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ABSTRACT

For decades researchers have been studying forest soils and summarizing findings
in the form of soil surveys with thematic soil maps depicting soil associations, broad
polygons representing groups of individual soil types. With growing availability of high-
resolution spatial data, it has become possible to model and map how individual soil
properties vary, both spatially and with depth, across the landscape at high resolution.
This dissertation demonstrates how this can be accomplished for the Province of New
Brunswick (NB), Canada by way of digital soil mapping (DSM) based on (i) existing soil
information and related data sets, (ii) principles of soil formation as dictated by location-
specific changes in topography, surficial geology, and climate. For this purpose, existing
elevation data sets were fused via error reduction procedures to generate a
comprehensive province-wide digital elevation model (DEM) at 10m resolution. The
resulting DEM was then used to delineate a variety of data sets detailing spatial variations
in topography, hydrology, and climate. Various sources of spatial geology depictions were
combined by way of similarities in classifications resulting in re-delineations of landform
and lithological attributes. In combination, the data layers generated were used to
determine how specific soil properties (n =12,058) vary, both spatially and with increasing
depth, across the province at 10m resolution. These determinations were made possible

by way of machine-based random forest regression modelling.



This dissertation provides details in terms of how (i) a province-wide soil database
was generated from existing soil survey reports, (ii) how missing soil data were
substituted through the process of pedotransfer function development and analysis, (iii)
how the province-wide DEM layers were fused, and (iv) how the DSM procedure was
formulated and executed. The soil properties selected for modelling and mapping
purposes refer to soil depth, drainage, bulk density, texture, coarse fragment content,
and soil organic matter content. In turn, these properties, in combination with spatial
data sets (topography, geology, and climate), can be used to model and map other soil
variables such as, e.g., pH, soil water retention at field capacity and permanent wilting

point, and cation exchange capacity.
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CHAPTER 1 - INTRODUCTION

1.1. OVERVIEW

Soil is a complex and essential, yet non-renewable, natural resource which plays a
critical role in policy and resource management (Adhikari et al., 2012; Cambule et al.,
2013; Poggio et al., 2013). As such, this resource is gaining increasing attention with
growing concerns around climate change adaptation and how soil properties vary with
changing environments (Grimm and Behrens, 2010; Haring et al., 2012; Poggio et al.,
2013). Of particular importance, especially for precision agriculture and forestry, is
knowing how soils and their properties vary across the landscape and how these
variations influence root development and the movement, and storage, of soil carbon,
nutrients, minerals, and water (Florinsky et al., 2002; Smith et al., 2006; Carré et al., 2007,

Keys, 2007; Grimm and Behrens, 2010; Haring et al., 2012; Weil and Brady, 2017).

Soil formation relies on five primary factors: parent material, relief (topography),
vegetation, climate, and time (Jenny, 1941; Klingebiel et al., 1988; Valladares and Hott,
2008; Adhikari et al., 2012; Cambule et al., 2013). Therefore, understanding the variation
in these factors for any given location can provide a glimpse into soil conditions, and in
turn, may allow for better understanding the relationships between soil properties and
vegetative productivity. Conventionally, soils are depicted as choropleths, i.e., tessellated
boundaries that hierarchically group soils by similarities in landforms (i.e. soil
associations, distinguished by morphological features and mineralogical composition) as

illustrated in Fig. 1.1 (Colpitts et al., 1995; Fahmy et al., 2010). This form of mapping



represents a generalized simplification of surveyed soil properties (McBratney et al.,
2000a; MacMillan et al., 2005; Mora-Vallejo et al., 2008). The resulting map units,
however, are too broad to reflect many of the soil variations within these units as affected
by elevation, drainage, type of vegetation cover, surface exposure, water flow, and

gravitation influences (Odgers et al., 2014).

[ soil Association

Elevation
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Figure 1.1. Visual example of one of Holmesville soil associations within NB with extent outlined in white
(A), range of elevation within the association (B), and range in varying land types (organic) and land
management practices (both agriculture and forestry) within small subset of association overlain on GeoNB
basemap imagery (C). This one association covers 35,683ha (0.6% of NB).

Traditionally surveyed and delineated soil associations are limited, specifically due
to (Pitty, 1979; Moore et al., 1993; Zhu and Mackay, 2001; Heung et al., 2014; Odgers et

al., 2014):



1. Soil surveys were developed for assessing land uses instead of soil property
variability.

2. Soil properties vary continuously and do not abruptly change at defined
boundaries (Simbahan et al., 2006; Odgers et al., 2014).

3. Relationships between soil properties and landform/landscape position were
often missed (MacMillan et al., 2005).

4. Locations of individual soil types within each, and across, soil associations remain
unknown with reference to actual landform extent and topographic delineations
(Dobos et al., 2000),

5. Survey objectives were limited in various ways: time and available financial
support, lack of survey-supporting data layers, and non-standardized data

collection and laboratory procedures (Park et al., 2001).

With increasing availability of high-resolution datasets within geographic
information systems, pertaining to, e.g., digital elevation models (DEMs) (with resolutions
ranging between 50 - 100cm) and DEM-derived secondary models (topographic and
climate models), it is possible to ascertain how soil properties, those of which influence
the rooting medium, vary spatially across the landscape, from upper reaches of hill crests
to valley bottoms and stream banks, with properties focusing on soil depth, texture,
organic matter content (SOM), bulk density (Db), coarse fragment (CF) content, pH, cation
exchange capacity (CEC), and moisture retention at field capacity (FC) and permanent

wilting point (PWP). This is feasible by way of digital soil mapping (DSM):



1. Developing pedotransfer functions (PTFs) (Bouma, 1989), mathematical
relationships between soil properties, and

2. Producing spatially-continuous soil attribute maps by modeling relationships
between geographically-explicit soil profiles across the landscape with data sets

representing surficial geology, climate, and topographic information (from DEMs).

Digital soil mapping (DSM) is a growing science directed toward modeling soil
properties spatially across the landscape at a continuous extent by resolving the issue of
soil boundary discretization and omission of soil property inter-variability per soil
association (McBratney et al., 2003; Smith et al., 2006). This approach is based on three

fundamental principles:

1. pedometrics, mathematical and statistical approaches to modeling soil properties
and relationships (Florinsky, 2012),

2. soil-landscape relationships (Gerrard, 1981; Birkeland, 1999; McBratney et al.,
2000; MacMiillan et al., 2005; Barka et al., 2011), and

3. soil formation and soil forming factors (Jenny, 1941; Birkeland, 1999; Wu et al.,

2008; Adhikari et al., 2012).

With DSM, soil properties from field-collected soil samples can be statistically
compared to DEM-derived topographic derivatives, climatic and geological datasets from
ancillary data sources, and remote sensing techniques (Moore et al., 1993b; Odeh et al.,

1994; Gessler et al., 1995), following the framework of the well-known soil-formation



model, ‘CLORPT’, as outlined by Jenny (1941). With advancements in soil science and
geospatial analyses, McBratney et al. (2003) introduced ‘SCORPAN’ to also incorporate a
spatial component, neighborhood (N), into the modeling framework. The SCORPAN
model suggests that a soil property at a given spatial location, Soi/, is a function of other
soil properties at the same spatial location (5 ), climate (C ), organisms (O ), relief
(topography) (R), parent material (P), age (4), and neighborhood (V) (McBratney et al.,
2003; Florinsky, 2012; Cambule et al., 2013). This model coincides with enhancements in
geospatial analyses and the ability to spatially compare soil properties to underlying

ancillary data sources for any given location.

This dissertation introduces and explores the development of a DSM framework
for NB, Canada, with the purpose of producing continuous soil physical and chemical
property maps across the landscape. NB was chosen as a study extent due to the wealth
of existing data and the variability in soil forming factors. These factors refer to changing
temperature and precipitation conditions from lowlands in the southeast to highlands in
the northwest, changing glacial landscapes, and topographic expressions varying from flat
lowlands to steeply sloping hillsides (Pronk and Ruitenberg, 1991; Colpitts et al., 1995;

Fahmy et al., 2010).

1.2. RESEARCH QUESTIONS

1. To what precision can pedotransfer functions be derived from county-based soil

surveys?



2. How can spatial models be derived for use in predicting soil properties at a

continuous extent?

3. To what extent can the underlying relationships between soil formation and soil
forming factors be modeled by way of digital soil mapping for predicting soil

properties spatially?

1.3. OBJECTIVES

The objective of this dissertation was to develop a framework with functioning
models for predicting soil physical and chemical properties continuously across the
landscape for the province of NB, Canada as a case study. The process to complete this

task was applied as follows:

1. County-based soil surveys and current soil maps were utilized to develop an
aspatial database, and, in turn, produce pedotransfer functions relating soil

attributes to one another.

2. Available DEMs for NB were amalgamated resulting in a new DEM via open-
sourced DEM fusion. In turn, DEM-derived topographic and hydrographic datasets

were developed.

3. Continuous climate data sets pertaining to temperature and precipitation were
developed for NB by way of comparing historical records for spatially explicit

weather stations from NB and Ontario to underlying DEM and spatial location.



4. Existing surficial geology delineations were updated via similarity modeling
comparing different data sets representing parent material mode of deposition

and primary lithology.

5. Spatial database of soil properties was developed via amalgamating field-collected

soil profiles from numerous sources (n = 12,058).

6. Statistical comparison of soils information in spatial database to underlying
geologic, topographic, and climatic datasets, and conventional soil maps was
conducted using Random Forest machine learning algorithm with model results

utilized to develop spatial continuum maps for specific soil properties.

7. By mapping important soil properties such as depth, bulk density (Db), texture (%
sand, silt, and clay), coarse fragment content (% CF), and soil organic matter
content (% SOM), model results can be expanded with pedotransfer functions to
predict additional soil properties spatially across landscape of New Brunswick at

10m resolution.

1.4. SUBJECT MATTER

This dissertation is completed in “article” format with the body consisting of four
distinct chapters (i.e., Chapters 2 through 5), as outlined below. The final chapter (Chapter
6) provides a summary of the material, overall conclusions from this research, and

recommendations for future research.



Chapter 2 introduces and describes the development of an aspatial database from

the amalgamation and harmonization of historical county-based soil surveys.

Chapter 3 presents the development of soil physical and chemical PTFs, derived
from the aspatial database from Chapter 2. Soil physical PTFs were compared to other

published PTFs to test the overall performance.

Chapter 4 describes the development of a method to systematically and
comprehensively reduce DEM errors across New Brunswick based on fusing province-
wide DEM layers from various sources, and calibrating the result using select LiDAR-

generated DEMs for final elevation calibration.

Chapter 5 introduces the development of a spatial database from field-collected
samples and resulting DSM spatial models by comparing this database to underlying
topographic, geological, and climatic data sets. This chapter also describes how these data
sets were adjusted prior to spatial modeling. With this, soil properties of drainage, horizon
depths, sand, silt, clay, CF, Db, and SOM were modeled in continuum format at 10m

resolution.

Chapter 6: provides an overall summary of this dissertation, a statement of

original contributions, and recommendations for further development and research.



CHAPTER 2 — AMALGAMATION AND HARMONIZATION OF SOIL SURVEY
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2.1. ABSTRACT

This article describes procedures used to generate an aspatial, terminologically-
consistent, province-wide database for forest soils from soil survey reports, with New
Brunswick, Canada, serving as an example. The procedures involved summarizing existing
soil information into soil associations via similarities in landform and parent material.
Consistent soil associations were developed, and pedologically-correct horizon sequences
were assigned to each soil associate within each soil association, all done with reference
to soil-forming factors. These factors refer to: (i) soil parent materials as classified by
mode of deposition and lithology, (ii) topographic surface expressions, (iii) soil drainage,
and (iv) dominant vegetation type. Additionally, each associate was characterized with

horizon—specific physical and chemical soil properties distinguished by depths. An



amalgamated database containing 106 soil associations, 243 soil associates (differing

within the soil associations by drainage only), and 522 soil profiles was developed.

Key Words: Soil surveys, amalgamation, associations, associates, parent materials,

landformes, lithology, drainage, profiles, horizons, properties.

2.2. INTRODUCTION

Soils are part of the natural environment consisting of complex interactions
between living organisms and soil forming factors pertaining to geology, climate,
topography, organisms, and time (Jenny, 1941; Birkeland, 1999; Adhikari et al., 2012). As
such, soils vary spatially in type (soil profile) and spatial extent. This is generally reflected
by most soil survey reports which group surveyed soil units into landform- and lithology-
defined soil associations (McKeague and Stobbe, 1978). Cross-referencing these reports
to one another, however, revealed numerous inconsistencies in terms of naming and
labelling similar soils types and horizons. This is in part due to changing soil classification
and mapping protocols over a period of roughly 70 years. In detail, some of the
inconsistencies refers to:

1. Changes in soil survey methods, including sampling strategies, laboratory
analyses, and quantitative units for reporting results (McKeague, 1978; Group,

1981; Working Group on Soil Survey Data, 1982; Guertin et al., 1984);

2. Incompleteness in terms of reporting small to large scale variations in soil

associates, varying in scale and resolution, with main focus on agricultural lands

10



(Pitty, 1979; Zhu and Mackay, 2001; Adhikari et al., 2012; Odgers et al., 2014). Past
survey practices generally addressed soil variations at the 1:10,000 scale (and
often coarser), and were therefore generally mute about small scale variations. As
a result, spatial pedological variations which influence crop, forest productivity
and root growth via nutrient and water retention, remained unrecognized (Parr et

al., 1992; Southorn, 2003; Keys, 2007; Taylor et al., 2013).

3. Implied differences in soil association conditions and extent across arbitrary

survey boundaries.

Typically, each soil survey report included 3 sections (e.g., Poitras map unit, 2615

ha; Langmaid et al. 1980):

Section 1: an overview of soil associates including information regarding association,

landform, lithology, vegetation, drainage, and topography,

Section 2: a profile description for sampled soil associates which included field-based
measurements for horizons, depths, texture, CF content, structure, root presence,

mottling (if applicable), and pH, (Fig. 2.1):

11



Figure 2.1. Example of information obtained from soil surveys and utilized in developing the database,
including general information (section 1) (top paragraph) and field-based measurements for each horizon
(Section 2) (bottom descriptions) separated by dotted line. The example provided represents the Poitras

The Poitras soils, which dominate this map unit, are the very poorly drained
members of the Holmesville catena. These soils occur in depressions and are
classified as Orthic Gleysols. The silt loam phase occupies 1526 ha, and the
fine sandy loam phase occupies 206 ha. The vegetation consists of black spruce,
eastern white cedar, alder, balsam fir, running club moss, spinulosa wood-fern,
goldthread, sphagnum mosses, tree moss, haircap moss, and sedges. The
description of a moist undisturbed profile follows:

Horizon Depth
{cm)

L Trace Leaf litter, mostly moss and twigs; pH 4.2.
F 5-3 Brown semidecomposed litter and roots, felted; pH 4,2.
H 3-0 Black well-decomposed organic material; moderate,

medium granular; pH 4.2.

heg 0-25 Light gray (10YR 7/1); gravelly loam; many, coarse,
prominent very pale brown (10YR 7/4) mottles; massive;
plastic, sticky; abrupt, smooth to slightly wavy
boundary; pH 4.7,

Bg 25-55 Light olive gray (5Y 6/2); Tloam; many, medium,
prominent yellowish brown (10YR 5/6) mottles; some of
these are concretions 2-4 mm in diameter; strong,
coarse, granular; plastic, slightly sticky; clear,
wavy boundary; pH 5.5.

Cgl 55-80 Light olive gray (5Y 6/2); gravelly loam; common,
medium, prominent brownish yellow (10YR 6/6) mottles;

very weak, platy; plastic, slightly sticky; pH 5.4,

soil associate retrieved from Langmaid et al. (1980).

Section 3: an overview of lab-measured physical and chemical properties by soil associate

(e.g., % carbon, % sand, silt and clay, Db, field capacity (FC), permanent wilting point

(PWP)), (Fig. 2.2):

! I Cation Exchangeable
b 4 % exchange cations, Base
| Depth Total Total capacity, meq/100 g saturation
Horizon | cm pH | c N meq/100 g{ Ca Mg | K %
| | |
Poitras
L-H 5-0 4.2 41.40 1.35 222.88 6.80 2.80 1.27 39.8
Aeg 0-25 4.7 0.85 0.09 13.79 0.52 0.04 0.05 4.9
Bg 25-55 5.5 0.30 0.03 5.36 0.52 0.02 0.05 17.0
Cql 55-80 5.4 0.12 0.03 4.80 0.48 0.00 0.06 11.5
Cg2 80-106 5.5 0.03 0.03 5.36 0.80 0.01 0.06 16.2
Cg3 106-132 5.5 0.21 0.03 6.57 0.68 0.00 0.06 11.3
Cod 132+ 5.6 0.15 0.03 4.92 0.68 0.00 0.06 15.0

Figure 2.2. Example of information obtained from soil surveys and utilized in developing the database,
including lab-measured, horizon-specific soil physical and chemical properties. The example provided

represents the Poitras soil associate retrieved from Langmaid et al. (1980).
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The rationale for a province-wide compilation of soil survey reports arose from
the need for understanding where and how soils respond, locally and regionally, to
intensifying land uses and overall climate-change expectations. As such, unified soil
databases per province would assist in, e.g., (i) estimating survey-based soil carbon
storage, and (ii) determining how soil carbon storage would change within existing and
proposed changes to land management and related climate-change adaptation scenarios
(Carré et al., 2007; Aksoy et al., 2009; Grimm and Behrens, 2010; Poggio et al., 2013).
These changes would vary from abandoning farm fields, converting natural stands into
agricultural land, expanding build-up areas through urban sprawl to land reclamation

operations including wetland restoration and afforestation.

The objective of this article was to develop a seamless database by amalgamating
and harmonizing existing soil survey reports for NB as a case study. This objective was

accomplished by:

1. Compiling all the existing soil survey information into one consistent and seamless

database,

2. Unifying the classifications and descriptions assigned to the surveyed soil
associations, soil associates, and soil-forming factors, namely, parent material (by
mode of deposition and lithology), topography, vegetation cover type, and

drainage, and

13



3. Standardizing the soil associate names by profile and property descriptions, with
emphasis on horizon labels and properties, notably horizon depth, soil texture,

SOM content, CF content, Db, and soil moisture retention at FC and PWP.

All of this was completed in reference to:

1. the standardized soil surveying terminology of the Mapping System Working

Group (1981) and the Expert Committee on Soil Survey (1982),

2. sampling and analytical techniques described by McKeague (1978) and Guertin et

al. (1984),

3. the National Soils Database (“NSDB”, retrieved from the CANSIS website at

http://sis.agr.gc.ca/cansis/nsdb/index.html), and

4. the spatial soil distribution and representation as established by the province-

wide soil mapping approximations also retrieved from the CANSIS website, i.e.,

a. "Soils of New Brunswick: the Second Approximation" ("SNB", Fahmy et
al., 2010),

b. "Forest Soils of New Brunswick" ("FSNB", Colpitts et al., 1995)

2.3. COMPILATION OF SOIL SURVEY REPPORTS

The New Brunswick soil survey reports were retrieved from the publications

section of the Canadian Soil Information System (CANSIS) as available from Agriculture

14
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and Agri-Food Canada website at
http://sis.agr.gc.ca/cansis/publications/surveys/nb/index.html.  Each  survey was
downloaded and assessed to determine the extent of data availability. Table 2.1
summarizes these findings and identifies which reports were utilized in developing the
amalgamated soil database and which provide spatial coverage. Some of the reports
needed to be excluded either due to the omission of horizon-specific data, or insufficient
information about the horizon-specific soil forming process, i.e., "A1" instead of "Ae" or
“Ah”. Also omitted were surveys specifically dealing with small sections of agricultural
lands. Of the available soil surveys (both included and excluded from the database), only
53.9% of NB has survey coverage with the spatial coverage of the surveys utilized in this

study only representing 35.5% of NB (Fig. 2.3).

An overview of the soil associates and soil associations is provided in Appendix I.
From this, an aspatial database was developed, with specific attention given to soil
associations, soil associates, soil classification (subgroup, great group, and order),
dominant vegetation type, topography (landform, slope position, slope steepness,
aspect), soil parent materials (lithology and mode of deposition), drainage, stoniness
(amount of exposed coarse fragments at the surface), and rockiness (amount of exposed
bedrock at the surface). Next, all soil horizon data pertaining to horizon depth, density,
texture, organic matter content, coarse fragment content and other physical and
chemical properties were entered into the database in an associate-by-associate manner.
When inconsistencies arose, either varying analytical procedure or units of measurement,

all values were retained but placed in separate fields to decide which of these entries best
15
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reflect theoretical expectations. The procedures to do so including estimating omitted

values and standardizing across different analytical techniques are described in Chapter

3.
[ physiographic Regions

. 1.  New Brunswick Lowlands
Soil Surveys 2. St. John River Valley/ Highland
_ Acadian Peninsula Foothills
[T woodstock (v.1) 3. Caledonia Highlands
I:l Woodstock (V.2) 4.  Miramichi Highlands
l:l dstock (V.3 5.  Chaleur Uplands

Woodstock (V.3) 6. Edmudston Highlands

- Woodstock (V.4)
|: Dorchester Parish Elevation
Chipman — Minto - Harcourt m
Havelock Parish 811
:l Madawaska County 0
- Moncton Parish

- Northern Victoria County
|:] Andover - Plaster Rock
Rogerswville - Richibucto
Shediac & Botsford Parish
:l St. Quentin - Kedgwick

120 Km
Sussex

Figure 2.3. Spatial coverage of soil surveys utilized for developing database. Also included is elevation and
physiographic regions to represent how coverage varies in each region. Physiographic regions retrieved
from Colpitts et al. (1995).
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Table 2.1. Overview of available soil surveys for New Brunswick, Canada, with publication year, scale,
whether it includes data on a horizon-by-horizon basis, whether it was utilized in this study, and if spatial
coverage is available. Some reports did not provide a spatial data layer but do provide images. These have
been georeferenced (GR) but not digitized.

Year Horizon - Digitized Spatial
Soil Survey Published Scale Specific (Y = Utilized Y/N) Coverage (%
/ N) of NB)
Fredericton - Gagetown 1940 95,040 N Y 4.28
Sussex Area 1986 20,000 Y X N (GR) 0.25
Chipman - Minto - Harcourt 1992 50,000 Y X Y 9.98
Woodstock - Florenceville (Vol. 1) 1989 20,000 Y X Y 0.12
Woodstock - Florenceville (Vol.2) 1992 20,000 Y X Y 0.11
Woodstock - Florenceville (Vol. 3) 1996 20,000 Y X Y 0.39
Woodstock - Florenceville (Vol. 4) 2001 20,000 Y X Y 0.98
Moncton Parish 1993 20,000 Y X N (GR) 1.10
Shediac and Botsford Parishes 1996 20,000 Y X Y 1.03
Dorchester Parish 1998 20,000 Y X Y 0.10
Acadian Peninsula 2000 20,000 Y X Y 1.50
Woodstock Area 1944 63,360 Y X N
Andover - Plaster Rock 1963 63,360 Y X Y 4.60
Southern Northumberland 1964 31,680 N N )
County
Northern Victoria County 1976 63,360 Y X Y 4.60
Madawaska County 1980 50,000 Y X Y 478
Rogersville - Richibucto Region 1983 50,000 Y X Y 5.81
Blackbrook Watershed 1993 10,000 Y X N -
St. Quentin - Kedgwick 1982 50,000 Y X Y 0.62
Southeastern New Brunswick 1950 126,720 N N -
Havelock Parish 1980 10,000 Y X Y 0.36
Central and Nor‘thern New 2005 250,000 N N )
Brunswick
Southwestern New Brunswick 1953 156,720 N Y 12.90
Agriculture Canada Benton Ridge
Potato Breeding Substation 1992 >,000 N N )
Agrlcultu're Canada'Research 1984 4,800 N N )
Station, Fredericton
Senator Herve J. Michaud
Experimental Farm Agriculture 1983 3,000 N N -
Canada, Buctouche
Mount Carleton Provincial Park 1972 - N N -
Lepreau Provincial Park 1973 - Y N -

2.4. DATA HARMONIZATION AND AMALGAMATION PROCEDURES

The compilation of the surveyed soil data was guided by the comprehensive soil
association overviews for New Brunswick SNB and FSNB reports, and by the cross-

referenced aspatial listing of soil association names, profile descriptions and soil horizon
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properties within the Canada-wide NSDB database. This compilation resulted in a
database consisting of 2,490 rows of data with coverage for individual properties outlined
in Table 2.2. Of the 522 soil profiles, 500 contain soil classifications and 507 contain
drainage classifications.

Table 2.2. Overview of measured soil properties within amalgamated database with overall completeness.

