur_Cls 87.31 CA 76.53 Admax 78.61 

Geo_Type 85.66 Admax 77.84 Tan_Curve 69.86 TPI 77.35 

Max_Curve 82.13 TPI 75.99 Di_Heat 68.43 Dwn_Grade 71.32 
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