Soil Property # of Horizons % Complete
Horizon Depth (cm) 2490 100.00
Coarse Fragment Content (%) 885 35.54
Texture (% sand, silt, and clay) 1306 52.45
pH (H20) 1535 61.64
pH (CaClz) 647 25.98
Bulk Density (g/cm?) 938 37.67

Organic Matter Content (%) 121 490

Base Saturation (%) 466 18.71
Cation Exchange Capacity 659 26.47
Field Capacity (-33kPa) 846 33.98
Permanent Wilting Point (-1500kPa) 738 29.64
Ca (meq/100g) 976 39.20
Mg (meq/100g) 960 38.55
K (meq/100g) 973 39.08

Soil Names and Inconsistencies. The amalgamated database was organized by soil
association name, each with its own soil associates and horizon sequences. In this, the
well-drained soil associate members of each soil association carry the name of the soil
association. Naming inconsistencies occurred and were resolved using the SFNB and SNB

reports as guiding authority, as follows:

1. Some of the soil associations were referred to as a complex between two
associations, i.e., "Baie du Vin - Galloway", "Barrieau - Buctouche", and

“Parleeville - Tobique” because of similar soil forming factors and soil properties.
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For these instances, only one name was retained based on descriptions of parent

material lithology and mode of deposition.

In some cases, only the names of the soil associations were provided although
profiles were provided for different drainage classes. For these, new drainage-
related soil associate names were assigned based on Table 6 (“Correlation of New

Brunswick Soil Series/Associations with Forest Soil Units”) of the SNB reports.

Within some reports, horizon and depth specifications by soil associate (section 2,
Fig. 2.1) were inconsistent with their listing at the end of the reports (section3,
Fig. 2.2). This was most prevalent in the Northern Victoria and St. Quentin soil
surveys. To correct this, the measured properties were kept separate from the

general data and were entered at the end of the database.

Also inconsistent were the amounts of data provided for each soil type. For
example, only general information was provided for some soil types (sections 1
and 2) while measured soil properties (section 3) were omitted. This resulted in

some soil associates lacking horizon-specific property measurements.

Drainage. Soil drainage was classified from very poor (wetlands and organic soils)

to rapidly- and excessively-drained (coarse-textured, upper slope positions), as outlined

by the Expert Committee on Soil Survey (1982). The procedure in Fig. 2.4 was used to

determine if soil drainage was correctly classified for each soil associate in terms of soil

horizon sequence. This procedure ensured that:
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1. the soil associate names within each association were consistent with the
drainage expectations based on Table 4 in the SNB report, entitled “New

Brunswick mineral soil catenas”;

2. well- to rapidly-drained members occur on upper slope and hill-crest positions,
imperfect- to moderately well-drained members occur on the lower slopes, and

very poor- to poorly-drained members along toe slopes and in depressions.

The drainage classifications derived were generally consistent with the original
survey drainage assignments. In cases where the original drainage classifications provided
broad ranges, i.e., "VP-I", the middle drainage class (P) was retained. The drainage
assignment procedure in Fig. 2.4 was used to ensure proper drainage classification for all
samples, particularly for those of which were assigned broad classes, e.g., “VP-R”, or

specified neighboring drainage classes, e.g., “VP-P”.
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Figure 2.4. Visual representation of model developed to assign drainage regime to aspatial database.
Resulting drainage classes are bolded.

Soil Classification. Each soil profile was placed within the Canadian Soil
Classification (Soil Classification Working Group, 1998) context by specifying its belonging
to Soil Order, Great Group, and Subgroup. Once completed, abbreviations and rankings
for soil classifications, stoniness, rockiness, and drainage were assigned to every soil
associate (where applicable). Table 2.3 provides an overview of the % distribution of

database entries by soil classification.
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Table 2.3. Overview of soil orders separated by great group and subgroup within database with overall

representation of great groups provided.

Order Great Group Subgroup Number of Profiles % Total
Gleyed 1
Ferro-Humic Gleyed Fragic 1 4.79
Orthic 23
Humic Orstein 1 0.19
Fragic
Gleyed 29
Gleyed Luvic 1
Podzol Gleyed Mini 1
. Gleyed Orthic 18
Humo-Ferric e o 1 41.95
Mini 1
Orstein 7
Orthic 155
Sombric 2
Eluviated 11
. Gleyed 7
Dystric Gleyed Eluviated 7 6.51
Orthic 9
Eutric Gleyed EILfviated 3 0.77
Brunisol Orthic 1
Gleyed Eluviated 1
Melanic Gleyed 4 1.53
Orthic 3
Gleyed Eluviated 1
Sombric Gleyed 7 4.02
Orthic 13
Brunisolic 7
Dark 5
Gleyed Brunisolic 10
Gray Gleyed 8 18.39
Luvisol Gleyed Podzolic 20
Orthic 3
Podzolic 43
Brunisolic 1
Gray Brown Gleyed 1 0.38
Humic Gleyed 3 0.57
Cumulic 1
Regosol Gleyed Cumulic 2
Regosol Gleyed 4 1.72
Orthic 2
Fera 3
Gleysol Orthic 16 4.02
Rego 2
Humic Orthic 20 421
Gleysol Rego 2
Fera 5
. Fragic 2
Luvic Humic 1 4.60
Orthic 16
. - Typic 5
Organic Fibrisol Terric Mesic 3 2.49
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According to this compilation, Podzols (46.9% of database) have a much higher
representation than any other order (representing almost half of the database), followed
by Luvisols (18.8%), Brunisols and Gleysols (12.8%), and Regosols (2.3%). Organic soils
(6.4%) were both surveyed and included in the database but were omitted from the

analyses by focusing on mineral soils only.

Soil Forming Factors. Soil parent materials were classified by:

1. landforms which vary by mode of deposition (how the material was deposited
geologically) and
2. lithology (referring to the chemical and physical makeup of the deposited

material).

Differences in surficial geology descriptions, both in mode of deposition and lithology,
occurred within the same soil association names when cross-referencing the SNB (Table
6), FSNB (Tables 2 and 5), and NSDB reports. This was corrected as follows: if three or
more sources (including soil surveys, SNB, FSNB, and NSDB) provided the same mode of

deposition for an individual soil association, then that mode of deposition was assigned
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to that association. Any remaining inconsistencies were addressed by determining the
expected mode of deposition by surface expressions (topography), coarse fragment
content, and horizon sequences. Together, this cross-referencing resulted in 21 unique
modes of deposition (Table 2.4), with some associations having two distinct modes of
deposition overlaying one another (i.e. glaciomarine/basal). In such instances, the top

parent material will have the dominant influence on soil formation and development.

Table 2.4. Summary of updated parent material modes of deposition within aspatial database including the
quantity of associations within each mode of deposition.

Mode of Deposition Number of Associations % of Total
Residual 4 3.60
Residual and Colluvium 1 0.90
Colluvium and Water Re-worked Till 4 3.60
Ablation/ Residual 9 8.11
Ablation 14 12.61
Ablation/ Basal 2 1.80
Basal 29 26.13
Basal/ Residual 1 0.90
Glaciomarine/ Basal 5 4.50
Glaciomarine 5 4.50
Glaciomarine/ Marine 1 0.90
Marine 3 2.70
Marine/ Basal 1 0.90
Glaciofluvial and Marine 6 5.41
Glaciofluvial 10 9.01
Alluvium and Glaciofluvial 2 1.80
Ancient Alluvium 1 0.90
Alluvium 3 2.70
Lacustrine 1 0.90
Glaciolacustrine 1 0.90
Organic 8 7.21

Not yet included in the Table 2.3 description are landforms that specifically refer to, e.g.,
valley trains, glaciofluvial outwash plains, drumlins, moraines, and eskers. Additionally,

glacial tills (ablation and basal) lack information on depth of deposits. Additional
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information pertaining to these deposits and depths can be obtained from Rampton

(1984).

With respect to soil lithology specifications, there were inconsistencies as well. For
example, the parent material of the Baie du Vin association was labelled as: "acidic GLFL
or MA sand, petrologically similar to underlying sandstone bedrock, and rich in biotite".
The Galloway soil units, stated to have the same lithology, was labelled: "acidic,
petrologically similar to the underlying sandstone bedrock and rich in biotite". These
inconsistencies were addressed through re-labelling and by updating lithology by
dominant rock types, grain sizes, and mineral hardness (based on Mohs hardness scale,
retrieved from http://rocks.comparenature.com/). This was followed by (i) providing
binary descriptors for sedimentary, igneous, and metamorphic parent materials per soil
association, and (ii) by the ranking of (a) rock type weatherability (ease of physical and
chemical breakdown of parent material) and (b) fertility (mainly Ca, and Mg richness of
the weathering parent material) (Table 2.5). Weatherability and fertility were based on

Table 4 in the FSNB report.

Some soil associations (Bellefleur, Bottomland, Bransfield, Chockpish, Gulquac,
Lower Ridge, St. Charles, and Wakefield) could not be identified as forest soil associations
in the FSNB and SNB reports. For these associations, weatherability and fertility
assignments could therefore not be determined. This conforms with the previous

statements in which inconsistencies occur with soil mapping initiatives.
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Table 2.5. Overview of weatherability and fertility rankings assigned to common rock types, retrieved from
Figure 4 (The relative weatherability and fertility of the common rock types found in New Brunswick) from
FSNB.

Rock Type Relative Weatherability Relative Fertility
0-1 (slow-fast) 0-1 (poor-rich)

Quartz-Pebble Conglomerate 0.04 0.2
Felsic Volcanic (Rhyolite) 0.07 0.19
Felsic Pebble Conglomerate 0.14 0.17
Schists 0.15 0.43
Metaquartzites 0.18 0.44
Gneiss 0.20 0.42
Granodiorites 0.20 0.54
Quartz Diorites 0.23 0.61
Granites 0.28 0.31
Diorites 0.28 0.55
Alkali Granites 0.34 0.25
Gabbros 0.33 0.65
Polymictic Metaconglomerates 0.39 0.37
Mafic Volcanic (Basalt) 0.38 0.72
Quartzose Sandstone 0.42 0.40
Metasandstone 0.47 0.55
Polymictic Conglomerates 0.54 0.31
Slates 0.53 0.61
Metasiltstones 0.58 0.66
Lithic Sandstones 0.62 0.39
Metawackes 0.64 0.71
Feldspathic Sandstones 0.66 0.47
Mudstones 0.73 0.53
Calcareous Sandstones 0.77 0.78
Calcareous Slates 0.80 0.80
Calcareous Siltstones 0.84 0.84
Calcareous Mudstones 0.87 0.87
Limestones 0.90 0.94
Argillaceous Limestones 0.95 0.79

Topography. Topographic surface expression descriptors by soil association also
varied by survey report, being absent in some of the reports. When present, topographic
surface expressions ranged from flat (or domed) for organic soils to strongly rolling and
hilly on dense igneous parent materials in the New Brunswick Highlands. Although

included in the database, little emphasis was placed on topographic expressions because
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the expressions vary by resolution, intensity and frequency of changing topographic
positions, slopes, and geographic regions, resulting in inconsistent descriptions between
reports. A consistent measure for each association referred to average slope position and
slope percent, but this information was only provided for 40% of the reports. To remedy,
soil association boundaries can be re-defined spatially via unified landform and lithology
classifications and topographic expressions can be classified via digital terrain modeling

as described in Chapter 4.

Vegetation. Some surveys listed the presence of dominant overstory species,
generally within the vicinity of the soil sampling points. These specifications were entered
into the database in the form of binary fields referring to dominance of shade tolerant
hardwoods, softwoods, and mixedwoods within the overstory canopy. Also, where forest
floor data were provided, forest floor thickness was assigned to each horizon sequence.
If spatial coordinates were available for the soil associates then, to some extent,
vegetation types could be re-assigned to the associates via forest inventory data providing

information on pre-harvest conditions.

Horizon Descriptions and Depths: Considerable effort was placed on ensuring
that the horizon classification within the surveys was consistent with those outlined in
the “Canadian System of Soil Classification”. Horizons were also generalized by master
horizon (forest floor, A, B, and C) and by the first subscript for each master horizon, i.e.,
Ae, Ah, Bf (represents the dominant process influencing the soil). Table 2.6 outlines the
range of master horizon descriptors encountered. The additional horizon specifications
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suchas g, ¢, x, j, t, etc., were entered into the database as binary fields (0 when absent, 1
when present). Profiles where soil horizon descriptors where marked by “?” or “or” were
re-labeled through cross-referencing with other similar soil profiles. Horizon depths

(many were originally specified in inches) were re-assigned in cm.

Table 2.6. Variability in soil horizon classification encountered within aspatial database, separated by
master horizons, followed by primary subscripts, resulting in 180 unique soil horizons.

Master Horizon Primary Subscript Variations
Of Of, “Of, Om”, Ofy, Of,
Om Om, Om31, Om3, Oms, Omy, Oms
O (Organic) Oh Oh, Ohj, Oh,, Ohs, Ohy
(0]
Oco
L L, LF, LF,, LFH
LFH (Forest Floor) F F, F1, Fo, FH
H H, Hy, HC
Ae, Aeg Ae, Aey, Ae,, Aeh, Aej, Aeg, Aegi, Aegy, Aegj, 2Aeg, Aexjg, Aejg
A Ah, Ahg Ah, Ah;, Ah,, Ahb, Ahg, Ahgj
Ahe, Aheg Ahe, Aheg, Ahejg, Ahegj
Ap, Apg Ap, Apg, Apgj
Bf, Bft, Bftg, Bfc, “Bf, Bfj”, “Bf, Bm”, Bf1, Bf,, Bfs, Bfs, Bfj, Bfg,
Bf, Bfg Bfg., Bfgy, Bfgj, Bfjg, Bfjg2, Bfjgs, Bfjgj, Bfjg, Bfcg, Bfcjg, Bfgcj,
Bfjgc, Bfjgjc
Bfh, Bfhg Bfh, Bfht, Bfhc, Bfh,, Bfhg, Bfhgj, Bfhgj,
Bh Bh, Bhcg
B Bg Bg, Bgi, B,, Bgj, 2Bg, Bgc, Bgx, Bgf, Bgfcc
Bhf, Bhfg Bhf, Bhfg, Bhfgj, Bhfg,, Bhfjg
Bm, Bmg Bm, Bmi, Bm;, 2Bm, Bmg, Bmx
Bt, ”Bt, C", Btl, Btz, Bt3, Bt4, Btj, ZBt, ZBtz, ZBtj, Btg, Btg]_, Btgz,
Bt, Btg Btgj, “Btgj or Cgj”, “Btgj, Cgj”, Btgjs, Btgj,, Btgjs, Btgk, Btjg, Btjgs,
Btgj,, 2Btg, 2Btg2, 2Btgj, 2Btjgj, Btxg, Btxjgj
BC BC, BCgj, BCx
C, C1, Cz, C3, C4, Cs, ZC, 2C1, ZCz, 2C3, 3C, Cg, Cg1, ng, ng, Cg4,
C Cg Cgs, Cgj, Cgja, Cgjo, Cgjs, 2Cg, 2Cg, 2Cgy, 2Cgs, 2Cgj, 3Cg, 3Cgj,
C 4Cg, 4Cgj, 5Cg, 6Cg,
Ck, Ckg Ck, Ckg, Ckg, Ckga, Ckgs, Ckgj, 2Ckgj
Cx, Cxg Cx, 2Cxj, Cxgj
R R

Soil Properties. For each horizon, surveyed values for soil properties referring to
soil texture, structure, Db, SOM content, CF content, and water retention (at both FC and

PWP) were entered into the database, using the following procedures.
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Texture: Soil texture information, where available, was entered into the database

in two forms:

1. Texture classes as assigned from texture triangle, as outlined in the Canadian Soil

Classification System (Fig. 2.5), and

2. Proportions of sand, silt, and clay within the fine-earth fraction as percentages
with the summation equaling 100% (although not always the case within the

database).

Some texture descriptions provided broad ranges, i.e., “SiL-LS”. For these cases, texture
class and percentage of sand, silt, and clay were assigned by choosing the center point
within these classes on the texture triangle. Additionally, some texture classifications
provided did not fall within the realm of the texture triangle, i.e. “G” (gravel) and “SG”
(sandy gravel). This occurred for 37 samples, of which, could not be provided sand, silt,
and clay contents. Although not in the texture triangle, these classifications were
retained. Also, most texture classifications were assigned including a modifier, i.e., “vfSL”
(very fine sandy loam). These modifiers were retained, but texture classes without

modifiers were placed in a separate column.

For some horizons, only a texture class was provided, this was typically the case
when general descriptions (section 2) did not coincide with specific horizon properties
(section 3) within the survey. With these horizons, the percentage of sand, silt, and clay

were left absent. For the cases where only the percentage of sand, silt, and clay were
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present (without assigned texture class), an automated model (outlined in Table 2.7) was

derived to determine the texture class based on these percentages. This was used to fill

in the voids where the texture class was absent, resulting in 86.6% of the database with

texture measurements.

Table 2.7. Logical Rule statements applied in ascending order to determine proper soil texture class based
on texture triangle as outlined in Soil Classification Working Group (1998).

Rule Output Class Output Abbreviation
Clay > 60 Heavy Clay HC
(60 — Sand) < Clay < 40 & Sand < 45 Silty Clay SiC
Clay = 40 & Sand < 45 & Clay = (60 — Sand) Clay C
Clay > 35 & Sand > 45 Sandy Clay SC
Clay 2 28 & Sand < 20 Silty Clay Loam SiCL
27.5 < Clay <40 & 20 < Sand < 45 Clay Loam CL
Clay £ 12 & Clay < (20 — Sand) Silt Si
Clay < (50 — Sand) Silt Loam SiL
Clay < (2 - (Sand — 70)) Sand S
Clay < (Sand — 70) Loamy Sand LS
Clay <20 & Sand 253 ORClay <7 Sandy Loam SL
Clay 2 (73 — Sand) Sandy Clay Loam SCL
Else Loam L
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Figure 2.5. Texture composition of soil samples for each soil survey utilized in developing the aspatial
database overlain on texture triangle.

Coarse Fragments: CF content was provided for 36% of the mineral horizons.
Some of these included ranges, i.e., "40-60%, while others provided qualitative
descriptions, i.e., "few" or "some". With the ranges, the middle values were assigned.
Additionally, coarse fragment content was also included as part of the horizon texture
description, e.g., “gravelly sandy loam”. For these cases, the suggestions of the Expert
Committee on Soil Survey (1982) were adopted as follows: <15% CF by volume was
assigned to “Non”, 15-35% not assigned an adjective, 30-60% assigned to “Very”, and

>60% assigned to “Extremely”. Where the texture modifiers were not consistent with the
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CF% values (i.e., “very gravelly sand” with a CF% of 10%), and were also not consistent

with landform expectations, Table 2.8 was assessed to aid in providing CF estimates.

Table 2.8. Overview of CF content for each parent material mode of deposition found within aspatial
database. Note that some modes of deposition lack CF content data while others have large variations in
values.

Coarse Fragment Content

Mode of Deposition

Min. Max. | Mean SD Sample Size
Residual 10 40 24.2 12.8 6
Residual + Colluvium - - - - 0
Ablation 5 80 24.7 16.6 76
Ablation/ Basal 0 30 11.9 7.5 94
Ablation/ Residual 10 70 47.1 16.0 24
Alluvium 0 0 0 0 14
Alluvium + Glaciofluvial - - - - 0
Ancient Alluvium 0 0 0 0 6
Basal 1 60 15.5 9.8 371
Basal/ Residual - - - - 0
Colluvium + Water- i i i i 0
reworked Till
Glaciofluvial 1 80 35 22.9 45
Glaciofluvial + Marine 0 35 4.6 7.4 106
Glaciolacustrine - - - - 0
Glaciomarine 0 12.5 3.6 3.4 55
Glaciomarine/ Basal 0 45 4.7 8.6 54
Glaciomarine/ Marine 0 0 0 0 8
Lacustrine 0 1 0.3 0.3 14
Marine 0 0 0 0 11

Due to the omission of samples with measured CF values for some modes of deposition,
values could not be generalized. Alternatively, values could also be inferred from general
parent material descriptions provided for each soil association. In principle, these values
could be assigned to the soil horizons. However, the specified ranges were, in most cases,

too broad to be consistent with actual CF% survey values.

Soil Structure: Soil structure was provided as a description with three
components, shape, size, and distinctness. Therefore, each of these three components
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were assigned to the database. An overview of soil structures can be found in “Manual
for Describing Soils in the Field: 1982 Revised” by Expert Committee on Soil Survey (1982).
It was noticed that terminology for structureless soils were used interchangeably, namely
"single grain", "loose", "amorphous", and "massive"; therefore, these were grouped into

two classes (“massive” for amorphous and massive descriptions and “single grain” for the

remaining two). Soil structure information was provided for 73.6% of the database.

Organic Matter Content: SOM content was provided in four formats, % organic
matter, % carbon, and loss on ignition (LOI) at 450°C and 850°C. Soil surveys for Plaster
Rock and Northern Victoria Counties provided both % carbon and LOI at 450°C (328
samples, 13% of database). Kent County was the only report to record LOI at 850°C (11
samples, 0.4% of database) and did not record % carbon for comparison. Due to the lack
of samples and omission of carbon values for comparison, readings for LOI at 850°C were

omitted. The % carbon readings were converted to % organic matter via Eq. 1.

%SOM = %C - 1.72 (1)

where %SOM is % soil organic matter, %Cis % carbon and 1.72 is the conversion factor
since SOM is composed of 58% carbon (Romano and Palladino, 2002; Pollacco, 2008;
Chaudhari et al., 2013; Poggio et al., 2013). Standardizing these measurements into %

SOM resulted in 1,202 samples with measurement (48.3% of database).

Soil Density: For particle density (Dp) and Db, box plots were used per horizon

label to quickly determine the extent to which density outliers were present (Fig. 2.6). For
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each outlier, the original report was reviewed to determine if a data entry mistake had
occurred. It was ensured that the ranges of the density values were generally consistent
with soil texture, SOM, and soil depth expectations, with additional considerations to
distinguish density in compacted versus non-compacted soils. Data entry with obvious
data errors (e.g., soil Dbs greater than densities for silicate rocks) were deleted. Db
determinations were generally sparse, with 937 of the horizon- based data entries (38%

of database).
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Figure 2.6. Visual comparison of range in Dbs associated with each master horizon to assess presence (or
absence) of outliers.

Water Retention: In terms of water retention (the ability to access moisture under
different pressure gradients), depending on the report, values were provided in bars
(bar), atmospheres (atm), and kilopascals (kPa) with values measured in both volumetric

and gravimetric form. Together, ten reports provided water retention measures in
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gravimetric form while five reports provided measures in. Two reports did not specify
whether the measures were gravimetric or volumetric. Gravimetric water retention
values were recorded and converted to volumetric form via multiplication with Db. The
different units of measurement were then amalgamated and adjusted to represent water
retentions in kPa: -33kPa for water retention at FC, and -1,500kPa for water retention at
PWP. Also, with water retention at FC, moistures were provided under the title "Moisture

Equivalent" which is FC values measured via a specific test.

Additional moisture measurements included water % at Ocm, water holding
capacity, maximum water holding capacity, and water retention at saturation, 10cm,
50cm, 100cm, -100kPa, -400kPa, hygroscopic moisture, available water, and moisture
percentage. Emphasis was placed on moisture retention at FC and PWP due to the
influence of these pressures on rooting. Once combined, water retention at FC had 836
samples measured (34.0% of database) whereas PWP had 743 samples measured

(29.8%).

Aspatial Overview. The soil database, amalgamated from 17 soil surveys for NB,
Canada, is intended to provide a comprehensive overview of forest soil conditions across
NB. As such, this database contains information for 106 soil associations, 243 soil
associates, and 522 soil profiles, each with their own soil horizon specifications as outlined
above. Through careful cross-referencing, all data entries were examined to ensure they
coincided with soil association and horizon-specific expectations as outlined in the
“Canadian System of Soil Classification” (Soil Classification Working Group, 1998).
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Most soil associates had more than one profile described, depending on frequency
of occurrence, i.e., some reports listed the same soil association even though reports
occurred in different geographic locations. For example, the Holmesville soil association
occurred in eight soil surveys. As a result, the well-drained soil associate (also called
Holmesville) had 18 profiles within the database. Its moderately-well drained associate,
Johnville, had 12 profiles within the database, followed by the poorly-drained associate,
Poitras, also with 12 profiles. It was common for the broadest soil associations to occur
within different surveys, and therefore, had multiple profiles within the database. In
contrast, some of the less-common soil associations lacked a single soil profile altogether
(i.e., Aulac, Babineau, Becaguimec, Belledune, Big Bald Mountain, Blackland, Caissie,
Bottomland, Catamaran, Clearwater, Escuminac, Jacquet River, Kingston, Research

Station, and Tetagouche).

The outcome of all considerations and actions is presented in Appendix II,
completed in reference to the spatial context of the SNB soil coverage for New Brunswick.
This representation reveals (i) that not all SNB-mapped soil associations occur within the
original soil survey reports (i.e., Becaguimec, Big Bald Mountain, Catamaran, Jacquet
River, Kingston, Popple Depot, and Tetagouche), and (ii) that some of the surveyed soil
associations are not spatially represented in the existing SNB delineation, as outlined in
Table 2.9. In total, the soil association coverage in Appendix Il corresponds to the
71,450 km? land base of New Brunswick. The total provincial area amounts to 72,907 km?

of which 1,458 km? is water. The organic soil coverage at 11.38% amounts to 8,131 km?.

36



Table 2.9. Surveyed soil associations not currently spatially covered in province-wide SNB soil association

map.

Soil Associations

Aldouane Flemming Kouchibouguac Riley Brook
Anagance Fundy Lord and Foy Salem
Baie du Vin Galloway Lower Ridge Shemogue
Bellefleur Green River Maliseet St. Charles
Benedict Green Road Monquart Sussex
Big Hole Gulquac Mount Hope Tobique
Boston Brook Harquail Parsons Brook Tormentine
Bransfield Island Lake Guimond River Upper Caraquet
Bretagneville Jardine Petitcodiac Violette
Caraquet Jeffries Corner Queenville Wakefield
Chockpish Kingsclear Quisbis
Dorchester Knightville Richibucto

Although amalgamated and harmonized, the aspatial database remains
incomplete in terms of measurement gaps for horizon-specific physical and chemical
properties, as outlined in Table 2.2. Chapter 3 addresses and, where feasible, fills some
of these gaps via the development of PTFs by way of linear multivariate regression

analyses. Decision trees can be used to fill in remaining data gaps.

2.5. CONCLUDING REMARKS

Creation of the aspatial database expedites PTF development for gap-filling and
summarizing and quantifying both soil association and associates via similarities and
differences. Once complete, this will enable spatially re-digitizing the updated database
using already-existing soil association delineations, followed by revising these to ensure
topographic mapping consistencies. For example, all digitized floodplain-derived soil
associations must conform with the extent of topographically delineated floodplains, all
residual soil units need to coincide with topographically delineated ridge tops and steep

slopes. Additionally, all organic soil units need to fall within topographically delineated

37



depressions and wet areas next to streams, rivers, lakes and coastal shores (Murphy et

al., 2008, 2009). Finally, all soil map units need to reflect landscape features as defined

by digitally-delineated landforms such as eskers, kames, till plains, drumlins, and

moraines, and need to further reflect the lithology origin of these formations (e.g.,

calcareous versus siliceous).

The topographically-corrected soil delineations, with the amalgamated and

harmonized database, provide many possible applications. For example:

1. The correct placement of each soil association and associated soil properties will

3.

assist in refining the moisture regime classification within these associations
based on topographic location. For example, clay-textured soil associations reduce
water infiltration into the soil, thus having ephemeral flow channel networks that
reach further upslope to ridges than what would be the case for coarse textured
associations. The latter would require larger upslope flow accumulations for

stream flow initiation.

Improved soil mapping will allow for better soil erosion estimation, because the
soil descriptors needed to calculate soil erosion potentials correspond with local

variations in topography.

The revised mapping will improve the quantification of soil organic matter,
because soil organic matter accumulations correlate positively with soil rooting

depth as affected by soil lithology, drainage, and compaction.
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4. Since vegetation growth and health is closely related to soil fertility (availability of
soil nutrients) and water availability, the revised soil map will allow for better
decision making in site selection for crop production whether in forestry or

agriculture.

5. Since soil and vegetation type (and vegetation structure) vary across landscapes,
the improved soil mapping will find much use in conservation and reclamation

practices.

6. Given that there is a high network of paved and unpaved roads and trails
permeating New Brunswick, the revised map will provide much needed

information about their locations across drainage-challenged soils.
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3.1. ABSTRACT

This article presents the development of pedotransfer functions (PTFs) for soil
physical and chemical properties such as bulk density, texture (sand, silt, and clay), coarse
fragment content, pH, soil organic matter content, cation exchange capacity, field
capacity, and permanent wilting point for varying soil types and drainage conditions.
Pertinent data for PTF development resulted from the amalgamation of county-based soil
surveys for the province of New Brunswick, Canada into a harmonized aspatial database
for both soil associations and soil types. It was ensured that PTF outputs coincided with
realistic thresholds, namely, bulk density does not exceed 2.4g/cm3, soil organic matter
does not exceed 100%, combination of sand, silt and clay does not exceed 100% for fine

earth mineral fraction, permanent wilting point does not exceed field capacity, and all
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values are positive. PTF development for sand, silt, clay, organic matter content, bulk
density, cation exchange capacity, field capacity, and permanent wilting point resulted in
capturing between 60 to 75% of the total soil property variation with PTF models
validated by via comparison with published PTF equations.

Key Words: Province-wide database, physical and chemical soil properties, pedotransfer

functions.

3.2. INTRODUCTION

Due to the high cost associated with intensive soil sampling and subsequent
laboratory analyses required to develop high-resolution soil maps, there is a need for
algorithms to model and predict soil properties that are difficult, or too costly, to measure
(Moore et al., 1993; McBratney et al., 2002). These algorithms, known as pedotransfer
functions (PTFs) are a feasible alternative allowing for the prediction of soil properties
based on a few easy-to-measure variables. PTFs, a term introduced by Bouma (1989) are
not a new science and have been used vastly in the past for predicting soil properties, for
example, a review of hydraulic PTFs is provided by Wosten et al. (2001), and two general
PTF reviews provided by McBratney et al. (2002) and Nanko et al. (2014). Many PTFs have
been developed for soil physical and chemical attributes with soil organic matter (SOM),
soil texture, structure, and bulk density (Db) as the most commonly used predictors

(Moore et al., 1993).
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PTF development requires a data set that is heterogenous in terms of soil types
and site conditions, particularly varying parent materials, topographies, flora, and
physiographic regions (varying mesoclimates), since these variables have been proven as
dominant soil forming factors (Jenny, 1941; McBratney et al., 2003; Florinsky, 2012;
Heung et al., 2014). Therefore, soil property variation will be dependent upon these
factors. Developing PTFs over a wide range of soil conditions is more likely to result in
higher predicting accuracy (Pollacco, 2008) with a readily-available source of information
in the form of conventional soil surveys (McBratney et al., 2000, 2002; Balland et al.,
2008). In New Brunswick, Canada, there is a wealth of information available in

conventional county-based soil surveys.

The objectives of this article are:

1. to determine how the survey-compiled data for individual soil physical chemical

variables relate to one another through PTF analysis;

2. to use the resulting best-fitted functions for filling the data gaps among the

compiled data;

3. to evaluate the general validity of the resulting functions based on theoretical

limits and their predictive correspondences with respect to literature equivalents.
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3.3. METHODS

Prior to statistical analyses, the NB soil database (Chapter 2) had undergone
rigorous amalgamation and harmonization procedures regarding detailed soil horizon and
property assessments by soil associations and soil associates (Chapter 2). This included
determining that general soil property range expectations were not exceeded. For
example, the summation of specified sand, silt and clay % values (soil texture) cannot
exceed 100%, soil Db should not exceed 2.4g/cm3, all percentages (CF, SOM, carbon (C),
and base saturation) must remain between 0 and 100%, soil pH values should vary at most
from 2.5 to 8. For some soils, only qualitative descriptions were provided for CF content

while others were provided with CF ranges (e.g., CF = "30 - 50").

Table 3.1 provides data frequencies, means and ranges for each database-listed
soil variable prior to methodology and unit standardization. This standardization followed
the variable-by-variable soil survey guidelines and specifications by McKeague (1978), the
Mapping System Working Group (1981), the Expert Committee on Soil Survey (1982),
Guertin et al. (1984), and GlobalSoilMap (http://www.isric.org/documents/document-

type/globalsoilmap-specifications-v24-07122015).
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Table 3.1. Overview of soil physical and chemical attributes within the amalgamated database prior to
attribute standardization and data filling. Bolded variables represent those of which are modeled in this
study whilst non-bolded represent those requiring additional standardization.

Sample % of

Attribute . Mean Min Max Standardized
Size total
Sand (%) 1306 52.5 47.4 1.2 100
Silt (%) 1306 52.5 34.3 0 76.1
Clay (%) 1306  52.5 18.3 0 72.1
CF (%) 885 355  14.18 0 80.0
Db (g/cm?) 938 377 14 011 2.8
C (%) 1082 440 1.4 0 20.1 OM (%)
OM (%) 121 49 1.7 0 12.4 OM (%)
pH (H20) 1757 686 5.2 2.9 8.1 pH (H20 and CaCl2)
pH(CacClz) 689 26.9 4.6 2.9 7.5 pH (H20 and CaCl2)
CEC (meq/100g) 659 26.5 15.0 1.0 73.9
FC (%, gravimetric) 678 272 270 2 94 FC (volumetric and
gravimetric)
FC (%, volumetric) 168 65 265 6 43 FC (volumetric and
gravimetric)
PWP (%, gravimetric) 455 183 9.9 1 58 PWP (volumetric and
gravimetric)
PWP (%, volumetric) 283 11.4 8.7 1 28 PWP (voI.umet.rlc and
gravimetric)
Base Saturation (%) 466 18.7 23.0 0 100
Ca (meq/100g) (NH4OAc) 990 38.7 2.5 0 65 Ca (meq/100g) (NH4OAc)
Ca (kg/ha) (NH4OAc) 67 2.6 4583 448 2847 Ca (meq/100g) (NH4OAc)
Ca (meq/100g) (NaCL) 92 3.6 2.4 0.1 12.2 Ca (meq/100g) (NH4OAc)
Mg (meq/100g) (NHaOAc) 974 38.0 0.5 0 8.2 Mg (meq/100g) (NH4OAc)
Mg (kg/ha) (NH4OAc) 67 2.6 76.6 0 336.3 Mg (meq/100g) (NH4OAc)
Mg (meq/100g) (NaCL) 92 3.6 0.7 0 6.3 Mg (meq/100g) (NH4OAc)
K (meg/ 100g) (NH4OAc) 987 38.6 0.3 0 6.6 K (meg/ 100g) (NH4OAc)
K20 (kg/ha) (NH4OAc) 67 2.6 97.1 22.4 336.3 K (meg/ 100g) (NH4OAc)
K (meq/100g) (NaCL) 92 36 02 0 2.5 K (meg/ 100g) (NH4OAC)

Once standardized, both simple and multiple linear regression analyses were
conducted on each attribute to test the feasibility of modeling soil physical and chemical
properties. Only the Table 3.1 variables in bold were subject to this analysis due to the
lack of a consistent procedures for standardizing base cation measurements. The
resulting PTF equations were evaluated in terms of their best-fitted intercept, regression

coefficients, t- and p-values. The overall goodness-of-fit was expressed by the adjusted
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coefficient of variation (R?), the root mean square error (RMSE), and mean absolute error
(MAE), and was visualized by plotting actual versus best-fitted data values. The PTF
equations were subsequently used to predict the values of bolded variables across the
database for general confirmation, and this was also done for the same data using

published PTF equations as a method of validation.

3.4. RESULTS AND DISCUSSION

Soil Texture: Soil texture refers to the proportion of sand, silt, and clay in the fine
earth fraction (<2mm) of soil (Weil and Brady, 2017), as classified by way of the texture
triangle (Fig. 3.1; (Working Group on Soil Survey Data, 1982). In general, soil texture
influences many soil physical and chemical processes and resulting attributes pertaining,
e.g., to the extent of organic matter accumulation, which, in turn, contributes to soil
structure by increasing soil porosities while lowering soil Db (Birkeland, 1999; Gessler et
al., 2000; McBratney et al., 2000; Azlan et al., 2013; Chaudhari et al., 2013). Clay in
combination with fully decomposed SOM (humus) contributes to the soil colloidal fraction
(Pitty, 1979; Fullen et al., 2007), and, hence, improves moisture and nutrient retention

(Anderson, 1988; Pitty, 1979).

The frequency of each texture class within the database was determined with
results listed in Table 3.2. As seen above, pure silts, sandy clays, and the heaviest clays
(clay percentage exceeding 80%) are absent from the soil surveys. This may be a result of
surveying emphasis placed on agricultural soils, which would avoid surveying heavy

textured wetlands, lacustrine and estuary deposits. Also missing from the data entries are
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nearly pure sand- and silt-textured soils, as these are typically uncommon in forested

landscapes. Some of the absent textural variations are likely due to:

1. translocation of fine-textured minerals (silts and clays) from steep slopes to low-
lying positions and depressions (Simonson, 1959), and

2. non-linear trends with respect to soil depth due to secondary clay enrichments
(i.e., Luvisols) and differences in soil parent materials (i.e., ablation over basal till),

and vertical variations in alluvial fine to coarse deposits.

Soil Textural Triangle

100

Distribution

SiC-5iCL

B 250 -500
B 500 -573

CL-5iCL SiCL

CL-5iL SiCL-5iL

-«—— Sand Separate, %

Figure 3.1. Representation of frequencies of each soil texture class with intermediates between classes
overlain on soil texture triangle. Classes with no occurrence include silt (Si), sandy clay (SC), and heavy clay
(uppermost portion of clay class, >80% clay).
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Table 3.2. Frequency distribution of texture classes and ranges found within aspatial database.

Texture Class Count Texture Class Count
Clay (C) 37 Loam (L) 573
Clay — Sandy Clay (C-SC) 0 Silt Loam — Loam (SilL-L) 16
sandy Clay (SC) 0 Sandy Clay Loam ;Ls)andy Loam (SCL — 0
Clay — Silty Clay (C-SiC) 2 Clay — Clay Loam (C-CL) 0
Silty Clay (SiC) 0 Loamy Sand — Sandy Loam (LS-SL) 14
Silty Clay Loam (SiCL) 75 Loamy Sand (LS) 157
Clay Loam — Silty Clay Loam (CL-SiCL) 2 Sand — Loamy Sand (S-LS) 3
Silty Clay — Silty Clay Loam 1 Sand (S) 85
sandy Clay Loamcz) Clay Loam (SCL- 1 Clay Loam — Silt Loam (CL-SiL) 0
Clay Loam — Loam (CL-L) 1 Silt Loam (SilL) 329
Clay Loam (CL) 190 Silt Loam — Silt (SiL-Si) 1
Sandy Clay — Sandy Clay Loam (SC- 0 silt (Si) 0
SCL)
Sandy Clay — Clay Loam (SC-CL) 0 Sandy Loam — Silt Loam (SL-SiL) 10
Sandy Clay Loam (SCL) 53 Sandy Loam (SL) 519
Sandy Clay Loam — Loam (SCL-L) 0 Sandy Loam — Loam (SL-L) 14
Silty Clay Loam — Silt Loam (SiCL-SilL) 7

Since the sand, silt and clay percentages within the mineral fraction of fine earth
(i.e., gently crushed air-dried soil passing through a 2mm sieve) must add up to 100%,
only two of these variables need to be modelled in order to fill the textural data gaps
within the amalgamated and harmonized database. Since the texture-influencing
variables within this database refer to soil depth, mode of surface deposition, and
lithology (Anderson, 1988; Bui et al., 2006), the missing database entries for the sand and
silt fractions were obtained by evaluating the following generalized regression

formulation:

Sand or Silt (%) = f(MDEP + log(Depth) + Mineral Hardness + Rock Type),n = 1,138 (1)
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Where Depthis the depth (cm) measured at the middle of the horizon from the bottom
of the forest floor, Mineral Hardness is a numerical value determined by the Moh's
hardness scale and assigned to the dominant mineral types of each parent material. If
two rock types were present within the same parent material, then the hardness was
averaged. MDEP (Mode of Deposition) and Rock Type are categorical variables
describing the parent material’s mode of deposition and dominant lithology, respectively.
The formulated least-squares fitting results are listed, variable-by-variable, in Tables 3.3
and 3.4, represented with significant intercept, regression coefficients, t- and p-values,

and with model performances (measured vs. fitted) presented in Fig. 3.2.

Table 3.3. Least squares modeling results for sand by soil depth, and parent material mode of deposition
and lithology (rock type and mineral hardness), including best-fitted PTF intercept, regression coefficients,
and associated t- and p-values.

Mode of . .
Deposition Estimate @ t-value p- value Rock Type(s) Estimate t-value = p-value
L
Ablation/Basal  -19.0730  2.863  0.0043 Conglomerate, 404028  8.166  <0.0001
sandstone
Alluvium + Conglomerate,
. . 29.9414 10.913 <0.0001 sandstone, 21.5430 3.018 0.0026
Glaciofluvial
mudstone
Colluvium +
Water re-worked 10.9177 3.540 0.0004 Sandstone 16.9196 3.069 0.0022
Till
Glaciofluvial 22.4670 10.486 <0.0001 Sandstone, shale 26.9470 5.928 <0.0001
Glaciofluvial + 1) ¢926 3900  0.0001 Shale 332131 4436  <0.0001
Marine
Glaciomarine -26.2909 6.399 <0.0001 Shale, mudstone 25.6190 2.792 0.0053
Glaciomarine/ | 45 2656 | 7.024 | <0.0001 | Shale sandstone, 282841 4931  <0.0001
Basal conglomerate
Glaciomarine/ /) 1617 5542 | <0.0001 Shale, slate, 27.4443 4822  <0.0001
Marine quartzite
Lacustrine 312234  2.666  0.0078 Slate, argillite, 27.1734  5.058  <0.0001
quartzite
Marine 34,9532 2.984 0.0029 Other Variables Estimate t-value p-value
Residual + 152584  -2.865  0.0042 Intercept 59.0462  -3.417  0.0007
Colluvium
Logio Depth 6.4952 7.631 <0.0001
Mineral Hardness 15.3375 4.811 <0.0001




Table 3.4. Best-fitted model results for % silt, following the framework of the sand model with best-fitted
PTF intercept, regression coefficients, and associated t- and p-values.

Mode of . .
Deposition Estimate t- value p- value Rock Type(s) Estimate t-value p-value
Ablation/Basal ~ -17.5526  -3.520 0.0045 | Conglomerate,  hecea 8331 <0.0001
sandstone
Alluvium + Conglomerate,
. . -12.2780 -5.978 <0.0001 sandstone, -19.7362 -3.694 0.0002
Glaciofluvial
mudstone
Colluvium +
Water Re- -6.0150 -2.605 0.0093 Sandstone -13.6167 -3.299 0.0009
worked Till
Glaciofluvial -16.1226 -10.502 <0.0001 Sandstone, shale = -22.2808 -6.547 <0.0001
Glaciofluvial + 15 1065~ -4.893  <0.0001 Shale 30.9917 5529 <0.0001
Marine
Glaciomarine -13.1527 -7.411 <0.0001 Shale, mudstone = -32.8401 -4.781 <0.0001
Glaciomarine/ |, 5c>y 4.019 <0.0001 | Shelessandstone, 1) ceon 1066 0.0496
Basal mudstone
Glaciomarine/ . cco1 5704 <oo001 | POl sandstone, oo oeen 6234 <0.0001
Marine conglomerate
Lacustrine 30.9938  -4.267 0.0028 shale, slate, 204679  -4.803  <0.0001
quartzite
. Slate, argillite,
Residual -17.1535 -1.956 0.0397 . -25.0773 -6.235 <0.0001
quartzite
Residual
esidual + 82288 2060  <0.0001 | Othervariables Estimate twalue  p-value
Colluvium
Intercept 114.9107 8.882 <0.0001
Logio Depth -6.4266 -10.086 <0.0001
Mineral -10.4199 4366  <0.0001
Hardness

Of the variables outlined in Tables 3.3 and 3.4, some modes of deposition and rock
types were not significant and removed from the analysis. For the sand model, these
included (with p-value) Ablation/ Residual (0.7887), Basal (0.4804), and Residual
(0.6086) for mode of deposition, and Shale, Sandstone, Mudstone (0.3059), Rhyolite,
andesite, granite (0.8152), Quartzite, sandstone (0.1958), Granite, gneiss, quartzite
(0.7728), and Granite, gneiss, basalt, felsite (0.8725) for rock types. The sand versus silt
intercept and regression coefficients, as to be expected, carry opposite signs except for
the Ablation/Basal (both negative) and Glaciomarine/Basal (both positive) entries. The

former is due to elevated clay content, and the latter due to sandy beach deposits with
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low clay. Generally, sand % increases as silt content decreases, this is also reflected by the
increasing regression coefficients that signal increasing sand and decreasing silt with
increasing soil depth and mineral hardness, as to be expected. The results in Tables 3.3

and 3.4 are due to the extent of glacial activity in NB, with 90% of the province influenced

by glaciation (Pronk and Ruitenberg, 1991).
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Figure 3.2. Performance plots (measured vs. fitted) for the sand model (left) and silt model (right) including
RMSE, MAE, and R?(ad].) as numerical performance indicators.

Repeating the analysis for clay, by switching clay percentage for sand or silt in Eq.
1 captured 51% of the variation in clay content. Hence, the combination of the silt and
sand models are more effective at 59 and 68% (respectively) than using the combined 51

to 68% sand — clay or silt - clay regression results for estimating the missing database

entries for textural composition.

In terms of literature comparison, there is no information about texture-informing
PTFs. This is because soil texture specifications are generally used to quantify other

sparsely sampled soil variables. Where geo-referenced texture data are not available,
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DEM-derived topographic datasets have been used for computerized training purposes
to estimate texture variations across landscapes (Zhao et al., 2009; Dobarco et al., 2016).
In principle, this can also be done for this case study, but the amalgamated database

provides only 223 texture entries with coordinate information.

Coarse Fragment Content: CF content refers to the amount of rock fragment in a
soil, measured as a percentage. The amount of rock fragments in any soil depends on
both topography and parent material (both mode of deposition and lithology). As parent
material weathers, unconsolidated material will move depending on topographic position
and on deposition event (glaciation, gravity, floods) (Pitty, 1979; Birkeland, 1999; Weil
and Brady, 2017). As such, CF is more influenced by soil forming factors, namely
topography, geology, and climate, than other soil properties (although chemical
weathering is influenced by soil pH and moisture content). Due to this, CF is typically not
predicted by way of PTF and seldom assessed in digital soil mapping. Comparing CF to soil

forming factors within the database yielded:

CF = f(log,o(depth) + MDEP + Rock Type),n = 857 (2)

Least squares fitting results are outlined in Table 3.5 and Fig. 3.3. As seen, surficial
geology is the dominant influence on CF. Within the database, adequate information on
topography is lacking, therefore, could not be included in predictions although believed

to strongly influence CF.
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Table 3.5. Best-fitted CF model results with best-fitted PTF intercept, regression coefficients, and associated
t- and p-values.

Mode of . t- p- .
Deposition Estimate value value Rock Type(s) Estimate t-value p-value
Ablation/Basal 102375 6056 0001 Sand;;fj'/'eea”d 60412  -3.619  0.0003
Ablqt/on/ 16.5645 5.224 <0.0001 Other Variables Estimate @ t-value p-value
Residual
Alluvium -25.4281  -7.953 <0.0001 Intercept 7.6088 3.174 0.0016
Ancient Alluvium | -25.1229 -5.731 <0.0001 Logio Depth 10.4534 11.284  <0.0001
Basal -5.9695 -3.352  <0.0001
Glaciofluvial 9.9784 4903  <0.0001
G/ac10f/gv10/ + 193878 | -9.224 <0.0001
Marine
, . - <0.0001
Glaciomarine -20.1031 11.769
Glaciomarine/ 187318 | 9.887 <0.0001
Basal
Glaaom.arlne/ 24.4287 | 6.610 <0.0001
Marine
Lacustrine -22.9514  -7.175 <0.0001
Marine -25.7216 = -7.404 <0.0001
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R?=55.6%
60 —
o o] °© 8 €]
9 e 8 78
= | o
ES 0 °o o g8 éoe é © 8
°8 °8 8o 8
og %8 o Q OO g © 8 o o
° 098 06 8 §
20 — o 8 o o
gReHo o °
o o o 8
o 88 8 © ¢ © o
0 o® o
I I I I
0 20 40 60 80

Fitted CF (%)

Figure 3.3. Performance plots (measured vs. fitted) for CF model including RMSE, MAE, and R?(adj.) as
numerical performance indicators.

52



pH: pH is a measure of the hydrogen ion concentration in solution and represents
the level of acidity (or akalinity) within a soil (Weil and Brady, 2017). This is a function of
microbial activity, moisture content and retention (topography), and parent material
weatherability and fertility. pH influences the rate of OM decomposition (by affecting
microbial populations) and influences the availability of SOM and base cations for cation
exchange and root uptake (Pitty, 1979; Bui et al., 2006). pH controls the retention of base
cations via reduction reactions, with low pH reducing base cations into soluble form,
which are lost with downward and laterally moving water. Therefore, pH has a strong
influence on the cation exchange capacity (CEC) of a soil (Pitty, 1979; Weil and Brady,

2017).

As part of the soil surveying procedures, pH was measured for each soil horizon via two
methods depending on moisture conditions: from dry (CaCl,) to moist/ wet (H20).
Typically, these determinations are well correlated to one another (as seen in Table 3.6

and Fig. 3.4) such that:

pH(H,0) = f(Intercept + pH(CaCl,)) n = 464 (3)

pH(CaCl,) = f(Intercept + pH(HZO))n = 464 (4)

Table 3.6. Model standardization performance for pH measured in both H,O (left) and CaCl; (right) including
estimate, t-value, and p-value.

pH (H20) Estimate @ t-value p-value pH (CaClz) Estimate t-value  p-value
Intercept 0.7924 10.53 <0.0001 Intercept -0.1934 -2.401 0.0167
pH (CaClz) 0.9719 59.04 @ <0.0001 pH (H20) 0.9087 59.043 | <0.0001
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Figure 3.4. Performance plot (measured vs, fitted) for standardization of pH (H20) (left) and pH (CaCl.)
(right) including RMSE, MAE, and R%(ad].) for numerical determinations of performance.

Many published PTFs exist for standardizing pH and an overview of such can be
found in Appendix C, Table 11 (Example regression equations for converting values of pH
between different methods) of Specifications Version 1 of GlobalSoilMap.net products. A
difficulty with soil survey data is that the surveys typically do not specify the exact
procedure applied when determining physical and chemical properties. The reports
typically refer to a manual that specifies numerous sampling techniques. Alternatively,
some of the published PTFs require additional information pertaining to chemical
properties and these typically are not measured for each sample. Equations 3 and 4 were

incorporated into the database to create two continuous measures of soil pH.

Soil Organic Matter: Soil organic matter (SOM) is composed of organic residues at

various stages of decomposition and is one of the key properties influencing soil fertility
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and quality (Whitbread, 1992; Bui et al., 2006; Fullen et al., 2007; Azlan et al., 2013). SOM
acts as a nutrient pool, aids in soil aggregation (thus improves aeration), decreases Db
and facilitates infiltration (when not dry) while increasing water holding capacity. SOM is
part of the colloidal fraction of soil (along with clay particles), aids in increasing the CEC
for the retention of Ca, Mg, and K ions, and releases nitrogen, phosphorus, and sulfur to
the soil solution as part of the decomposition process (Pitty, 1979; Whitbread, 1992;
Birkeland, 1999; Kerry et al., 2012; Azlan et al., 2013). SOM is a function of biomass
introduction and microbial decomposition which is dominantly controlled by pH,
temperature, and moisture (Bui et al., 2006). Thus, SOM concentrations are a result of

topography, climate, vegetation and weathering of parent material (Azlan et al., 2013).

It is common to include the weight percentage of SOM when analyzing soil
attribute relationships in relation with soil texture, depth and CF content (Balland et al.,
2008; Pollacco, 2008). As such, SOM has been determined through loss ignition at 500°C,
through loss by wet-chemical oxidation, and/or direct elemental C analysis. The
conversion factor from soil C to SOM takes the form of SOM = 1.72 C%. This implies that
58% of SOM is organic C (Romano and Palladino, 2002; Pollacco, 2008; Chaudhari et al.,
2013; Poggio et al., 2013). Although this percentage can vary (Pribyl, 2010), it
nevertheless serves as a means to convert all soil C to SOM. Through preliminary analyses,

missing SOM data gaps were filled using the expression:

log,,(SOM%) = f(log,o(Depth) + FC + h + f),n = 606 (5)
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Where FCis field capacity (gravimetric moisture retention, %, at -33kpa), Depth is depth
of the center of the horizon from the surface (cm), and fand A are binary for whether the
horizon is enriched in iron or humus (respectively). Alternatively, excluding FC from the

analysis yields results with a slightly reduced performance, but increased sample size.

log(SOM%) = f(Intercept + log,o(Depth) + f + h),n = 1,177 (6)

It is arguable that SOM is more easily measured in a laboratory setting than is field
capacity (FC), therefore, FC should be excluded when modeling SOM. Table 3.7 represents
the coefficients (with estimates, t-values, and p-values) for both SOM models with

comparison of fitted plots outlined in Fig. 3.5.

Table 3.7. Comparison of best-fitted model results for the two SOM PTFs, including intercept, regression
coefficients, and associated t- and p-values.

Model Variable Estimate t- value p- value
Intercept 0.2095 3.381 <0.0001

. Logio(Depth) -0.4428 -15.105 <0.0001

Al \(/:::;0 les FC 0.0120 9.276 <0.0001
f 0.4744 18.159 <0.0001

h 0.4737 9.586 <0.0001

Intercept 0.6178 17.09 <0.0001

Exclude FC Logio (Depth) -0.5475 -24.31 <0.0001
(Eq.6) f 0.5222 24.76 <0.0001

h 0.6239 15.46 <0.0001
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Figure 3.5. Comparison of PTF-derived performance plots (measured vs. fitted) for the OM model including
all variables (left) and excluding FC (right), including RMSE, MAE, and R?(adj.) as numerical performance
indicators.

Bulk Density: Bulk density (Db) is the mass per unit volume of dry soil, including
pore space, measured in g/cm? (Birkeland, 1999; Weil and Brady, 2017). Db is therefore
strongly related to soil texture, soil structure, SOM content, and soil depth (Pitty, 1979;
Chaudhari et al., 2013, Nanko et al., 2014). These, in turn, are dependent on parent
material, vegetation, and topography. Typically, Db in solid rock ranges between 2.5-
3g/cm3, whereas mineral horizons remain within the 0.5 < Db < 2.5 g/cm? range
(Birkeland, 1999). With increasing Db, soil infiltration, permeability and root penetration

decrease with root extension ceasing when Db > 1.5 g/cm3 (Pitty, 1979).

Typically, Db is determined by extracting a known volume of soil using, e.g., a non-

compressing soil corer, and drying and weighing the extracted soil. Since Db varies by
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texture and SOM, it is important to convert the sand, silt, clay, and SOM percentages of

the fine earth particle fraction into actual per soil weight percentages such that:

Sand% + Silt% + Clay% = 100 (7a)

With this, preliminary analysis for predicting Db yielded:

Db = f(Intercept + log,,(Depth) + log,,(SOMy,) + gley + Basal + (Ablati‘m)

Residual

f + FC),n = 653 (8)

Where SOM is soil organic matter (%) as particle fraction, gley is binary for whether the
horizon is gleyed, f is binary for whether horizon is enriched in iron, and Basal and
Ablation/ Residual are binary for whether the parent material mode of deposition is one
of those two forms. Excluding information on parent material (if data on parent material

is unavailable) yielded:
Db = f(Intercept + log,o(Depth) + log,,(SOMy,) + gley+ f+FC),n = 65 (9)

Alternatively, omitting FC while including parent material returned:
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Db = f(Intercept + Loglog,,(Depth) + gley + f + log,,(SOMy,) + (%)
Basal + GLMA + (‘”’Bl;%) + (COL + WWTL)),n = 795 (10)

With GLMA (glaciomarine), Ablation/Residual, Ablation/Basal, COL + WWTL
(colluvium and water re-worked till), and Basal representing additional landform-based

predictors. Results for Egs. 8 through 10 are outlined in Table 3.8 and Fig. 3.6.

Table 3.8. Comparison of best-fitted model results for the three Db PTFs, including intercept, regression
coefficients, and associated t- and p-values.

Model Variable Estimate t- value p- value
Intercept 0.8359 15.608 <0.0001

Logio (Depth) 0.2592 13.228 <0.0001

Log1o (SOMy) -0.1599 -7.044 <0.0001

All Variables gley 0.1375 8.739 <0.0001
(Eq.8) Basal 0.1526 11.401 <0.0001
Ablation/Residual 0.1774 5.888 <0.0001

f -0.1141 -6.092 <0.0001

FC -0.0096 -12.364 <0.0001

Intercept 0.8222 13.933 <0.0001

Exclude Parent Logo (Depth) 0.2474 11.479 <0.0001
Material + Include Logio (SOMy) -0.1957 -7.942 <0.0001
FC gley 0.1639 9.621 <0.0001
(Eq.9) f -0.1035 0.0206 <0.0001

FC -0.0083 -9.805 <0.0001

Intercept 0.3018 8.690 <0.0001

Logio (Depth) 0.2898 15.308 <0.0001

gley 0.1303 8.253 <0.0001

Include Parent f -0.0927 -5.091 <0.0001
Material + Exclude Logio (SOMy) -0.2838 -13.977 <0.0001
FC Ablation/ Residual 0.1534 4,750 <0.0001
(Eq.10) Basal 0.1698 9.081 <0.0001
GLMA 0.1879 4.252 <0.0001

Ablation/ Basal 0.1334 4.476 <0.0001

coL + WWTL 0.1288 3.365 0.0008
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Figure 3.6. Comparison of PTF-derived Db performance plots (actual vs. fitted) for all variables (left),
excluding parent material (center) and excluding FC (right). Fitted values were compared to measured
values to determine performance.

The results outlined in Table 3.8 and Fig. 3.6 shows that the model with all variables (Eq.
8; R? = 83.6%) fits best, followed by the model excluding parent material (Eq. 10; R? =

77.6%), then excluding FC (Eq.9; R? = 77.4%).

The overall results are consistent with those of Pitty (1979), Heuscher et al. (2005),
Jutras and Arp (2010), Chaudhari et al. (2013), Nanko et al. (2014) in that depth and SOMw
dominate Db predictions, with Db increasing with depth, and decreasing with increasing
SOM due to the structure- building influence of SOM. Among the parent materials, Db
values are higher for basal tills due to the compacted nature of these tills. In addition, the
ablation till overlying residual formations have higher Db values due to the coarse nature
of these parent materials. The same is noted via Eg. 10 for the coarse-textured
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glaciomarine, ablation over basal till, and the colluvium and water re-worked till
combinations. While sandy soils are expected to also have lower Db values, this trend is
camouflaged by the negative correlation between Db and FC, whereby FC decreases with

increasing sand content.

The results outlined in Eq. 9 follow a similar trend to that of Balland et al. (2008)

for New Brunswick and Nova Scotia soils.

__ 1.23+(Dp-1.23)(1-exp(-0.0106-Depth))

Db
1+6.83-SOMy %

(11)

where Dp is the particle density (g/cm3). The Db model by Benites et al. (2007) based on
19,651 Brazilian soil samples also indicated that SOM (in the form of % organic carbon,

0OC) is a dominant Db predictor, as follows:

Db = 1.660 — 0.318(0C%)°> (12)

Comparing the results from Eq. 9 to those of Balland and Benites yield similar results (Fig.

3.7).
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Figure 3.7. Comparison of actual vs. predicted Db values (Eq. 9) (left) with Db predictions from Balland et
al. (2008) (center) and Benites et al. (2007) (right) when compared to measured Db in database.

All three models have similar predictive capabilities with the newly derived PTF
performing best, followed by Balland Db, then Benites Db. All three results show the
influence of SOM on determining bulk density but excluding depth in the Benites model

likely results in the slightly poorer performance.

Field Capacity: water retention within a soil is significantly important to both soil
property variation and productivity potential for vegetation (Pitty, 1979; Dobos et al.,
2001; Zhu and Mackay, 2001). The amount of water retained in a soil affects both nutrient
and oxygen availability to roots (Pitty, 1979). Within a soil sample, water is acted on by
different forces, with gravity driving water downward, cohesion attracting water to other
water molecules, and adhesion (capillarity) moving water laterally and against gravity via
electrostatic charges on soil particles. This results in negative forces responsible for

62



retaining water within soils, resulting in higher pressures (Pitty, 1979; Birkeland, 1999;
Weil and Brady, 2017). FC (%) is regarded as the upper limit of available water for plants
(low pressure gradient, -33kPa) and is generally attained 24 hours post soil-saturating
precipitation event (Salter and Williams, 1965a, 1965b; Weil and Brady, 2017). Modeling

FC yielded:

FCy, = f(Intercept + Sand% + SOM% + (Ablation) (Ablation

Basal

) + (Alluvium and GLFL) +

Residual

GLFL and MA + GLMA + Db + Mineral Hardness),n = 657 (23)

Where FCw is gravimetric moisture content (%) at -33kPa, and Ablation/Basal,
Ablation/Residual, Alluvium and GLFL, GLFL and MA, GLMA are parent material
modes of deposition (GLFL = Glaciofluvial, MA = Marine). Excluding parent material
returned:

FCy = f(Intercept + Sand% + SOM% + Db),n = 670 (14)
while excluding Db resulted in:
FCy, = f(Intercept + Sand% + OM%),n = 710 (15)

The best-fitted results so obtained are outlined in Table 3.9 and plotted in Fig. 3.8. Since
FC has been reported in gravimetric as well as volumetric (FCy) data, the FC analysis was
done for FCw because of small FCy sample size (n = 168). Where Db was entered, FCy

values were converted to FCw by setting FCw = FCy / Db.
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Table 3.9. Comparison of best-fitted model results for the three gravimetric FC PTFs, including intercept,

regression coefficients, and associated t- and p-values.

Model Variable Estimate t- value p- value
Intercept 44.9953 23.562 <0.0001
Sand% -0.2211 -13.367 <0.0001
OM% 0.7081 10.060 <0.0001
Ablation/Basal -4.0956 -3.331 <0.0001
All Variables Ablation/Residual 5.3602 5.124 <0.0001
(Eq. 13) Alluvium and GLFL -7.3702 -5.267 <0.0001
GLFL and MA -5.7806 -4.356 <0.0001
GLMA -7.0349 -4.292 <0.0001
Db -14.4725 -17.263 <0.0001
Mineral Hardness 1.2884 5.227 <0.0001
O Intercept 51.4764 37.737 <0.0001
Material (PM) Sand% -0.2402 -20.634 <0.0001
(Eq. 14) OM% 0.7097 9.673 <0.0001
Db -14.3442 -17.962 <0.0001
No PM, Intercept 29.4223 40.700 <0.0001
No Db Sand% -0.2429 -17.160 <0.0001
(Eq. 15) OM% 1.5607 22.900 <0.0001
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Figure 3.8. Comparison of PTF-derived FC performance plots (actual vs, fitted) for all variables (left),
excluding parent material (center), and excluding both parent material and Db (right). Fitted values were
compared to measured values to determine performance.
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These results follow general expectations such that FCw increases with increasing SOM
and decreases with increasing sand content and Db. Excluding Db from the analysis
reduced the goodness-of-fit considerably. Including the entries for coarser soil parent
material also lowered FCw. FC increases with increasing mineral hardness and where the
soil parent material refers to ablation till on residuals is unexpected but dropping the soil
parent material and mineral hardness entries altogether decreased the goodness-of-fit
marginally, from R = 79.2% to 73.7%. This drop would even be smaller by excluding

mineral hardness and the ablation till on residuals combination only.

The results for FC (gravimetric and volumetric) are consistent with literature in
that soil texture and SOM are important factors when predicting water retention (Pitty,
1979; McBratney et al., 2002; Balland et al., 2008; Pollacco, 2008; Ostovari et al., 2015).
When including Db in the model, predicted FCw values became less than 0, otherwise FCw
values remained above 0. The results from Eq. 13 (all variables) were compared with
published PTFs for gravimetric (FCw) and volumetric (FCy) field capacities, as follows:

1. Balland et al. (2008):

FCy = SPy%(1 — exp (—0.588(1—Sandw%)—1.73-SOMW%))

SPw% (16)

Where SPw% is moisture content at saturation point.

2. Beke and MacCormick (1985):
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FCy = 64.37 — 0.5(Sand%) — 0.23(Silt% - Db) (17)

3. Rawls and Brakensiek (1982):

FCy = 0.2576 — 0.002(Sand%) + 0.0036(Clay%) + 0.0299(SOM%)  (18)

4. Gupta and Larson (1979):

FCy = 0.003075(Sand%) + 0.005886(Silt%) + 0.008039(Clay%) + 0.002208(SOM%) —

0.14340(Db) (19)

5. Lal (1979):

FCyy = 0.065 + 0.004(Clay%) (20)

Volumetric FCs (Eqgs. 17-18) were converted to gravimetric by dividing volumetric FC by
Db. FCs measured as weight fractions (Egs. 16, 19-20) were converted to percentages by

multiplying FC by 100. With this, model results are compared in Fig. 3.9.

66



‘x: RMSE = 29.96
5 MAE = 10.52
- B0
e Y]
3 70
(=9 50 = D‘E o
[13] 40 &
U -
g= w P
D 20 °
m . 10 -
T T T T T T T T T T T 0 - T T T T T T T T T T T
D 10 20 30 40 50 80 70 B0 S 100 O 10 20 30 40 S50 B0 70 B0 8D 100
Predicted Field Capacity Rawls and Brakensiek FC
= '] RMsE=174 "] ruse=280s
o 0 MAE = 15.72 &0 MAE = 18.97
-1 2 3z
-a:b 70 - RY=E1.1% o 0 - R =38.0%
80 80 -
m é? ] L)
o 50 o o o oo “ 50 o gl
8 w0+ ° e 0 Foo @B
S 2. i 5 &Y s
5 ¥4 L] 20 - o
i 0 o 10 7
0 el 0 - :
L] L] 1 1 1 1 1] L] ] i 1 I i ] I 1 L] 1 L] 1 I 1
O 10 20 30 40 50 &0 70 80 B0 100 O 10 20 30 40 S0 B0 70 B0 00 100
Balland Field Capacity Gupta and Larson FC
= 1$ 1 rmse=1es7 1£ ] rmumsE=1374
& o | MAE=681 pp | MAE=1005
Z o Fewm 0] R=tee
% &0 B0 o -
S 50 . o 50
40 = 40 =
E_é 30 30
= 0+ 20 -
E 10 = ) 10 =
0 T T T T T T T T T T T 0 T T T T T T T T T T T
D 10 20 30 40 50 60 70 B0 o) 100 O W M 30 40 50 60 TO BD oD 100
Beke and MacCormick FC Lal FC

Figure 3.9. Comparison of actual vs. predicted FC (Eqg. 15) (top left), and published PTFs, namely Rawls and
Brakensiek (1982) (top right), Balland et al. (2008) (mid left), Lal (1979) (mid right), Beke and MacCormick
(1985) (bottom left), and Oosterveld and Chang (1980) (bottom right) when compared to measured FC in
database.

Permanent Wilting Point: Permanent wilting point (PWP, %) is the moisture
content at the upper reaches of the pressure gradient (-1500kPa). At this pressure,
moisture is held onto the soil particles so tightly via matric forces (adhesion) that it is no
longer available for root uptake. As this occurs, plants reach a stage in which irreversible
wilting occurs unless water is added to the soil (McBratney et al., 2002; Weil and Brady,

2017). This limit is determined by applying a pressure of 1,500kPa on saturated soil
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samples placed on a porous plate inside a pressure chamber, for 24 hours, and
subsequently weight determining the remaining soil moisture content. The resulting PWP

entries in the database were analyzed using the following formulation:

PWPy, = f(Intercept + SOM% + Clay% + Basal + (ZzMA

sal

) + Residual +

Colluvium),n = 566 (21)

Where PWPw is the moisture percentage at -1500kPa and Residual + Colluvium is a
binary field for that mode of deposition. Without reference to parent material, the

formula becomes:
PWPy, = f(Intercept + SOM% + Clay%),n = 582 (22)

The best-fitted results so obtained are listed in Table 3.10 and are plotted in Fig. 3.10.

Table 3.10. Comparison of best-fitted model results for the two gravimetric PWP PTFs, including intercept,
regression coefficients, and associated t- and p-values.

Model Variable Estimate t- value p- value
Intercept -0.16404 -0.317 0.7511

SOM% 1.3018 34.222 <0.0001

All Variables Clay% 0.2197 13.446 <0.0001
(Eq. 21) Basal 1.4570 3.603 0.0003
GLMA/Basal 3.1493 3.572 0.0004

Residual and Colluvium 6.3863 5.193 <0.0001

No Parent Intercept 1.3726 4.672 <0.0001
Material (PM) SOM% 1.3289 36.570 <0.0001
(Eq. 22) Clay% 0.1972 14.878 <0.0001

The regression coefficients in Table 3.10 for SOMand Clay confirm their role in retaining
soil moisture against vegetation uptake at the PWP. The added contributions by soil

parent material are of significance, likely due to the influence of parent material on
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texture composition, but the PWP model with all variables produces a statistically

insignificant intercept whereas excluding PM yields more significant estimates.
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Figure 3.10. Comparison of PTF-derived PWP performance (actual vs. fitted) for all variables (left) and
excluding parent material (right). Fitted values were compared to measured values to determine
performance.

In terms of PWP literature comparisons, the results agree with those of Rawls and
Brakensiek (1982), Beke and MacCormick (1985), and Balland et al. (2008) in that clay and
SOM are the two dominant predictors. However, applying the corresponding equations
to the PWP database entries produced wider actual versus predicted scatter plots with a
general trend towards higher than actual PWP values and therefore lower R? values than

noted in Fig. 3.10, as shown in Fig. 3.11. Arranging R%s in descending order reveals:

Eqg. 21 > Eq. 22 >> Balland et al. (2008) > Rawls and Brakensiek (1982) = Beke and
MacCormick (1985) >> Oosterveld and Chang (1980) > Lal (1979).
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This sequence is somewhat determined by the combined inclusion of the SOM and clay
variables. The advantage of the Balland et al. (2008) formulation is that it produces 0 <
PWPw < FCw values only. The absence of PWP < 0 values is guaranteed by the other
formulations except for the negative regression coefficient by soil depth in Oosterveld

and Chang (1980). For Eq. 21, this can be enforced by setting the intercept equal to zero.

The plots in Fig. 3.11, other than the top left entry obtained via Eq. 21, are based
on the following equations, and noting the volumetric to gravimetric PWPw = PWPy/Db
conversion.

1. Balland et al. (2008):

PWP,, = FCy (1 — exp (—0.511(czayw(i)zgvo.865(50MW%))) (23)
2. Beke and MacCormick (1985):
PWP, = 4.41 + 0.66(Clay%) + 1.07(SOM% - Db) (24)
3. Rawls and Brakensiek (1982):
PWP, = 0.026 + 0.005(Clay%) + 0.0158(SOM%) (25)
4. Lal (1979):
PWP, = 0.006 + 0.003(Clay%) (26)
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5. Oosterveld and Chang (1980):

PWP,, = 4.035 + 0.299(Clay%) — 0.034(Sand%) — 0.016(Depth)  (27)

Where Depth (cm) is the depth of the mid-point of the horizon.

Volumetric PWP results from of Beke and MacCormick and Rawls and Brakenseik
were converted to gravimetric PWP as was FC. PWPs for Egs. 24, 26, and 27 were
converted to percentages by multiplying PWP by 100. Db was included in the analysis, but
it was realized that this inclusion causes some PWP values to become less than zero,
exceeding known thresholds for the moisture content. Thus, Db was excluded while

modeling PWP. Once removed, PWP PTFs were compared to test conformance (Fig. 3.11).
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Figure 3.11. Comparison of actual vs. predicted PWP PTF (Eq. 22) (top left), and published PTFs, namely
Rawls and Brakensiek (1982) (top right), Balland et al. (2008) (mid left), Lal (1979) (mid right), Beke and
MacCormick (1985) (bottom left), and Oosterveld and Chang (1980) (bottom right) when compared to
measured PWP values in database.

Cation Exchange Capacity: CEC, measured as meq/100g, is the total sum of
negative charges within a soil and represents how many base cations can be held within
that soil (Birkeland, 1999; Liao et al., 2015; Olorunfemi et al., 2016; Weil and Brady, 2017).
CEC is recognized as the largest single indicator of soil fertility, nutrient holding capacity,

and overall quality (Pitty, 1979; McBratney et al., 2000). CEC strongly influences the ability
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of the soil to buffer against acidity, retain nutrients, and supply nutrients to roots (Krogh

et al., 2000; Liao et al., 2015).

Determination of CEC, like Db, is very costly and time consuming therefore it is
common practice to employ PTFs to determine these values (Liao et al., 2015).
Traditionally, the literature states that CEC is a linear function of carbon (SOM) and clay
percentages (Syers et al., 1970; Brady, 1990; Meyer and Arp, 1994; Krogh et al., 2000;
Olorunfemi et al., 2016). Building on this theory, CEC was tested against many soil

properties resulting in Eq. 28:

CEC = f(Intercept + Clayy, + SOMy, + f + h),n = 639 (28)

CEC was also modeled comparing Clayw and SOMw with and without intercepts:

CEC = f(Clayy + SOMy,),n = 639 (29)

CEC = f(Intercept + Clayy, + SOMy,),n = 639 (30)

The best-fitted results obtained with these equations are listed in Table 3.11, with actual

versus best-fitted values plotted in Fig. 3.12.
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Table 3.11. Comparison of best-fitted model results for the three CEC PTFs, including intercept, regression
coefficients, and associated t- and p-values.

Model Variable Estimate t- value p- value
Intercept 3.7244 5.346 <0.0001

. Clayw 22.3254 10.214 <0.0001
A"(\E':'rf:)'es SOMuw 207.5449  16.090  <0.0001
f 3.3563 5.255 <0.0001

h 13.5131 8.439 <0.0001

Clay + SOM Clayw 29.9340 21.57 <0.0001
(Eqg. 29) SOMw 306.1330 47.46 <0.0001
Intercept + Clay Intercept 3.4257 5.815 <0.0001
+SOM Clayw 17.9277 7.262 <0.0001
(Eqg. 30) SOMw 292.1864 43.400 <0.0001

The results listed indicate that the significance of the CEC-determining variables decrease

as follows:

SOMy, >> Clayy >> h > f

Excluding the f and h binary variables would not affect the best-fitted results in a major

way. Altogether, this leads to a best-fitted result with R? = 88.9%.
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Figure 3.12. Comparison of PTF-derived CEC performance (actual vs, fitted) for all variables (left), just clay
and SOM (no intercept) (center), and clay and SOM (with intercept) (right). Fitted values were compared
to measured values to determine performance.

The modeled results for CEC agree with literature in that CEC is dominantly

influenced by the amount of clay and SOM in a sample. This is because clay and SOM

represent the colloidal fraction of the soil, with highest concentrations of negative

electrostatic charges. These negative charges are what attract and hold base cations in

the soil (Birkeland, 1999). Alternative equations were applied to the database to

determine the feasibility of existing PTFs for determining CEC. These included:

1. Brady (1990):

CEC = 0.5(Clay%) + 3.44(0C%) (31)
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2. Liaoetal. (2015):

CEC = —7.9 — 0.01(Sand%) + 0.01(Silt%) + 0.52(Clay%) + 2.75(SOM%) +

1.44(pH(CaCl,) (32)

3. Syersetal. (1970):

CEC = 1.68 + 3.33(0C%) + 0.06(Clay%) (33)

4. Olorunfemietal. (2016):

CEC = —13.93 + 2.645(pH (H,0)) + 0.0446(Clay%) + 2.267(0C%) (34)

5. Krogh et al. (2000):

CEC = 0.95 + 0.53(Clay%) + 4.99(0C%) (35)

Plotting the actual CEC database entries versus the CEC model equations generated the

scatter plots in Fig. 3.13. The goodness-of-fit sequence of these predictions is as follows:

Eq. 29 > Eqg. 28 > Eq. 30 > Syers et al. (1970)> Krogh et al. (2000) > Liao et al. (2015)

> Brady (1990) > Olorunfemi et al. (2016)
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Figure 3.13. Comparison of actual vs. predicted CEC predictions (Eq. 30) (top left) with CEC predictions from
Syers et al. (1970) (top right), Brady (1990) (middle left), Olorunfemi et al. (2016) (middle right), Liao et al.
(2015) (bottom left), and Krogh et al. (2000) (bottom right) when compared to measured CEC values within
database.

In this sequence, Brady (1990), Liao et al. (2015), and Krogh et al. (2000) predict higher
than actual CEC values, while the opposite occurs with using the Syers et al. (1970) and
Olorunfemi et al. (2016) models. These differences are, respectively, mainly due to high
versus low regression coefficients for SOM, possibly related to temperate versus semi-
tropical to tropical soil conditions. In addition, the clay coefficients also vary by a factor

of about 10 as follows:
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Krogh et al. (2000) = Liao et al. (2015) = Brady (1990) >> Syers et al. (1970) = Olorunfemi

et al. (2016)

These differences could be due to clay mineralogy, with CEC being low in soils or soil
parent materials that developed under tropical conditions (e.g., Nigerian soils) or have
very low clay content as in the sand chronosequence study of Syers et al. (1970). In
addition, the negative intercepts and/or regression coefficients of the Liao et al. (2015)

and Olorunfemi et al. (2016) models also lower overall CEC predictions.

Differences in CEC across grasslands, forested lands, and for the organic portion
of forest soils (litter fermentation and humification layers combined) have been noted by

Meyer and Arp (1994) as follows:

For the forest floor:

CEC (brodleaves) = —38 + 1.21(SOM%) + 10.3pH,R? = 0.69 (36)

CEC (conifers) = —31 + 0.58(SOM%) + 12.1pH,R? = 0.58 (37)

For mineral soil layers:

CEC (forest soils) = —7 + 0.29(Clay%) + 1.4(SOM%) + 1.4(pH),R? = 0.72 (38)

CEC (wooded grasslands) = —6 + 0.31(Clay%) + 2.24(SOM%) + 1.0(pH),R? = 0.74 (39)
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CEC (grasslands) = —8.3 + 0.24(Clay%) + 3.66 (SOM%) + 1.3(pH),R? = 0.79 (40)

These equations imply that CEC increases with increasing soil organic matter
decomposition and humification, i.e., the SOM% contributions are generally lower in the
forest floor of conifers than of broadleaves, and, in mineral soils, increase from forests to
grasslands. There is also a CEC contribution with increasing pH, and this would mainly be
due to the increasing dissociation of the organically bound carboxylic acid into

carboxylates with increasing pH, e.g.:

RCOOH + HCO;~ - RCOO™ + H,0 + CO, (41)

Hence, data-derived models for predicting CEC cannot be generalized globally, since the
mineral and organic contributions to CEC depend on local to regional differences in
climate, vegetation type, and clay mineralogy. In this regard, note that the CEC models by
Meyer et al. (1994) apply across Eastern Canada, and are therefore like Egs. 28 to 30 in
guantitative expression, and especially so in terms of their overall clay and SOM

contributions to CEC.

3.5. CONCLUSIONS

This paper has outlined the development of PTFs for sand, silt, clay, CF, pH, SOM,
Db, FC, PWP, and CEC with necessary data acquired through the amalgamation and
harmonization of soil surveys, as outlined in Chapter 2. It was ensured that PTFs were
developed from original data and that the results of one PTF were not utilized in the

development of another. The results also adhere to the first principle of PTF development,
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predicted property must be more difficult to measure than the predictor properties
(McBratney et al., 2002). These findings align with theoretical thresholds associated with
each measured soil property, ensuring that FC and SOM do not exceed 100, the
combination of sand, silt, and clay does not exceed 100, Db remains < 2.5, and FC > PWP
> 0. PTFs were developed and utilized to fill gaps within the database pertaining to
amalgamated soil surveys. With this, Table 3.12 represents the ability of these PTFs to fill
in the gaps of the aspatial database:

Table 3.12. Overview of representation of soil properties within database and gaps filled via developed PTFs

as outlined in this study. Note that SOM is standardized from SOM% and OC%, FC is standardized from FCy
and FCw, and PWP standardized from PWPy and PWPw.

Property Sasrirlzle % of Total Equation Z:Fr::;bFeilrI:(: % Filled % :if"':;tal
Sand 1306 52.45 Eq. 1 1128 45.30 97.75
Silt 1306 52.45 Eq. 1 1168 46.91 99.36
Clay 1306 52.45 Eq. 1 1128 45.30 97.75
CF 885 35.54 Eq. 2 1557 62.53 98.07
pH (H20) 1535 61.65 Eq. 3 183 7.35 61.72
pH (CaClz) 647 25.98 Eq. 4 1012 40.64 66.62
Eq.5 79 3.17 51.44
SoMm 1202 48.27 Eg. 6 1282 51.49 99.76
Eq. 8 0 0.00 37.67
Db 938 37.67 Eq.9 0 0.00 37.67
Eq. 10 332 13.33 51.00
Eq. 13 149 5.98 39.96
FC 846 33.98 Eq. 14 161 6.47 40.45
Eq. 15 504 20.24 54.22
Eq. 21 583 23.41 53.05
PWP 738 29.64 Eq. 22 583 23.41 53.05
Eq. 28 596 23.94 50.41
CEC 659 26.47 Eq. 29 596 23.94 50.41
Eq. 30 596 23.94 50.41

The derived PTFs for Db, FC, PWP, and CEC were compared to published PTFs from

different geographical locations (Eastern Canada, USA, Brazil, Africa, and Australia) to test
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performance and the applicability of PTF transferability. As outlined, PTFs from this article
performed better than published PTFs, but the fundamental underlying relationships
between soil properties are similar between models. With this, it is apparent that SOM
plays a dominant role in influencing Db, FC, PWP, and CEC with texture as being the
second dominant factor (sand for Db and clay for FC, PWP, and CEC). Likely reasons for
varying performance with changing geographic location is the variable influences that
each soil forming factor play on soil formation. Soils in an area with recent glacial activity
are more-likely influenced by surficial geology than those unaffected by glacial activity
during the past ice age. Additionally, these unaffected areas are likely more influenced by

other soil forming factors, namely topography and climate.

Some PTFs developed within this article, namely those incorporating parent
material and soil horizon descriptors, differ from other PTFs due to the incorporation of
these factors. These factors, although increasing model accuracy, limits the applicability
of the model because the predictors may not be measured for a soil, or may differ from
those in which the model was derived. Therefore, alternative models only using measured
soil properties were also included. For all models developed, only the original, measured
soil properties were used in model development and performance testing. Building
models on modelled results will compound errors and likely lead to overfitted
relationships. All models developed are based on simple and multiple linear regression
analyses. Incorporating machine learning algorithms in the modeling process will likely

result in higher predicting capabilities but doing so limits the ability to ensure results stay
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within theoretical thresholds. Also, using simple models allows one to see the

relationships between soil properties.

Soil surveys have long been recognized as useful sources of soil information for
PTF development. Through soil survey amalgamation and data harmonization, soil
properties can be predicted from a few more easily measured properties to a certain
degree of confidence. Focusing on data amalgamation and harmonization improved

model performances by increasing sample sizes and removing outliers.
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4.1. ABSTRACT

Improving the accuracy of digital elevation models is essential for reducing
topographic derivation errors pertaining to, e.g., flow direction, basin borders, channel
networks, depressions, flood forecasting, and soil drainage. This article demonstrates
how a gain in this accuracy is improved through digital elevation model (DEM) fusion and
using LiDAR-derived elevation layers for conformance testing and validation. This
demonstration is done for the Province of New Brunswick (NB, Canada) as a case study,
using five province-wide DEM sources (SRTM 90m; SRTM 30m; ASTER 10m; CDED 30m;

NB-DEM 10m) and a five-stage process that guides the re-projection of these DEMs while
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minimizing their elevational differences relative to LiDAR-captured bare-earth DEMs,
through calibration and validation. This effort decreased the resulting non-LiDAR to LiDAR
elevation differences by a factor of two, reduced the minimum distance conformance
between the non-LiDAR and LiDAR-derived flow channels to + 10 m at 8.5 times out of 10,
and dropped the non-LiDAR wet-area percentages of false positives from 59 to 49 %, and
of false negatives from 14 to 7 %. While these reductions are modest, they are
nevertheless not only consistent with already existing hydrographic data layers informing
about stream and wetland locations, they also extend these data layers across the

province by comprehensively locating previously unmapped flow channels and wet areas.

Key words: DEM fusion, LiDAR-based calibration, hydrographic interpretations, stream

network, wet-areas mapping.

4.2. INTRODUCTION

There is a growing demand for high-resolution datasets representing the Earth’s
surface as technology and applications of spatial modeling advance. Among these
datasets are digital elevation models (DEMs), gridded datasets representing continuous
elevation change spatially across landscapes at both local and global extents (Moore et
al., 1991; Yue et al., 2007). In this regard, DEM elevation accuracies and resolutions vary
based on differences in mode of elevation capture, processing, point-to-point
interpolations, and timing of capture (Skidmore, 1989; Carrara et al., 1997; Bater and
Coops, 2009; Erdogan, 2010; Smith, 2010). Thus, as DEMs are used for spatial visualization

and modeling of topographic, geomorphologic, and hydrological properties (e.g., slopes,
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soil erosion, basin borders, stream and river networks, and stream discharge), their ability
to represent such topographic features vary in considerable detail (Wolock and Price,
1994; Thompson et al., 2001; Shary et al., 2002; Hengl, 2006; Wu et al., 2008; Hopkinson

et al., 2009; Wilson, 2012).

In terms of acquisition and availability, DEMs of varying origins are becoming more
and more freely accessible, with those utilized in this study listed in Table 4.1 (for details,
see Carrara et al., 1997; Carlisle, 2005; Chaplot et al., 2006; Erdogan, 2010; EI-Sammany
et al., 2011; Florinsky, 2012). Of these, some provide global coverage, e.g., the Shuttle
Radar Topography Mission (SRTM), and the Advanced Spaceborne Thermal Emission and
Reflectance Radiometer (ASTER). Others provide national coverage, e.g., the Canadian
Digital Elevation Model (CDED), and finally, provincial coverage, e.g., the New Brunswick
DEM (NB DEM). The SRTM and ASTER DEMs are satellite-derived whereas the CDED was
derived from elevation contours and spot heights (Center for Topgraphic Information
Customer Support Group, 2000; Farr et al., 2007; ASTER GDEM Validation Team, 2011).
The NB DEM was derived through stereo-photogrammetry (Pegler, 1999; Service New
Brunswick, 2001). Also becoming increasingly available are Light Detection and Ranging
(LIiDAR) DEMs, which, at 1m resolution, provide a convenient reference DEM with a
vertical accuracy of +15cm (Cunningham et al., 2006). The accuracies of these DEMs vary
greatly, depending on specifications of each DEM (Carrara et al., 1997; Chaplot et al.,
2006) as outlined in Table 4.1. NB was selected as a case study due to the number of

available DEMs and the amount of accessible LiDAR coverage.
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Table 4.1. Overview of five open-sourced DEMs and one privately-acquired DEM utilized in this study. Note
the variation in coverage, resolution, and vertical error. Also note that DSMyx represents digital surface
models whereas DSM represents digital soil models.

DEM
SRTM! SRTM* ASTER? CDED? NB DEM3 LiDAR*
Coverage Global Global Global National Provincial Site-Specific
Resolution 90 30 30 22 10 1
(m)
Vertical Error £16 17 17 16 +3 £0.15
(m)
ill ASTER
Ceptl 5 (Happi (Pegler, 1999;
and GDEM . .
Reference (Sun etal., Makinano-  Validation Mangoua Service New = (Cunningham
2003) . and Goita, Brunswick, et al., 2006)
Santillan, Team, 2008) 2001)
2016) 2011)
Data Type DSMx DSMx DEM DEM DEM DEM
Format Integer Integer Integer Integer Floating Point = Floating Point
Acquisiti .
cquisition 2000 2000 2000 2000 1999 Ongoing
Year
Stereo Contours,
Technology Radar Radar . Spot Stereo Pairs Laser
Pairs -
Heights
Original 3 arc 1arc 1arc 0.75 arc
. 75m im
Spacing second second second second

1. http://www.snb.ca/gdam-igec/e/2900e_1c.asp
2. https://earthexplorer.usgs.gov/

3. http://geogratis.gc.ca/site/eng/extraction/
4

http://www.snb.ca/geonbl/e/DC/catalogue-E.asp

Elevation differences between LiDAR and other DEMs (hereby referred to as non-

LiDAR DEMs) relate to data acquisition methodology which influence accuracy and

resolution (Sun et al., 2003; Cunningham et al., 2006; Happi Mangoua and Goita, 2008;

ASTER GDEM Validation Team, 2011; Santillan and Makinano-Santillan, 2016). Non-LiDAR

DEMs such as SRTM30 and STRM90 are based on surface reflections, while ASTER, CDED,

NB-DEM attempt to capture bare-earth elevations. In this regard, the former refer to

Digital Surface Models (DSMys), while the latter refer to Digital Elevation Models (DEMs).
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Both are subsets of Digital Terrain Models (DTMs) (Wilson, 2012). LIDAR point cloud data
can be used to generated DSMys as well as DEMs through determining the elevation
differences between the first and last laser pulse returns, generally at a vertical accuracy

of £0.15m (Cunningham et al., 2006).

All DEMs can be used to generate topographic interpretations pertaining to, e.g.,
flow directions, flow accumulation, stream channel networks, upslope basin areas and
borders, location of depressions, and extent of areas subject to flooding and well-to-poor
soil drainage. These interpretations are, however, influenced by DEM accuracy (Tarboton,
1997; Murphy et al., 2007, 2008, 2009, 2011; Hobi and Ginzler, 2012; Mukherjee et al.,
2013). For example, 10 to 20 m resolution DEMs are preferable to determine seamless
flow channel connectivities across roads, but lead to underestimating slope steepness
especially along shorelines, road cuts and deeply incised stream valleys. High-resolution
LIDAR DEMs can serve both purposes, by using them at their finest resolution to
determine where roads potentially block channel flow and therefore need to be
breached, or where the need to be re-sampled towards coarser resolutions to
approximately connect flow channels across barriers without breaching. In contrast,
attempts to increase the resolution of photogrammetrically-derived non-LiDAR DEMs
through re-interpolation alone does not generate more information, but introduces DEM

artifacts such as “ridging” (Mukherjee et al., 2011).

Several approaches are available to reduce vertical and lateral DEM errors through
fusion. These involve DEM re-projecting, re-sampling, re-interpolation, amalgamation,
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and hydrological enforcement (e.g., Costantini et al. (2005); Karkee et al. (2008);
Papasaika et al. (2008); Schindler et al. (2011); Robinson et al. (2014)). For example, the
extent of “ridging” can be reduced through DEM editing by way of TIN Random
Densification (Pegler, 1999) and/or Kalman spatial filtering (Wang, 1998; Albani and
Klinkenberg, 2003). Luedeling et al. (2007) applied a DEM fill technique to fill SRTM voids
with ASTER data. Fusing DEMs for the purpose of DEM-error reduction was reviewed by
Schindler et al. (2011). Apart from DEM fusion, hydrological enforcement (Soille et al.,
2003; Callow et al., 2007; Al-Mugdadi and Merkel, 2011; Zhang et al., 2013; Tran et al.,
2014) is needed to guide DEM-based flow-direction and flow-accumulation algorithms
towards already delineated streams, rivers, lakes and shorelines. This enforcement is
done by (i) lowering the elevation of all stream and open-water referenced pixels to their
immediate lowest neighborhood elevations, and (ii) ensuring that all streams and rivers
drop monotonously in elevation towards their nearest shorelines. This enforcement is
generally applied to non-LiDAR DEMs, but topographical adjustments are also needed for
high-resolution LIiDAR-DEMs to remove artifacts due to low laser pulse returns from open

water surfaces such as lakes, rivers and shores.

The objective of this article was to generate a non-LiDAR DEM at 10m resolution
with resulting hydrological data sets via DEM fusion with which the generated DEM has
reduced elevation errors and is relatively free of surface artifacts in comparison to original
non-LiDAR DEMs. This was done comprehensively for the Province of NB as a case study

by way of:
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1. non-LIDAR DEM fusion;

2. using bare-earth 1m LiDAR elevation data as reference DEM;

The extent of the DEM-based hydrological interpretation improvements was analyzed in

terms of:

1. nearest-distance conformance testing of non-LiDAR versus LiDAR-derived flow
channels;
2. evaluating false positives and false negatives within DEM-derived cartographic

depth-to-water indices (DTW; (Murphy et al., 2008, 2009)) for each DEM.

4.3. METHODOLOGY

Located in Eastern Canada and spanning an area of 7,282,014 ha, the Province of
NB encompasses an array of diverse geomorphologies and landforms and has province-
wide non-LiDAR DEM and hydrographic network coverages available from Service New
Brunswick’s GeoNB data catalogue as well as LiDAR coverages for parts of the province
(Fig. 4.1, Table 4.1). The SRTM and ASTER DEMs were acquired through the United States
Geological Survey Branch’s EarthExplorer application. The CDED data were obtained from

Natural Resources Canada.
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Figure 4.1. LiDAR DEM coverages (~11%) used for improving non-LiDAR DEMs across all of NB by way of a
5-stage process. Also shown: latest LIDAR-DEM acquisition for New Brunswick, LIDAR coverage used for
optimization and process validation, and scan line (green) used to represent elevation differences
associated with each non-LiDAR DEM. Background: hill-shaded NB-DEM. LiDAR-DEM source:
http://www.snb.ca/geonbl/e/DC/DTM.asp.

A semi-automated five-stage process (Fig. 4.2) was developed (utilizing ArcGIS

10.1) as follows and tested in areas with available LiDAR coverage:

Stage 1. Homogeneity between the non-LiDAR DEMs in terms of the spatial reference and
resolution was ensured through re-projection. All downloaded open-sourced DEM tiles
were combined into seamless coverages and re-projected (CSRS NAD 1983 New
Brunswick Stereographic) in three ways (bilinear, cubic, nearest) for three cell sizes (10m,
default, 90m). These resolutions were chosen to align with the variability in resolution of
available DEMs. Stage 1 was done to determine which projection matches the NB-DEM

and LiDAR data the best.
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Stage 2. The Stage 1 data layers, resampled at 8, 10, 12, 14, 16, 18, 20 m cell size, were

randomly point sampled to generate a point shapefile containing n = 86,915 for each

layer.

Stage 3. The points of the Stage 2 shapefile were re-interpolated using three interpolation

methods (Inverse Distance Weighting, Kriging, Nearest Neighbor) and three cell sizes (5,

10, 20m).

Stage 4. The best-fitted non-LiDAR to LiDAR match was generated through

1.

determining which of the Stage 3 generated data layers had the least non-LiDAR
to LiDAR elevation differences, by DEM source (done through basic statistics and
box plot comparisons); for this purpose, the bare-earth LIDAR-DEM, with the last-

return points originally interpolated to 1 m, was re-sampled at 10 m resolution;

determining which combination and weighting of the best Stage-3 non-LiDAR

DEMs should be used for the NB-DEM fusion process;

obtaining the best-fitted non-LiDAR combination through linear regression
analysis, with the least-elevation generating DEM-layers including the fused NB-
DEM layer as independent LIDAR-DEM predictor variables. This analysis was done
based on a systematic selection of evenly-spaced points across the non-LiDAR
DEMs within the LiDAR coverages, done at 1 point per 1 km?, yielding 7,255 points
for each layer. The output of the regression analysis included the best-fitted
coefficients as well as their standard error of estimate, Student’s t-value (best-
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fitted regression coefficient estimate / stand error of estimate), and p-value (the

probability that the best-fitted regression coefficient is significantly different from

zero).

Stage 5. The best-fitted regression result (hereby referred to as “NBDEM-Optimized”)

was applied province-wide. With this, flow channel and associated DTW datasets were

derived across the province. The results so produced were validated using a 40 by 40

km tile within a newly acquired LiDAR coverage (Fig. 4.1).

Stage 1:

Cell Size:
Re-project DEMs Technique: - 0 |
Bilinear - Default
90
Open-sourced Mosaic Tiles - =
non-LIDAR DEMs B - 10 l
cell size: - [efautt]
SRTM 90 —_— Undefined —_— 20 (
SRTM 30 10 L .
ASTER 90 10 W
CDED B - Nearest - Default
90 (
7 10
Majority - pefault —
90
Stage 5: Stage 4:

Apply to Province

" Province-wide extrapolation of o

optimized DEM

— Verification and Validation:
Non-LiDAR to LiDAR elevation

comparisons

Projection

DEM Fusion & Optimization

Fuse:
SRTM 80, CDED, NB DEM (Eq.1)

Extract
SRTM 90, SRTM 30, CDED, ASTER,
NB DEM, DEM Fused, LiDAR
elevations to random points

Af—

Generate best-fitted regression DEM
(Eq. 2)

Stage 2:
Extract DEM Values to Randomly-
generated Points

Points per Ha:

Stage 3:
Re-interpolate DEMs

Interpolation
Technigue:

%

Cell Size:
S

20

A

[ f—

Kriging

Natural
Neighbor

Figure 4.2. A 5-stage workflow developed for unifying both spatial reference and resolution and reducing
non-LiDAR to LiDAR elevation differences in bare-earth elevation. The preferred technique for each stage

is high-lighted in red.
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The progressive non-LiDAR to LiDAR elevation difference reduction was achieved
by selecting the best-fitting permutations from stages 1 and 2 based on layer-to-layer
differences in terms of averages, standard deviations, minimum and maximum values,
root mean square error (RMSE), and elevation difference percentages falling within the =
2m and * 4m LiDAR elevation ranges. Also obtained were percentile box plots for the
elevation differences, by layer and by stage. The sequence of best choices so generated
is high-lighted in Fig. 4.2. In detail, using default cell sizes and the cubic resampling
technique for re-projection generally led to better results than using the bilinear, nearest,
and majority re-projection methods (Stage 1). Similarly, randomly extracting re-projected
DEM elevation points at 12 points per hectare (Stage 2), followed by IDW re-interpolation
(Stage 3) at 10 instead of 5 or 20m resolution generally led to better re-interpolation

results than using the kriging and natural neighbor methods.

Each of the non-LiDAR DEMs resulting from the 5-stage process and the LiDAR
DEMs were used to derive continuous flow channel networks and associated cartographic

depth-to-water (DTW) indices across New Brunswick. These processes involved using:

1. the D8 algorithm for deriving flow direction and flow accumulation datasets
(Tarboton, 1997), with stream channels defined to have a minimum upslope flow

accumulation area of 4 ha;

2. aleast-cost algorithm to determine the extent of the least upward elevation change

away from each flow channel and shore line (Murphy et al., 2009).
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The resulting DTW pattern generally reflects soil drainage patterns, with DTW < 10cm
very poorly drained, 10 < DTW < 25cm poorly drained, 25 < DTW < 50cm imperfectly
drained, 50 < DTW < 100cm moderately well drained, and DTW > 100cm well to
excessively well drained. The distances between the nearest non-LiDAR to LiDAR-
derived flow channels for each DEM were conformance tested by plotting their
cumulative frequency distributions. The differences in each non-LiDAR- versus LiDAR-
derived DTW (< 1m) coverages were evaluated by determining the area extent of false
negatives and positives (predicted high DTW on dry site and predicted low DTW on wet

site, respectively).

4.4. RESULTS

Elevation differences, by DEM Layer. The layer-by-layer non-LiDAR to LIDAR
elevation differences are overlaid on the layer-corresponding hill-shaded DEMs in Fig. 4.3.
Among these, the contour-derived CDED differences are smoothest, the NB-DEM
differences are ridged, and the ASTER differences are the most variable. Across the LiDAR-
DEM coverages, the differences tend to be largest on forested ridges and valleys (where
steep elevation changes occur), and smallest on open areas. Negative SRTM and ASTER
elevation differences relative to the LiDAR-DEM occur along steep slopes (valleys, shores,
forest edges), undoubtedly due to the differences in resolution (1m versus 30 and 90 m).
Owing to the general terrain and changing forest practices across New Brunswick, there
are almost as many negative SRTM and ASTER to LiDAR-DEM differences as there are

positive differences. As a result, their mean differences only have a small positive bias at
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1.62 and 1.47m for ASTER and SRTM (90m) respectively. The extent of the elevation
differences within and across the non-LiDAR generated data layers from the 5-stage
process are summarized in Table 4.2. In comparison, the standard deviation and root
mean square errors are largest for the ASTER DEM, with only 23.2% of its elevation range
remaining within the £ 2m LiDAR elevation range, and least for the best-fitted NB-DEM
Optimized regression result. For the latter, the remaining elevation differences with

respect to the LIDAR DEM are within + 2m at 70.1%, and within £ 4m at 92.9%.

Stage 1 to 4 non-LiDAR to LiDAR elevation difference reductions. The entries in
Table 4.2 and the box plots in Fig. 4.4 concerning the non-LiDAR to LiDAR-DEM elevation
differences display a narrowing towards the Om difference. The fused and regression

optimized DEMs for NB were obtained as follows:

NBDEM-Fused = 0.3 NB DEM + 0.375SRTM90 + 0.325CDED (1)

and

NBDEM — Optimized = a + b NBDEM Fused + ¢SRTM 90 + d STRM 30 + e CDED (2)

(a, b, ¢, d, and e refer to intercept and regression coefficients). The weights for the
NBDEM-Fused were chosen by systematically comparing different weight combinations
to underlying LiDAR-derived elevation values. The best-fitted regression results for Eq. 2
are compiled in Table 4.3. In combination, the influence of stepwise non-LiDAR layer

inclusion into the regression analysis generated the following sequence:
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NBDEM-Fused >> SRTM30 > SRTM90 > CDED > > ASTER.

Hence, the SRTM, CDED and DEM Fused accounts for most of the non-LiDAR to LiDAR
elevation difference reductions. Entering the selected CDED and SRTM elevations
individually into the stepwise regression process is of further benefit, but only marginally
so, but not so when entering the corresponding ASTER points. The main benefit of Eq. 1
stems from partially cancelling the elevation differences among NB-DEM, CDED, and
SRTM while omitting qualitative errors associated with each, especially “ridging”
embedded in the NB-DEM. In detail, the NBDEM-Fused and NBDEM-Optimization layers
matched the LIDAR-DEM with the least bias, least minimum and maximum differences,
and around 70% (i.e., 90t percentiles) of the elevation differences falling within the +2 m

LiDAR elevation range (Fig. 4.3).
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Figure 4.3. Example for non-LiDAR to LiDAR elevation differences (color-coded) draped over DEM-derived
hill-shade for each non-LiDAR DEM, including hill-shaded bare-earth LiDAR DEM (bottom right).
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Figure 4.4. Box plots for the non-LiDAR to LiDAR elevation differences for SRTM90, SRTM30, CDED, NB-
DEM, NBDEM-Fused, and NBDEM-Optimized across the DEM optimization extent, showing the 10th, 25,
50t, 75 and 90" percentiles, the points above and below the 10th and 90" percentiles, and a reference

line at Om.
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Table 4.2. Non-LiDAR and LiDAR DEM elevation difference comparison across the DEM optimization extent:
statistical summary, in m, including increase in < £2 to +4m elevation difference percentages.

Mean Minimum Maximum Standard +2m +4m
DEM Difference Difference Difference Deviation - - RMSE
(m) (m)
(m) (m) (m) (m)

ASTER 1.47 -47.51 46.78 6.78 23.21 44.53 6.93
SRTM (90) 1.62 -33.81 45.44 3.14 49,94 77.69 3.53
SRTM (30) 1.64 -16.91 28.66 3.04 49.89 77.84 3.46

CDED 0.58 -33.11 38.79 3.77 48.13 76.75 3.81

NB DEM 0.66 -24.06 30.70 2.76 66.88 87.83 2.84

DEM Fused 1.00 -18.10 27.13 2.42 68.31 88.89 2.62

D.EI\.A -0.13 -18.09 21.81 2.31 70.11 92.85 2.32
Optimized

Table 4.3. Stepwise regression results with LiDAR- DEM as dependent variable and non-LiDAR DEMs as
predictor variables SRTM90, SRTM30m, CDED, and NBDEM-Fused (in m; R? values near 1), across DEM
optimization extent.

Regression Pref:lictor Regre.es.sion Std. Error t-value p-value
Models Variables Coefficients

Intercept -0.308 0.120 -2.6 <0.0001

6 CDED -0.04 0.003 -13.3 <0.0001

RMSE = 2.26 SRTM 30 0.702 0.012 58.5 <0.0001

SRTM 90 -0.598 0.013 -46.0 <0.0001

NB DEM-Fused 0.930 0.006 155.0 <0.0001

Intercept -0.228 0.011 -20.7 <0.0001

Model 2 SRTM 30 0.537 0.007 76.7 <0.0001

RMSE =2.27 SRTM 90 -0.500 0.008 -62.5 <0.0001

NB DEM-Fused -.957 0.004 239.3 <0.0001

Model 3 Intercept -0.206 0.012 -17.2 <0.0001

RMSE=2.32  \B DEM-Fused 0.994 0.001 994.0 <0.0001
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Table 4.4. Non-LiDAR and LiDAR DEM elevation difference comparison: statistical summary for validation
site, in m, including percentage of elevation differences < +2m and < +4m.

Mean Minimum | Maximum | Min- | Standard +2m | +4m
DEM Difference | Difference | Difference | Max | Deviation | RMSE | ~ - RMSE
(%) | (%)
(m) (m) (m) Range (m)
ASTER 4.88 -83.98 66.99 151.0 7.12 8.63 | 20.30 | 38.85 | 8.63
SRTM 2.45 -36.60 57.17 93.8 4.52 5.13 | 36.13 | 63.48 | 5.13
(90m)
S 2.42 -16.32 27.20 435 2.93 3.80 | 43.93 | 71.14 | 3.80
(30m)
CDED 1.06 -29.43 27.69 57.1 5.65 5.74 | 30.65 | 55.41 | 5.74
NB DEM 1.03 -25.08 35.90 61.0 2.91 292 | 6295|9454 | 2.92
DEM
1.31 -20.22 35.96 56.2 3.12 3.39 | 55.49 | 80.48 | 3.39
Fused
DEM
.. 0.58 -18.07 29.64 47.4 2.84 290 | 60.49 | 9543 | 2.90
Optimized

Hydrological interpretations (flow channels, wet-areas), by DEM layer. Examples
of the DEM—produced flow channel and DTW patterns are presented in Fig. 4.5, by data
layer. As shown, the patterns obtained with the SRTM 90 and SRTM 30 DEMs are narrow,
are widely pixelated and somewhat terraced across the ASTER DEM, and are ridged across
NB-DEM. In contrast, the CDED, NBDEM-Fused, and NBDEM-Optimized and LiDAR DEM

layers follow fairly consistent patterns.
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Figure 4.5. Comparison of flow channel and cartographlc depth-to-water patterns overIald on the hill-
shaded non-LiDAR and LiDAR DEMs.

The 3,000m scan line in Fig. 4.6 (see Fig. 4.1 for location) provides an example of how the
non-LiDAR to LiDAR elevation differences change across a forest management area in
relation to a recent surface image and the corresponding hill-shaded LiDAR DEM. Also
shown are: (i) the 0 to 1m cartographic depth-to-water index (DTW) pattern, shaded dark
to light blue from, 0 to 1m, respectively, and (ii) the DTW and LiDAR-derived canopy
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height profiles along the scan line. In detail, the LiDAR elevation profiles correspond
closely with image- and hill-shaded DEM features, e.g., low tree height across recent cuts
and wetlands, incised flow channel locations, elevated or incised roadbeds, and bare
transmission corridors. The same, however, does not occur across the non-LiDAR
elevation profiles. For these, the ASTER and CDED profiles have the widest excursions
from the general elevation pattern. In contrast, the SRTM and NB-DEM profiles follow a
similar pattern and reflect, in part, forest to non-forest tree-heights except for recent
image-revealed forest cuts. The SRTM to LiDAR elevation differences in Fig. 4.6, however,

only amount to about one-half to one third of the LiDAR-generated tree height maxima.
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Figure 4.6. Non-LiDAR to LiDAR elevation differences along a 3,000m scan line (Fig. 4.1) related to the DTW
pattern overlaid on recent surface image (bottom) and hill-shaded LiDAR DEM (top). Also shown, scan line
for LiDAR-generated DTW and vegetation heights.

Validation results regarding flow-channel and wet-area mapping. The DEM
validation results, completed for the tile outside Stage 3 and 4 processing areas (Fig. 4.1),
are compiled in Tables 4.4 and 4.5. For this tile, all layers are upwardly biased, but least
so for NBDEM-Optimized at 0.58m, with standard deviation and mean square root
differences also being least at 2.84 and 2.90m, respectively. The < +2 and +4m

percentages of the elevation differences remained about the same overall across the DEM
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optimization and validation extents but dropped somewhat from 70.1 to 60.5 % for < +2m

and increased from 92.9 to 95.4% for < £4m (compare Table 4.2 with Table 4.4).

The conformance results for the nearest flow channel distances between the non-

LiDAR and LiDAR-derived DEMs in Fig. 4.7 improved by layer as follows:

ASTER < NB-DEM < CDED < SRTM90 < SRTM30 < NBDEM-Fused < NBDEM-Optimized.

distances (o)

Cumulative frequency o Fnearest low channel

25 30 15 40 45 50 55 &0 &5

Wearest flow channel distances (VETuCes) (m)

Figure 4.7. Cumulative frequency of nearest distances between the non-LiDAR- and LiDAR-derived flow
channel networks, across validation extent.

There is a similar performance increase from ASTER to the NBDEM-Optimized layers in
terms of false positive and false negative DTW < 1m reductions, with the optimized NB-
DEM layer being closest to the corresponding 10 m re-sampled LiDAR DEM derivation

(Table 4.5).
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Table 4.5. Reduction in area (as percentage) of false positive and false negative DTW <1m relative to the
10m LiDAR-derived DTW pattern across validation extent.

DEM Conformance (Wet) False Positive Conformance (Dry) False Negative
ASTER 31.76 68.22 82.56 17.43
SRTM (90) 41.46 58.5 85.91 14.09
SRTM (30) 41.42 58.51 85.76 14.23
CDED 46.37 53.47 86.48 13.51
NB DEM 40.65 59.33 91.30 8.70
DEM Fused 49.55 50.42 92.29 7.71
DEM Optimized 50.50 49.50 92.69 7.31

In summary, the 5-stage process of combining the original NB DEM with the CDED
and SRTM DEMs and subsequently calibrating the result with available LiDAR DEM
coverages therefore not only improved but also extended the flow-channel delineation
across New Brunswick in a systematic and comprehensive manner. This is illustrated in

Fig. 4.8 by way of an example within validation tile.
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Figure 4.8. NBDEM-Optimized (bottom left) and LiDAR-DEM (bottom right) derived flow channel and
DTW < 1m delineations versus the watercourses for the New Brunswick Hydrographic Network (purple).
These delineations are overlain on aerial imagery and hill-shaded LiDAR-DEM (top right only).
Correspondence between the DEM-derived flow channels and the riparian vegetation buffer is apparent.
The New Brunswick Hydrographic Network is incomplete in this regard. Location: part of the validation
tile in Fig. 4.1.

4.5. DISCUSSION

The above analysis demonstrates that the fusion of non-LiDAR DEMs can lead to
systematic elevation difference reductions, which can be further enhanced through
regression calibration with available LiDAR datasets. The DEM so optimized can then be
used to generate province or region-wide hydrographic DEM interpretations that are

similar to what can be derived from LiDAR-generated DEMs, at 10 m resolution at least.
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The non-LiDAR-DEM error reductions by way of the 5-stage process appear to be
small numerically at a 20% reduction of false positives and a 10% reduction of false
negatives (Table 4.4). There is, however, a substantial 8 times out of 10 distance-to-flow-
channel improvements from £25 m (NB-DEM) to +5m (NBDEM-Optimized) (Fig. 4.7). This,
by itself, and in view of the illustrations in Fig.’s 4.5 - 4.7, has led to considerable
improvements in comprehensively mapping flow channels and wet areas across NB. In
turn, this has many potential positive effects on local and regional operations planning in,
e.g., forest management (harvest block layout and access), transportation and trail
routing, environmental impact assessments, land transactions, and emergency
responses. In part, some of the province-wide benefits would accrue from improved DEM
delineations and determinations of upslope basin areas. In turn, these areas are used to
estimate, e.g., potential stream discharge rates and required culvert and bridge
dimensions at any road-stream crossing by extreme weather events (e.g., 100mm or
stream discharge per day, roughly equivalent to a 100-year storm event). In this regard,
DEM error reductions are especially important across flat terrain, where minor elevations
changes (artificial, natural, or man-made) can lead to substantial errors in determining

storm water flow directions.

The optimized NB-DEM layer is also useful for checking province-wide wetland
coverages. In general, already delineated wetlands fall into the DTW< 0.5m range
(Murphy et al., 2007). Extending the conformance checking between DEM-delineated and
actual wetland border using the original NB-DEM layer amounted to +80m, 8 times out of

10. Air-photo delineated wetland borders generally conform to distances within £40m, 8
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times out of 10. In contrast, LIDAR-DEM derived DTW = 0.5m contours conform to actual
wetland borders within £10m, 8 times out of 10 (details not shown). The optimized DEM,
while somewhat less accurate than the LIDAR-DEM, can nevertheless be used to trace and

survey-check wetland-to-wetland connections across the province.

It has been shown in literature that DEM fusion leads to DEM improvements in
terms of vertical and lateral error reductions has been demonstrated repeatedly (e.g.,
Karkee et al. (2008), Papasaika et al. (2008), Al-Mugdadi and Merkel (2011), Zhang et al.
(2013)), but the fusion processes pertaining to cell re-sizing, re-projection, re-sampling
re-interpolation, DEM mix, weighting and noise filtering all vary. For example, Robinson
et al. (2014) were able to produce “a nearly-global, void-free, multi-scale smoothed, 90m
digital elevation model” called EarthEnv-DEM90
(http://geomorphometry.org/content/earthenv-dem90). Tran et al. (2014) fused ASTER
with SRTM30 data through (i) DEM quality assessment and pre-processing, (ii) hydrologic
DEM enforcement, (iii) void filling and projection shifting, (iv) DSM versus DTM bias
elimination by landform, and (v) DEM de-noising. The 5-stage process in this study varies
from Tran et al. (2014) by way of systematic cell size and DEM re-processing (re-projecting
and re-interpolation), and using the regression process for bias removal. The reference
DEMs also differ: using a DEM generated from the 1:10,000 topographic map 5m intervals
and spot-height elevation data (i.e., similar to CDED) versus using 1m LiDAR DEM re-

sampled at 10m.
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In terms of applying the above approach to other areas with similar and/or
different DEM including LiDAR DEM coverages, it is important to examine each re-
projected, re-sampled and re-interpolated DEM with reference to artifacts and
hydrographic correctness. In this regard, all open water surfaces need to be rendered flat,
and streams and rivers need to drop monotonously through their surrounding terrain

towards their receiving shores.

4.6. CONCLUSION

The systematic fusion of currently available DEM layers for all of NB not only led
to considerable non-LiDAR-to LiDAR DEM elevation difference reductions, but also
produced a closer and verifiable correspondence between the resulting flow-channels
and wet-area derivations. In summary, the Stage 1 to 5 process as described in this article

has shown that:

1. Non-LiDAR elevation differences relative to LIDAR DEMs can be reduced through
careful analysis requiring re-projecting, re-sampling, and re-interpolation,

followed by selective non-LiDAR DEM amalgamation.

2. The amalgamation process of the SRTM90, CDED and NB-DEM layers was effective
in generating a much-improved non-LiDAR-DEM coverage across New Brunswick,
resolving the issue of ‘ridging’ while slightly reducing vertical elevation error.
Using the ASTER DEM as well did not improve the best-fitted fusion result so

obtained.
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3. The fusion process removed many layer-specific artifacts and large layer-to-layer
elevation differences, while the non-LiDAR- to LiDAR-DEM regression process

reduced the NBDEM-Optimized elevation bias to less than 1m.

4. While the results are specific to, and applied comprehensively across New
Brunswick, similar non-LiDAR DEM improvements can be incurred elsewhere
following the outlined procedure with open-sourced DEM coverages as long as
precise elevation data is available, whether it be ground points of elevation data

sets.
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CHAPTER 5 — UTILIZING SOIL FORMING FUNDAMENTALS FOR HIGH-
RESOLUTION SOIL PROPERTY MAPPING FOR NEW BRUNSWICK, CANADA

Shane Furze, Paul Arp
Faculty of Forestry and Environmental Management

University of New Brunswick, Fredericton, NB, Canada, E3B 6C2
5.1. ABSTRACT

This article presents an approach to modeling continua of soil property variation
across New Brunswick, Canada by comparing field-collected soil profiles to underlying
data sets representing soil forming factors, namely topography, climate, and surficial
geology. Soil profiles were acquired and amalgamated from different sources into a
spatial database (n=12,058) that was used for developing models for predicting the
following soil properties: (i) drainage and horizons depths for A, B, and solum depth, and
(i) texture (sand, silt, and clay), coarse fragment (CF) content, soil organic matter (SOM)
content, and bulk density (Db) at depth intervals of 0-15cm, 15-30cm, 30-60cm, 60-90cm,
and on a solum basis. Procedures are outlined on how spatial data sets of topographic,
climatic and geological features were updated and how variables were selected for
statistical modeling using the machine learning algorithm Random Forest. Modeling
results were evaluated on one third of the soil profile database by way of Kappa scores
for soil drainage and RMSE and R? for remaining soil properties with validation

performance ranging between 70-90%.
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elevation model, topography, surficial geology, climate.

5.2. INTRODUCTION

With traditional soil mapping techniques, high-resolution datasets of soil
attributes either do not exist or are geographically limited to locally-defined extents.
Instead, soils have been mapped as broad tesselated boundaries representing
hierarchical, multi-component soil associations with each component representing a
defined soil type. Each soil type is distinguished by soil drainage but not spatially
represented within the association delineations (Pitty, 1979; Moore et al., 1993; Zhu and
Mackay, 2001; Heung et al., 2014; Odgers et al., 2014). This form of mapping represents
a generalized simplification of soil property variation (Mora-Vallejo et al., 2008) and
contradicts continuous soil heterogeneity, both spatially across the landscape, and
vertically with increasing depth (Pitty, 1979; Odgers et al., 2011; Adhikari et al., 2012).
Thus, there is a growing interest toward digital soil mapping (DSM), modeling soil
properties continuously via relationships with additional data sources representing soil

forming factors (McBratney et al., 2003; Smith et al., 2006).

Numerous statistical models have been used for digital modeling of soil properties
and drainage classes. The use of machine learning algorithms in DSM has been well-
documented in literature with emphasis on regression trees, artificial neural networks,
and support vector machines. Regression trees have been used in Henderson et al. (2005),

Scull et al. (2005), Schmidt et al. (2008), and Behrens et al. (2010) for modeling soil
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properties and in McKenzie and Ryan (1999) for predicting soil thickness. Regression trees
have also been used for predicting soil types (Moran and Bui, 2002; Scull et al., 2005;
Schmidt et al., 2008; Lemercier et al., 2012). Alternatively, Odgers et al. (2014) applied
classification trees for soil map disaggregation. Behrens et al. (2005), Zhao et al. (2010),
and Zhao et al. (2013) have utilized artificial neural networks for predicting soil properties
and soil drainage patterns. Additionally, Zhu (2000), Behrens et al. (2005), and

Bodgahabadi et al. (2015) have used artificial neural networks for predicting soil classes.

This paper presents a framework for mapping individual soil properties spatially
across the landscape at 10m resolution. This was completed by comparing a spatial
database of amalgamated soil samples to underlying data sets representing soil forming
factors, namely topography, surficial geology (mode of deposition, and lithology), and
climate. Emphasis was placed on re-delineating soil forming factors prior to statistical
modeling to mitigate the influence of error on predictions. Soil property mapping focused
on soil texture (sand, silt, and clay), depth, CF content, SOM content, Db, horizon depths
(A, B, and depth to C horizon (solum depth)), and soil drainage, all of which influence the

medium for root growth and development.

5.3. METHODS

Study Extent: Spanning an area of 7.5 million ha, New Brunswick (NB) shares
borders with the state of Maine (USA, west), Quebec (northwest) and Nova Scotia
(southeast), the Nothumberland Straight (East), Chaleur Bay (Northeast), and the Bay of

Fundy (South). As the northern range of the Appalachian Mountain range, NB ranges in
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elevation from sea level along the coast to 811m above sea level in the north (Mount

Carleton) (Happi Mangoua and Goita, 2008) (Fig.5.1).

-
/g\.

Elevation

0 30 60

11.111:.1:5

Figure 5.1. Outline of geographic location and elevation change of New Brunswick, Canada with surrounding
provinces, state, and oceanic features. Background basemap retrieved from ESRI basemap portal within
ArcGIS. “A” represents location used for representing DSM results and MRVBF comparison, “B” represents
location used for LiDAR and curvature classification comparisons, and “C” represents location used for
comparing surficial geology vector data sets.

This change in elevation results in varying climatic conditions from the coast to inland and
higher elevations. Annual average rainfall ranges from 788 mm in the northwest (higher
elevations) to 895mm in the south and southeast. Annual average temperature follows a
different trend with 0.4°C in the higher elevations (north and northwest) to 7.1°C in the

south and southwest (Environment Canada, 2018).
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Spatial Profile Database: Five datasets representing field-collected soil profiles for
NB were acquired and amalgamated into a seamless spatial database (n = 12,058, Fig.

5.2). Table 5.1 outlines the datasets with sample size and source.

Table 5.1. Overview of acquired profiles (spatially-defined soil profiles) utilized in developing spatial
database, including source and associated sample size.

Data Set Source Sample Size % of Total
P le Pl
ermanent Sample Plots NB Department of Natural Resources 2,594 215
(PSPs)
Tri-Nations Sample Plots Natural Resources Canada 123 1.0
. i Inf . .
National Pedon Database Canadian SO|(CRI\TSrIr:)at|on Service 285 2.4
NB Soil Survey Plots CANSIS 222 1.8
Till Geochemistry Site Cards NB Department of Energy and Mines 8,834 73.3

Spatial Database
Source
< National Pedon Database

e Permanent Sample Plots

Till Geochemistry Site Cards
e Soil Survey Plots

@ Tri-Nations Sample Plots

|:| N.B. Boundary

0 30 60

Figure 5.2. Spatial representation of profiles acquired for database with colours representing data sources,
overlaying hill-shaded relief of NB.

Of these, only the till geochemistry site cards lack horizon-specific information for each

sample, instead, properties for C horizon and general site attributes (drainage, landform,
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etc.) were provided. Data harmonization followed the framework as outlined in Chapters
2 and 3. From this, it was ensured that correct classifications for texture and drainage
were assigned to all samples and horizons. Finally, it was ensured that both spatial
database and all spatial data sets aligned in terms of extent, resolution, and spatial

reference (10m and NAD 1983 New Brunswick Stereographic).

Soil drainage, mineral horizon depths, texture, CF content, SOM content, and Db
were chosen for analyses. Texture (sand, silt, and clay), CF, SOM, and Db were
summarized by solum depth (A and B horizons) and depth intervals of 0-15, 15-30, 30-60,
and 60-90cm (Table 5.2). Samples exceeding 90cm were not analyzed due to the

infrequent occurrence of soil profiles reaching these depths.
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Table 5.2. Summary of soil properties to be modeled via DSM including minimum, maximum, mean, and
standard deviation, separated by depth intervals in which they are being modeled. Values for sand, silt, and
clay retrieved from texture classes.

Property Depth Min Max Mean Std. Dev. # of profiles

0-15 0.00 100.00 30.95 21.84 2660

Coarse 15-30 0.00 100.00 36.12 23.29 2660

Fragment 30-60 0.00 100.00 42.32 25.54 2512

Content (%) 60-90 0.00 100.00 35.17 28.74 711

Solum 0.00 100.00 33.09 21.61 2660

0-15 5.00 93.00 53.39 17.86 9064

15-30 5.00 93.00 53.74 17.34 9093

sand (%) 30-60 5.00 93.00 52.59 21.40 2580

60-90 5.00 93.00 55.69 14.03 544

Solum 5.00 93.00 53.46 17.17 9113

0-15 4.00 90.00 30.76 13.73 9064

15-30 4.00 90.00 30.09 12.98 9093

silt (%) 30-60 4.00 90.00 28.80 16.02 2580

60-90 4.00 65.00 26.39 7.21 544

Solum 4.00 90.00 30.61 13.01 9139

0-15 3.00 75.00 15.84 8.15 9064

15-30 3.00 50.00 16.17 8.38 9093

Clay (%) 30-60 3.00 50.00 18.61 12.02 2580

60-90 3.00 50.00 17.92 5.06 544

Solum 3.00 75.00 15.93 8.19 9139

0-15 0.02 91.13 8.48 2.49 218

Organic 15-30 0.00 93.57 4.13 1.44 335

Matter 30-60 0.00 86.86 1.82 1.25 319

Content (%) 60-90 0.00 81.18 1.85 1.00 131

Solum 0.00 25.40 4.55 1.27 411

0-15 0.10 2.25 1.05 0.17 227

BulkDensity 153 0.10 2.10 1.23 0.22 279

30-60 0.10 2.10 1.50 0.26 280

(/cm?) 60-90 0.10 2.30 1.72 0.20 124

Solum 0.10 2.05 1.17 0.23 360

A Horizon - 1.00 45.00 9.67 6.38 2889
Depth (cm)

B Horizon - 2.00 59.00 15.48 7.41 2899
Depth (cm)

Depth to € - 4.00 250.00 42.06 14.96 6683
Horizon (cm)

Drainage - - - - - 9223
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5.3a Spatial Data Quality Assessment

Spatial data sets representing soil forming factors of surficial geology,
topography, and climate were updated as follows, yielding gridded data sets at 10m

resolution:

Surficial Geology: Surficial geology data for NB were mapped directly via photo-
interpretation with road cuts and bore holes, and indirectly via soil association maps, with
the underlying similarity of tessellated delineations. Five vector data sets representing
surficial geology were acquired and compared via a similarity model for re-delineating

boundaries, including:

=

Soil Associations of NB (NB Department of Energy and Resource Development,

2012),

2. Forest Soil Associations of New Brunswick (NB Department of Energy and
Resource Development, 2016),

3. Soil landscapes of Canada (Version 3.2) (Soil Landscapes of Canada Working
Group, 2010),

4. NB Generalized Surficial Geology (NR8) (Rampton, 1984),

5. NB Granular Aggregate Database (New Brunswick Department of Energy and

Resource Development, 2018).

The similarity model was applied as follows: mode of deposition and lithology information

within each vector data set were extracted to a randomly-generated spatial point grid
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with a spacing of 3 points per hectare. At each point the classifications from each vector
data set were compared and uncertainty values assigned based on how many of the data
sets provided the same classifications. If three or more were the same, then it was
assumed that the geology at that site was known. If only half, or less, had the same
information then additional research was conducted via geological reports (NB
Department of Energy and Resource Development, 2018a). This occurred for 20% of the

randomly-generated points.

With each point assigned classes, thiessen polygons were delineated and the
boundaries of adjacent polygons dissolved if they shared the same class, completed for
both mode of deposition and lithology. Using Moh’s mineral hardness scale, mineral
hardness values were assigned to each lithology class (Table 5.3). Additionally, primary
lithology was used to group lithological types by dominant grain size (very fine to coarse),
dominant rock type (i.e., sandstone, shale, granite), and dominant geology (igneous,

sedimentary, metamorphic) (Fig. 5.3).
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Table 5.3. Mineral hardness values assigned to each lithological class within spatial database based on
Moh’s mineral hardness scale.

Lithology Hardness Lithology Hardness
Sandstone, gritstone, shale 6.75 Igneous, Slate 4.8
Mafic volcanics, gabbro, diorite 6.6 Calcareous sandstone and shale 4.5
. . Non-calcareous shale, some
Granite and metamorphic 6.5 4.5
sandstone
. . Sandstone and Conglomerate
Granite, some quartzite, sandstone 6.5 . & 4.5
(calcareous if un-weathered)
Sandstone and conglomerate
Sandstone 6.5 & 4.5
(some quartz)
Sandstone, some granite, quartzite, 6.5 weakly calcareous Sandstone and 45
gneiss ' shale ’
Metamorphosed non- to weakly-
Sandstone/ Undifferentiated 6.5 calcareous slate, quartzite, 4.2
argillite, sandstone
Metamorphosed rhyolite, andesite,
p' ¥ . 6.4 Sandstone, conglomerate, shale 4.0
schist, slate, granite
. . . Slate and argillite and sandstone
Granite, gneiss, basalt, felsite 6.3 g . 4.0
and schist
Calcareous sandstone and 6.0 Weakly- to calcareous shale, slate, 40
quartzite, some argillite, shale ’ guartzite, some sandstone )
Granite, quartzite, gneiss, argillite, 6.0 Sandstone, conglomerate, 38
volcanics, some sandstone ’ mudstone ’
Non- to weakly-calcareous
Y . 6.0 Sandstone, shale, mudstone 3.8
sandstone, shale, quartzite
Non-calcareous sandstone and
. s Calcareous shale and slate
quartzite, some argillite, slate, 6.0 . . . . 3.5
> with/without limestone, argillite
shale, schist
Sandstone/Sandstone and shale or
/ . 5.8 Slate 3.5
siltstone
Sandstone/ clay from calcareous 55 Calcareous shale, slate, quartzite, 33
shale ' argillite '
Strongly metamorphosed slate,
gy . P . 53 Calcareous Shale 3.0
quartzite, volcanics
Highly calcareous shale, quartzite, 50 Weakly calcareous shale, 575
argillite, sandstone ’ mudstone ’
Quartz, Schist, Igneous 5 Clay 2.0
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Figure 5.3. Visual examples of variability in dominant grain size, mineral hardness, and geological type for
NB, derived from updated lithological representations via the similarity model.

Topography: Both primary and secondary topographic derivatives were derived
from a 10m DEM for NB. This was completed in both ArcGIS and SAGA GIS software
(Conrad et al., 2018; Environmental Systems Research Institute, 2018) utilizing the DEM
derived in Chapter 4. Prior to calculating the topographic derivatives, the DEM was hydro-
conditioned to ensure correct flow patterns from ridge to valley (Saunders and
Maidment, 1996; Murphy et al., 2008). Next, a suite of derivatives were calculated with
emphasis on those representing soil-landscape relationships, namely those influencing
the rate, dissipation, and accumulation of nutrients, water, and minerals across the

landscape. Also included were derivatives that represent atmospheric exposure (position
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on landscape, open and flat areas). Appendix Il outlines both topographic and hydrologic

derivatives incorporated into the modeling procedure.

Climate: To develop continuous maps of climatic variables of interest,
meteorological stations within NB and Ontario, Canada (n = 151) were spatially plotted.
Next, annual average values for temperature (annual average and annual daily maximum,
°C) and precipitation (annual average rainfall, mm) calculated for the past 29 years (1981
— 2010) were assigned to each weather station (retrieved from Environment Canada
(2018)). The measured climatic properties were compared to DEM-derived topographic
derivatives (those believed to influence environmental exposure, i.e., topographic
openness, elevation, topographic position, aspect, slopes, and horizontal distance to
coast) and spatial data sets representing variations of latitude and longitude, for NB and
Ontario, via linear regression analyses. Regression results were applied spatially at 10m

resolution resulting in gridded data sets representing climatic variation.

DEM Resolution and Multi-Scale Analysis: Since landscape processes are scale
dependent, some of the above DEM derivatives were calculated multiple times at
different resolutions due to the artificial presence of many small-scale mounds and pits
within the 10 m DEM (Fig. 5.4). This was in part resolved through resampling the DEM at
30 m resolution. Some of the resulting derivatives were smoothed further based on a
determining their average values within their 5 x 5 cell neighborhoods, followed by
subsequent re-interpolation at 10 m. This procedure was applied to all topographic data
sets representing curvatures and the results utilized in following analyses.
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Figure 5.4. Comparison of hill-shaded relief for NB fused DEM (10m, right) and LiDAR-Derived DEM (1m,
left) representing the omission of topographic variation and the presence of pits and peaks, particularly on
hill sides within the fused DEM.

5.3b Statistical Analyses

Variable Correlation Analysis: Spatial gridded data sets pertaining to topography,
hydrology, climate, and surficial geology (hereby titled “covariates”) were compared via
Pearson correlation analysis (Table 5.4) to determine the extent of multicollinearity.
Correlations > 70% were considered significant to ensure correlation and to help aid in
variable reduction. For each covariate, counts were calculated to determine the number
or correlated covariates. Those with the highest counts were retained while their
correlated counterparts were removed. This process was conducted iteratively until all
remaining covariates were un-correlated. The first covariates assessed were those
calculated at different neighborhood sizes, including topographic position index (200,
300, 500, 700m search radius) and terrain surface texture, terrain surface convexity,
terrain surface concavity, and terrain ruggedness index (each calculated at 60m, 200m,
500m search radii). The search radii applied were selected based on qualitative inspection
of the resulting data set and how it corresponds with changing hillslope. Overall, this

technique resulted in a variable reduction of 50%, from 56 to 30 covariates.
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Table 5.4. Overview of Pearson correlation results on covariates, with results of recursive covariate removal
depending on correlation values. Covariates considered correlated if absolute correlation values were at
least 70%.

Covariates Retained Code Correlated Covariates Correlation %
Slope Length 86
Real Surface Area 88
Topographic Negative Openness -85
SR SLP Topographic Positive Openness -86
Terrain Surface Texture (220m search) -70
Terrain Ruggedness Index (110m Search) 88
Downslope Curvature 81
General Curvature 72
Topographic Position Index I Local Downslope Curvature 71
(110m Search) Local Curvature 75
Upslope Curvature 77
Local Upslope Curvature 73
Annual Average Rainfall (mm) 89
Daily Maximum High Admax Annual Average Temperature (°C) 100
Temperature Digital Elevation Model -82
Latitude -87
Catchment Slope 100
Curvature Classification Cur_Cls Horizontal Distance to Stream 84
SAGA Wetness Index 100
Specific Catchment Area 100
Catchment Area A Modified Catchment Area 86
Tangential Curvature Tan_Curve Cross-sectional Curvature 97
Terrain Surface Convexity Ts_Conv Terrain Surface Concavity -90
Planar Convexity Plan_Conv Profile Convexity 100
Longitude Long_10 Horizontal Distance to Coast -73
Landform Land - -
Lithology Lithology - -
Grain Size Grain_Size - -
Rock Type Rock_Type - -
Geology Type Geo_Type - -
Aspect ASP - -
Diurnal Anistropic Heating Di_Heat - -
Downslope_ Distance e Gk ) )
Gradient
Flow Accumulation FA - -
Flowline Curvature Flw_Curve - -
Mineral Hardness Hardness - -
Longitudinal Curvature Lng_Curve - -
Maximum Curvature Max_Curve - -
Minimum Curvature Min_Curve - -
Planar Curvature Plan_Curve - -
Profile Curvature Prof_Curve - -
Total Curvature Tot_Curve - -
Cartographic Depth-to-
ila:er Inder:( DTW i i
Multi-resolution Index of
Valley Bottom Flatness MRVEF i i
Multl.-resolutlon Index of MRRTE ) )
Ridgetop Flatness
Valley Depth Val_Depth - -
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Each soil profile within the database was then compared to underlying covariates
via the Random Forest machine learning algorithm (Breiman, 2001) in the ‘caret’ package
for R (Kuhn, 2017; R Core Team, 2018). In this, a randomly-selected 30% of the database
was set aside as a validation dataset to assess all modeling results. During modeling, the
training data was partitioned so that 70% of each drainage class was randomly sampled
for training while the remaining 30% was used for model validation. With Random Forest,
instead of assigning a specific number of predictors to test at each node, a tuning grid was
developed which tests a matrix of predictor variables (ranging from 3 to 24 at intervals of
3) at each node within the decision trees of the random forest model. Model training was
repeated with k-fold cross validation using 20 replicates. Each random forest run was

completed with a tree size of 10 (number of regression trees to develop and test).

Model performance was assessed via two methods, RMSE and R? for continuous
predictions (depth, texture, CF, SOM, and Db), and confusion matrix with Kappa index for
categorical predictions (drainage class). Model performance was determined by
comparing predictions within training data to the separate validation data. Variable

importance for the 5 dominant predictors of each model are provided in Appendix IV.

5.4. RESULTS

Soil Drainage: Soil drainage is represented as 7 classes, ranging from very poor to
excessively drained, as outlined by Working Group on Soil Survey Data (1982). The rate at

which water passes through soils is a function of topographic position, soil physical
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properties, and geomorphology (Wilson and Gallant, n.d.; Gallant and Hutchinson, 1997;

Zhu and Mackay, 2001; Taylor et al., 2013).

The distribution of soil drainage classes within the database is biased toward soils
on moderately well- to well- drained sites (Table 5.5) due to the different objectives of
each project in which the soil profile data were collected. Drainage classes were grouped
into broader classes to increase sample size of each group for better representation,

omitting transitions between classes.

Table 5.5. Representation of technique applied to amalgamate individual soil drainage classes (at the profile
level) into groups representing the dominant drainage classes. This result was necessary to increase the
sample sizes of the under-sampled classes to improve model predictions.

Original Classification New Classification
Class Count Class Count
VP 33
VP-p 1 VP 34
P 226
P 3 P 229
I 982
MW 1 I 983
MW 2450
MW-W 5 MW 2455
w 4890
W-R 5 W 4895
R 648
R-EX 9 R 658
EX 1

Soil drainage model results yielded a Kappa score of 79.8% with the confusion
matrix outlined in Table 5.6. The imperfectly-, moderately well-, and well-drained classes
had the greatest variations in predictions, but still performed well in predicting the proper

class. Overall, model performance and visual inspection do coincide with theoretical
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expectations of changes in soil drainage in relation to changes in topography for most of
the landscape, low lying areas have poorer drainage than steeper slopes and ridgetops.
Qualitatively, performance decreases in northern portions of the province where
variations in topography are more frequent and intense (Fig. 5.5). This is likely due to the
lack of samples on more poorly-drained soils within both the training and validation data
as well as the influence of climate and longitude on predicting drainage. Additionally,
coarser DEM resolution (10m) results in the inability to capture small depressional and
low-lying areas where drainage is likely to be classified as poor or very poor. Also, coarser
DEM resolution results in small and frequent variations in elevation (pits and peaks) over
short distances. This results in abruptly changing drainage classes over short distances,
and at times, one cell may be allocated a drainage class whereas all adjacent cells have

the same, but different drainage class from the initial cell.

Table 5.6. Confusion matrix results of soil drainage class predictions via the Random Forest Model.

L. Reference
Prediction
VP P I MW W R
VP 6 2 0 0 0
P 0 38 4 3 1 1
| 2 2 184 9 13 2
MW 1 5 10 428 48 8
w 1 8 31 64 1030 21
R 0 0 5 4 15 115
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P

Figure 5.5. Visual example of soil drainage model result located in Northwestern NB. Note the tendency to

predict well- and moderately well- drained classes.

There are few articles on predicting soil drainage classes via DSM, with most
focusing on predicting soil hydraulic properties. Campling et al. (2002) utilized logistic
modeling to map the similar soil drainage classes as outlined in this study, but at 25m
resolution within Southeastern Nigeria. Their results performed well at predicting hydric
vs. non-hydric soils (99%), but model performance decreased (65%) when predicting
imperfect- vs. moderately well-drained soil classes. Bell et al. (1994) determined the
probability of drainage classes in Pennsylvania, USA, via multivariate discriminant
analysis. Their results agreed with published soil drainage maps at 67%. Murphy et al.
(2011) compared the cartographic depth-to-water index (DTW) and topographic wetness
index (TWI) from LiDAR data for mapping soil drainage classes for NB, with results
explaining 64% and 25% of the variability in drainage classes, respectively. Their study

only focused on three drainage classes, very poor, poor, and imperfectly-well-drained.
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Finally, Zhao et al. (2018) utilized artificial neural networks to predict soil drainage classes
for New Brunswick. Their results yielded a correct prediction for 52% of the data, but their

study did not mention what resolution or source of the DEM used.

Depth: Each mineral horizon sampled was provided an upper and lower depth at
which they occur (i.e., 0-6cm). With this, profiles were summarized by depth to C horizon
(solum), and average depth of each horizon (i.e., A and B horizon depth). Additionally, soil
properties of each profile were averaged by depth classes representing 0-15cm, 15-30cm,
30-60cm, 60-90cm, 90-150cm, and >150cm (Fig. 5.6). Doing so allowed for soil properties
to be summarized by these classes to not only represent how soil properties vary by
depth, but also how they compare from site to site on specific depth intervals.
Additionally, the influence of topography on soil properties varies with increasing depth,
thus, better predictions of soil may result from separating properties into depth intervals
(Florinsky et al., 2002). Analyses were not conducted on samples exceeding 90cm
(labelled as ‘150’ in Fig. 5.6) due to the infrequent occurrence of soil profiles reaching
these depths. Fig. 5.7 represents the Random Forest modeled depths for A and B horizon
thickness, and depth to C horizon (solum depth). Alternatively, spline functions could be
used to incorporate the influence of depth on soil properties, but it becomes difficult

when developing spatial predictions of soil property variation.
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Figure 5.6. Frequency distribution of defined depth classes within spatial database for profiles in which soil
horizons were provided (23%). Depths exceeding 90cm (labeled as ‘150’) were not analyzed but shown to
represent the lack of profiles reaching these depths.
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Figure 5.7. Comparison of performance plots (measured vs. fitted) for A-horizon depth (left), B-horizon
depth (center), and solum depth (right) predictions.

Modeling A horizon, B horizon, and solum depth to underlying covariates yielded

strong relationships with the B horizon model explain the greatest variation. In
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comparison to these findings, Florinsky et al. (2002) were able to explain 20% of the
variation in solum thickness for an agricultural area in the Canadian prairies. Hengl et al.
(2004a) compared different techniques to correct DEM errors with which these were used
to predict solum thickness in Eastern Croatia. Their best performing model explained 40%
of the variation in solum thickness. Taylor et al. (2013) compared imagery with
topographic derivatives, both ranging from 10 and 90m resolution for mapping soil depth.
Using a multi-scale approach, they were able to predict 91% of the variation in soil depth
in the Peyne Watershed, Southern France. Gessler et al. (1995) developed models for
predicting both solum depth and A-horizon depth from curvatures and the compound
topographic index with which they explained 63% and 68% of the variation in A-horizon
and solum depths, respectively. Similarly, Moore et al. (1993) utilized the compound

topographic index to explain 55% of the variation in A-horizon depth.

Texture: Texture classes were converted to average proportions of sand, silt, and
clay (70.4% of database, Table 5.7) and values summarized by depth class intervals. The
frequencies of the resulting sand, silt, and clay percentages are plotted in Fig. 5.8. The
resulting best-fitted sand, silt, and clay percentage emulations with varying depth

intervals are shown in Fig. 5.9, capturing > 85 % of the percentage values for each class.
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Table 5.7. Distribution of texture classes sampled on a horizon basis within database with average

proportions of sand, silt, and clay within each class, by increasing sand content.

Texture Class Abbreviation = % Sand % Silt % Clay Sasrirlzle % of Total
Silty Clay SiC 5 49 46 32 0.18
Silt Si 5 90 5 5 0.03
Silty Clay Loam SiCL 10 56 34 67 0.37
Heavy Clay HC 12 13 75 2 0.01
Silt Loam SiL 20 65 15 1847 10.22
Clay C 25 25 50 396 2.19
Clay Loam CL 32 34 34 1375 7.61
Clay Loam - Loam CL-L 35 39 40 1 0.01
Loam L 41 40 19 5295 29.29
Silt L°i:;;sa"dy SiL—SL 45 50 5 1 0.01
Sandy Clay sC 53 4 43 5 0.03
Loam - Sandy Loam L-SL 53 36 11 6 0.03
Sandy Clay Loam SCL 60 13 27 1270 7.02
Sandy Clay Loam — SCL-SL 65 15 20 5 0.03
Sandy Loam
Sandy Loam SL 68 22 10 5851 32.36
Sandy Loam = Loamy SL—LS 77 14 9 7 0.04
Sand
Loamy Sand LS 80 13 7 1512 8.36
Loamy Sand - Sand LS-S 88 7 5 3 0.02
Sand S 93 4 3 400 2.21
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Figure 5.8. Comparison of sand (black), silt (green), and clay (red) composition for changing depth intervals
from 0-15cm (top left), 15-30cm (top right), 30-60cm (bottom left), and 60-90cm (bottom right). Note the
reduced sample sizes of the finer-textured soils (silts and clays) even with increasing depth.
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Figure 5.9. Comparison of performance plots (measured vs. fitted) for sand (left), silt (center) and clay
(right) models at defined depth intervals of 0-15cm (top row), 15-30cm (second row), 30-60cm (third row),
and 60-90cm (bottom row). Proportions of sand, silt, and clay assigned from texture class.

From this, it is apparent that model performance increases with increasing depth due to

increasing influence of parent material and topography on texture. Near the surface
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texture is influenced by environmental factors in the form of water and acidity, altering

the texture composition of the soil.

In comparison, Odeh et al. (1994) were able to explain 51% of the variation in
subsoil clay content using a few topographic derivatives. Their study focused on an area
with minimal change in lithology and at coarse resolutions (500m to 1km). Adhikari et al.,
(2012) predicted silt, clay, and sand (fine and coarse) both spatially and vertically, using
depth intervals, for Denmark utilizing the cubist model. They found that the ability to
model soil texture decreased with increasing depth (best performance was 54% of the
variation explained for clay at 0-5cm). Zhao et al. (2013a) utilized artificial neural
networks to predict clay content then used the results to predict soil nutrient regimes for
Nova Scotia, Canada. This study utilized a 10m DEM and soil information from existing soil
polygons. Again with the use of artificial neural networks, Zhao et al. (2018) modeled sand
and clay contents within the Black Brook watershed in Northwestern NB, Canada. This
study also utilized existing soil association polygons and lookup tables for soil information
to include in the modeling. Akumu et al. (2015) predicted soil texture within the clay belt
of Ontario using a fuzzy logic approach with a 10m LiDAR-derived DEM. They predicted
six textural classes at 79% accuracy. At a broader scale, Mansuy et al. (2014) applied k-
nearest neighbors to predict soil texture within the top 15cm of forest soils at 250m
resolution across Canada. With this, they were able to explain up to 43% of the variation

in topsoil clay content, with weaker results for sand and silt (20 and 13%, respectively).
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Coarse Fragment Content: Reviewing the changing CF content with depth, it

became apparent that soil profiles exceeding 60cm typically coincide with deep parent

materials lacking CF’s (i.e., deep alluvial floodplains, Fig. 5.10). The distributions also show

that CF content increases with increasing depth from 0 to 60cm. Actual vs. fitted model

results for CF content at defined depth intervals are depicted in Fig. 5.11.
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Figure 5.10. Frequency distributions for coarse fragment content at defined depth intervals of 0-15cm (top
left), 15-30cm (top right), 30-60cm (bottom left), and 60-90cm (bottom right).
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Figure 5.11. Comparison of performance plots (measured vs. fitted) for CF models at defined depth intervals
of 0-15cm (top left), 15-30cm (top right), 30-60cm (bottom left), and 60-90cm (bottom right).

Limited research has been conducted on DSM for CF content. Mosleh et al. (2016)
attempted to model CF content along with additional physical and chemical properties
within topsoil within the Chaharmahal-Va-Bakhtiari province of Iran, but they were
unable to retrieve any significant relationship. Vaysse and Lagacherie (2015) tested
different DSM techniques for mapping a suite of soil properties across Europe at 100m
resolution at different soil depth intervals. The best RMSE achieved for CF% was 8.37 at a

depth interval of 15-30cm with an R? of 16%.

Soil Organic Matter Content: In comparison to the other soil properties, SOM data
were sparse. The actual versus best-fitted emulation results using the log (In) transformed
SOM are shown in Fig. 5.12 by soil depth class, accounting for about 80% variations within
the 0-15 and 15-30 cm soil layers, but only about 30 to 13 % for the 30 -60 and 60-90 cm

data layers, for which the organic matter accumulations are also decidedly lower, as to
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and 69-80% of the variation in C content (Table 5.8).
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Figure 5.12. Comparison of log-transformed performance plots (measured vs. fitted) for SOM models at
defined depth intervals of 0-15cm (top left), 15-30cm (top right), 30-60cm (bottom left), and 60-90cm

(bottom right).

Table 5.8. Overview of literature in which DSM was applied for modeling both carbon and SOM content at
different resolutions and varying geographic extents, with accuracy represented as percentage of variation

explained.
. . Property Accuracy (% var.
L
Source ocation Resolution (m) (SOM, C) Explained)
Florinsky et al. (2002) Manitoba, Canada 15 SOM 37
Hengl et al. (2004b) Croatia 100 SOM 233 (((;E))' 66.5
Gessler et al. (2000) California, USA 1 C 80
Bui et al. (2006) Australia 250 C 69
Thompson et al.
(2006) Kentucky, USA 10 SOM 28
Zushi (2006) Japan 10 SOM 50.4
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Bulk Density: The frequency distribution of the profile-based Db data is plotted in
Fig. 5.13, indicating a shift towards higher densities with increasing depth, as to be
expected for (i) a generally glaciated landscape with extensive areas subject to glacial
regolith compaction, and (ii) for the general decreasing in soil-aggregating SOM content
with increasing soil depth. The actual versus best-fitted results (Fig 5.13) account for

about 85% of the of the profile reported data.
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Figure 5.13. Frequency distributions for Db at defined depth intervals of 0-15cm (top left), 15-30cm (top
right), 30-60cm (bottom left), and 60-90cm (bottom right). Note how bulk density increases with
increasing depth.
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Figure 5.14. Comparison of performance plots (measured vs. fitted) for Db models at defined depth
intervals of 0-15cm (top left), 15-30cm (top right), 30-60cm (bottom left), and 60-90cm (bottom right).

Only few studies have applied DSM techniques for modeling Db of which Ballabio
et al. (2016) modeled topsoil sand, silt, and clay and used this to predict Db over the
extent of the European Union at 100m resolution. Mansuy et al. (2014) predicted 17% of

the variation in Db at 250m resolution for the Canadian forested land base.

Solum-based model results for actual vs. fitted predictions of sand, silt, clay, CF,
SOM, and Db are represented in Fig. 5.15 with resulting spatial predictions depicted in

Fig. 5.16.
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(D), clay (E), CF (F), SOM (G), and Db (H) measured on the solum basis within the study extent outlined in
Fig. 5.1.
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With respect to texture and CF content, there is a bias to over-predict low values, and to
under-predict high values by about 10%. The RMSE values range from * 3.7 (clay) to + 8.7
(CFs). Actual data for SOM and Db were sparse. The associated RMSE values amounted to
1.8% and 0.12 g cm3, respectively. For the bottom A-, B- and solum depths (Fig. 5.7), high-
value under-predictions amounted to 10 to 20 cm, while low-value over-predictions
amount to 5 to 10 cm. Overall RMSE values amounted to + 3.1, + 3.1 and + 7.2 cm,

respectively.

5.5 DISCUSSION

The DSM results outlined above represent a limitation to modeling in which model
performance is dependent on input data and performance cannot be assessed by
guantitative measures only. Having limited data on the poor, very poorly-, and rapidly-
drained sites results in a biased drainage model which seldom predicts those drainage
classes. Additionally, model performance is limited when small sample sizes are utilized.
Of 12,058 samples, Db at 60-90cm was only measured 124 times whereas texture was
measured 544 times. Both small samples are a result of infrequent occurrence of profiles
reaching these depths, but it is likely that these limited samples do not capture the full
variability of soil-forming factors as they change throughout NB. Thus, model
performance will be biased toward the sites with soil forming factors similar to those in

which the samples were measured.

Soil samples were acquired and amalgamated from different sources increasing

the likelihood of inconsistencies between data sets. It is assumed that soil and site
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properties were measured in the same manner, but, it is likely that some measurements
were done so incorrectly, namely those measured in the field such as drainage

classification and field-based texture and CF assessments.

Surficial Geology (Parent Material): Photogrammetrically-derived spatial
datasets representing surficial geology tend to be crude in nature, omitting small-scale
variations in both mode of deposition and lithology. This is particularly true when dealing
with heavily-glaciated landscapes. Invariably, surficial geology maps with sufficient detail
are generally unavailable at provincial extents. The rationale behind using the soil
polygons as predictors in surficial geology delineations is that these vector data sets are
based on diverse expert knowledge and on soil-landscape relationships, although not fully
conforming with topographic changes in the landscape. Additionally, as depicted in Fig.
5.17, there are many inconsistencies between data sets when delineating the same

landform types, i.e., ablation till, within the same geographic location.
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surficial geology within NB with all data sets overlain (bottom right). As seen, many inconsistencies occur
between delineations for extent outlined as “C” in Fig. 5.1.

Therefore, combining soil delineations with original surficial geology maps via similarity
modeling may vyield better representations of variations in landforms (mode of

deposition) and lithologies.

Topography: Prior to topographic development, the DEM was hydro-conditioned
to ensure hydrologically-correct flow patterns, particularly in low-lying and flat areas
(Saunders and Maidment, David, 1996; Murphy et al., 2008). This process is necessary

prior to developing hydrological derivatives from any DEM. Once hydrologically-
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corrected, the hydrologic derivatives were developed while topographic derivatives were

produced from the original DEM.

With the fused DEM from Chapter 4, the influence of coarser resolutions and
interpolation is evident in the form of abrupt changes in elevation at small scales (‘pits
and peaks’) (Fig. 5.4). From this, computed topographic derivatives recognize these
variations as changes in hillslope position, resulting in noise which is then inputted into
statistical modeling. Higher resolution DEMs, namely LiDAR, may yield better predictions
in soil property variation due to its ability to adequately represent varying topographic
positions at high resolution and the scale at which soil properties vary is finer than the
DEM resolution of 10m. Adversely, due to its high resolution, topographic derivatives
from LiDAR DEMs under-represent the full hillslope from ridge to valley due to the broad
extent at which these occur. Thus, it is likely that topographic derivatives from LiDAR
would require a smoothing technique and/or larger search neighborhood to fully capture

the hillslope.

As a case study, the curvature classification, utilized as one of 30 covariates for
DSM, was developed under varying DEM resolutions and neighborhood sizes. Retrieved
from Birkeland (1999) and originally from Dikau (1988), curvature classification
distinguishes different forms of a hillslope, ranging from 0-8 depending on the concavity

and convexity in both planar and profile form (Fig. 5.18).
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Figure 5.18. Visual representation of the 8 curvature classifications derived from “Curvature Classification”
script in SAGA (Conrad et al., 2018), with the value of each class shown. Classes and figure retrieved from
Dikau (1988) and Birkeland (1999) respectively.

At 10m resolution, the curvature classification shows much variation over a
locally-defined spatial extent (Fig. 5.19). Smoothing the curvature classification grid using
a 5 x 5m rectangular neighborhood (search window) yields different classifications at a
slightly broader extent. Alternatively, aggregating the DEM from 10 to 30m and re-
calculating the curvature classification, both on the original DEM at 30m and smoothed
DEM, shows how the curvature classification begins to conform with changing
topographic features at the hillslope extent. This shows that topographic derivatives from
one DEM resolution and at one neighborhood size may not be suitable for DSM, instead,
there is a need for a multi-scale approach in which both DEM resolution and

neighborhood size vary depending on the derivative being produced.
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Figure 5.19. Comparison of curvature classifications derived from varying DEM resolutions and
neighborhoods of original 10m DEM (A), 10m DEM smoothed via 5 x 5 cell window (B), 10m DEM aggregated
to 50m (C), and 50m DEM smoothed via 5 x 5 cell search window (D) for study extent “B” outlined in Fig.
5.1. Note how the ability to delineate hillslope positions increases with increasing cell size from 10m to 50m
smoothed.

Alternatively, the DEM could be smoothed, by either one or multiple neighborhood sizes
prior to developing topographic derivatives. Although feasible, this approach may lose

representation of subtle variations in topography which explain soil property variation.

Varying resolutions and neighborhood sizes influences the depictions of hillslope
positions and the scale at which these features are delineated. This approach can be
applied to any topographic derivative, depending on derivative, allowing for a multi-scale
approach to DSM. This is necessary because the influence of hillslope on soil properties

occurs over multiple scales. Adversely, some existing algorithms which apply a multi-scale
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approach, namely “Multi Resolution Index of Valley Bottom Flatness” (MRVBF) and its
counterpart, “Multi-Resolution Index of Ridgetop Flatness” (MRRTF), result in different
values for the same location depending on the scale in which they are applied. For
example, MRVBF was calculated for a 600,000ha test area in Northern NB (Fig. 5.20) and
compared to MRVBF that was calculated for the entire province and extracted to the test

area. It is apparent that the resulting data sets provide different values for the same site.

In terms of DSM, this difference could result in incorrect, or missed, relationships.

Figure 5.20. Comparison of Multi Resolution Index of Valley Bottom Flatness (MRVBF) derived at two
different scales, one for a 600,000ha test site in Northern NB outlined in Fig. 5.1. (left) and one at full
provincial extent (7.2million ha) (right), both overlaying hill-shaded relief of 10m DEM. The results show
how the same algorithm developed different results for the same area, depending on the extent in which
it is produced.

The multi-scale approach was assessed by Smith et al. (2006) for use in digital soil
surveys, and Behrens et al. (2010) and Zhu et al. (2008) for use in DSM. All studies have
concluded that there is an optimal threshold for different topographic derivatives to
capture the spatial variation in soil properties. With this, it is possible to develop the same

topographic derivative at one resolution, but at multiple neighborhoods, and utilize these

148



in combination for DSM since the influence in which topography affects soil property

variation changes with scale.

Climate: Although influential to soil formation and nutrient retention, climatic

attributes are typically not included in DSM studies likely due to their coarse resolution in

comparison to high-resolution variability of soil properties. Instead, as mentioned,

topography is used as a surrogate for climate. Climate attributes were incorporated into

this study by comparing climate ‘normals’ (from 1989-2010) to underlying elevation,

latitude, and longitude, allowing for the development of models and the prediction of

temperature and precipitation variables at 10m resolution, as outlined in Table 5.9.

Table 5.9. Model results for annual average temperature, daily maximum high temperature, and annual
average rainfall from comparing climate normal from 21 years for 150 weather stations to elevation and

geography.
Predicted Variables Estimate t- value p- value Adj. R? (%)
Intercept 48.2867 41.043 <0.0001
A?Zr:ije/?:f;ige Elevation -0.0048 -9.621 <0.0001 021
°c Latitude -1.0059 -44.591 <0.0001
Longitude -0.0537 -6.457 <0.0001
Daily Maximum Intercc'ept 46.7065 29.134 <0.0001
Temperature Elevation -0.0044 -6.491 <0.0001 318
°c Latitude -0.8397 -27.315 <0.0001
Longitude -0.0415 -3.659 0.0003
Annual Average Intercept 2762.5580 22.910 <0.0001
Rainfall Latitude -27.5780 -11.250 <0.0001 63.4
mm Longitude 9.5540 13.270 <0.0001

Weather stations for Ontario were included in the analysis to help increase sample size

(n=39 for NB) and to help quantify the influence of geography on varying climatic

patterns.
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Variable Selection: Incorporating all 60 data sets (48 topographic, 3 climatic, 5
geological) into spatial analyses for modeling soil properties at a provincial extent would
be both computationally- and time- intensive. Appendix | outlines all variables developed
in this study, and from this, it is apparent that some topographic derivatives are very
similar, if not the same, to others. The differentiating factor being the model used to

calculate the derivative.

As an alternative to the correlation technique, all derivatives could be
incorporated into the modeling phase and have the training procedure remove
insignificant variables. This can be completed via assessment of variable inflation factors
(VIFs), utilizing variable importance plots (depending on modeling approach), or using
principle components analysis. Principle components analysis (PCA) can be an effective
technique, but limitations arise in which the technique groups input predictors into

components, thus, it is challenging to apply the model result spatially afterwards.

Prediction Results: Model results (variable importance) for A, B, and solum depth,

drainage, and sand, silt, clay, CF, SOM, and Db on solum basis are shown in Table 5.10.

150



Table 5.10. Random forest model results (variable importance for 5 most dominant predictors) for horizon
depths (A, B, and solum), drainage, and sand, silt, clay, CF, SOM, and DB on a solum basis. Results for each
analysis shown for 5 dominant predictors using abbreviations outlined in Table. 5.4.

A Depth B Depth Solum Depth Drainage
Covariate | Importance | Covariate | Importance | Covariate | Importance Covariate Importance
Admax 100.00 CA 100.00 Admax 100.00 SLP 100.00
FA 91.10 MRVBF 96.65 Cur_Cls 93.37 Max_Curve 87.95
TPI 90.22 Cur_Cls 87.31 CA 76.53 Admax 78.61
Geo_Type 85.66 Admax 77.84 Tan_Curve 69.86 TPI 77.35
Max=Curve 82.13 TPI 75.99 Di=Heat 68.43 Down=Grade 71.32
Sand Silt Clay CF
Covariate | Importance | Covariate | Importance | Covariate | Importance Covariate Importance
Admax 100.00 Admax 100.00 Wetland 100.00 Val_Depth 100.00
Rock_Type 69.31 Lng_Curve 66.70 Rock_Type 80.94 MRVBF 85.45
Prof_Curve 58.77 Geo_Type 55.59 Cur_Cls 68.09 Admax 71.98
Land 48.10 SLP 54.72 Crs_Curve 63.06 Rock_Type 61.93
Lithology 41.50 Prof_Curve 54.21 DTW 62.17 MRRTF 60.48
SOM Db
Covariate Importance Covariate | Importance
Geo_Type 100.00 Admax 100.00
Val_Depth 91.71 Crs_Curve 92.05
Rock_Type 83.54 SLP 91.73
Max_Curve 52.80 Ts_Conv 91.11
Crs_Curve 73.40 MRVBF 80.15

Covariates produced within this study, both climatic and geological, are dominant
predictors for all soil properties. It is accepted that geological covariates influence the
physical properties of the soil including texture and CF content. These covariates also
strongly influence SOM within the solum and this is likely due to the influence these have
on texture composition, and in turn, how texture influence SOM retention. As expected,
daily maximum high temperature (“Admax”) was a dominant predictor for all properties
except clay and SOM. This is likely due to the influence of environmental factors on soils
properties within the solum, with stronger environmental influence within topsoil and
this influence decreasing with depth. Although decomposition and mineralization of SOM
is controlled by climate, both SOM and clay are the two particles frequently transported

with moving water through the soil.
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In addition to climatic and geolgical covariates, topographic covariates, namely
those representing curvature, appear as dominant predictors in all models except CF
content. This is expected as curvature influences the rate of movement, accumulation,
and dissipation of nutrients, minerals, and water across the landscape. For modeling soil
depth, these results are in agreement with other literature (Moore et al., 1993; Boer et
al., 1996; Florinsky et al., 2002; Hengl et al., 2004a; Ziadat, 2010; Taylor et al., 2013) in
that surface curvature strongly influences soil depth. In addition, Mansuy et al. (2014) had
shown that curvature, in combination with other topographic derivatives, has proven
useful for measuring soil texture, Db, and SOM content across Canada. Also, Creed et al.
(2002), Pennock (2003), and Terra et al. (2004) discovered that surface curvature were
useful in predicting SOC contents. Finally, Romano and Palladino (2002), Mulder et al.
(2011), and Taylor et al. (2013) discovered the curvature helped explain water

redistribution, water table depth, and water retention, respectively.

5.6. CONCLUSIONS

This study presented an approach to multi-scale digital soil mapping of select soil
properties using New Brunswick, Canada as a case study. Input predictor variables
represented the dominant soil-forming factors of topography, climate, and surficial
geology with the number of variables reduced via correlation analyses. The soil modeling
results present access to soil information previously unavailable with traditional soil
mapping techniques as confirmed in Fig. 5.21 with provincial representation shown in Fig.

5.22.
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Figure 5.21. Comparison of conventional soil association mapping (left) and digital soil mapping (right) using
bulk density measured on the solum basis for study extent outlined in Fig. 5.1. Note the variability of soil
properties now assessable within confines of conventional, polygon-based soil maps.

Figure 5.22. Visual example of DSM results representing changing solum depth at 10m resolution for NB,
Canada.
The projected soil property maps are in reasonable agreement with the 30% of

the amalgamated soil profile database used for model validation. As such, soils on ridges
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are seen to be thinner and coarser than soils in floodplains. Soil Dbs also vary as expected
by being denser on ridges tops and in areas with high sand content, and lower in areas
with high SOM content. Texture is sandier in the upper reaches of floodplains while silt
content appears to be higher in higher than in lower lying areas. These trends, however,
vary by landform. To confirm this, additional testing will be required, especially at the
practical level of field operations, to the effect that the soil properties maps generated by
the above approach lead to quantitative improvements in soil and land management. This
testing should also involve generating profile data for landforms and drainage conditions

that are under-represented.

The precision of a DEM significantly influences the ability to model soil properties,
and DEM derivatives require calculation at different resolutions and at different
neighborhood search windows. The curvature classification example shows how noise in
the DEM skews the output of topographic derivatives. This results in unrealistic
relationships between underlying topographic features and soil properties. The same is
true for the extent in which these derivatives are produced. Producing topographic
derivatives at a small geographic extent shows much different results than the same
derivative produced at a much larger extent. The example of MRBFV and MRRTF are
provided. Thus, there is a need for a multi-scale approach to DSM in which topographic
derivatives are developed at multiple scales. This holds true due to the influence in which
topography plays on soil property variation. This is not static but varies with scale. Thus,
better representing these relationships at different scales will likely yield better predictive

models.
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Amalgamated soils information from different sources resulted in a meaningful,
harmonized database for application in DSM. With this database, soil properties were
able to be modeled at the provincial extent. These individual data sets had not been used
for application in DSM prior to this study. Much additional work can be done by further
broadening this mapping efforts, e.g., by expanding this work to other soil properties such
as pH, CEC, base saturation, and exchangeable base cations. In part, this can be done using
the PTFs described in Chapter 3 and evaluating the same with corresponding soil profile-
captured data. Also of interest is to determine the extent to which the above approach
can be further improved by using province-wide LiDAR DEM coverages generated at 1m

resolution.

With growing complexity and availability of data sets representing soil-forming
factors, non-parametric DSM techniques are necessary when trying to model soil
property variation. The relationship between soil property and underlying soil-forming
factorsis seldom linear in nature. Thus, advanced statistical models are necessary in trying
to understand these relationships. Although linear modeling can explain some variation,
machine learning algorithms are likely to capture more of the variation. Adversely, model
transferability becomes more difficult with increasing complexity of statistical models and

software.

With updated soil property maps, digital soil assessments can be conducted for
use in many fields, i.e., soil erosion modeling, habitat suitability mapping, floodplain
delineations, forest and crop productivity assessments, and carbon stock assessments.
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CHAPTER 6 — SUMMARY, CONTRIBUTIONS, AND RECOMMENDATIONS

6.1. DISSERTATION SUMMARY

This dissertation presented an approach to digital soil mapping of soil physical and
chemical properties from numerous data sources for NB, Canada. Soil properties of
interest were those of which influence rooting, namely soil drainage, texture, CF content,

Db, SOM content, CEC, and water retention at FC and PWP. This was accomplished by:

1. Amalgamating and harmonizing county-based soil surveys into a complete
aspatial database focusing on general site characteristics (drainage, stoniness,
rockiness, vegetation, and parent material) and soil profile descriptions with lab-

measured soil properties on a soil associate basis (Chapter 2),

2. Utilizing the aspatial database to develop PTFs for soil properties with changing
depth, namely texture, CF content, Db, SOM content, CEC, and water retention at

FC and PWP (Chapter 3),

3. Developing a new provincial DEM at 10m resolution via fusion of open-sourced
DEMs (ASTER, SRTM at 30 and 90m resolution, CDED, and original NB DEM) with

LiDAR-derived DEM calibration (Chapter 4),
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4. Developing a spatial database of soil profiles, compiled from different sources, and
re-delineating data sets representing soil forming factors, namely topographic

derivatives (from DEM in Chapter 4), surficial geology, and climate data sets, and

5. Comparing soil properties within database to underlying representations of
topography, surficial geology and climate. The results allowed for the modeling
and mapping of soil properties across the landscape at 10m resolution. PTFs
(Chapter 3) can be applied to the spatial soil property maps to predict additional

soil properties of CEC and moisture retention at FC and PWP.

6.2. ORIGINAL CONTRIBUTIONS

This dissertation established a framework for digitally mapping soil properties,
which influence root development, across the landscape at 10m resolution. Original

contributions to this framework involved:

1. Developing an aspatial database from soil surveys with unified terminology and

harmonized attributes (Chapter 2),

2. Developing robust PTFs relating soil attributes to one another and to soil parent
material while comparing these to published equations as a performance measure

(Chapter 3),
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Creating a semi-automated procedure for fusing open-sourced DEMs across
provincial boundaries, resulting in an improved DEM for NB at 10m resolution with

substantially decreased vertical errors (Chapter 4),

Utilizing the fused DEM from (3) to develop a suite of topographic and hydrological

derivatives for NB (Chapter 5),

Updating NB-wide geological data sets pertaining to landforms and lithology

(mineral hardness, grain size, and rock type) per landform,

Generating continuous province-wide data sets for climate ‘normals’ (annual
average temperature, annual average rainfall, and annual average daily maximum
high temperature) at 10m resolution by comparing 150 weather stations from NB

and Ontario to underlying DEM and changes in latitude and longitude (Chapter 5),

Producing a spatial database representing soil profiles within NB with original data
retrieved from numerous government agencies (Chapter 5), with 60 data columns
to include information about dominant topographic, geologic and climatic soil

forming influenced at each spatial location, and

Developing data-validated NB-wide spatial models for predicting soil drainage and
soil properties (horizon depths, and sand, silt, clay, CF, SOM, and Db at multiple

depth intervals (Chapter 5).
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6.3. RECOMMENDATIONS

Although this project was completed for NB, similar approaches can be applied to
any geographical location depending on access, and quality, of available data. The
underlying principles of the outlined framework are applicable elsewhere. The idea was
to predict soil properties by way of soil forming factors based on the assumption that
relationships between soil properties and underlying soil-forming factors would remain
the same, although the combined influence of topography, geology and climate would
vary. The lessons learned, and limitations realized in doing this led to the following

recommendations for further study:

1. There is a need for a systematic and fully standardized surveying approach to soil
sampling and analysis. Developing this dissertation revealed many difficulties
associated with compiling soil data and related data layers from various sources.
Apart from being labour intensive, a substantial portion of the collected data was not
found to be useful for several reasons:

e too vague,

e too much missing data,

e data entries being categorical instead of numerical,

e analytical protocols differ from report to report,

e geographic positions unavailable,

e over—representation of certain soil types, while under-representation of

others.
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There is also a need to address organic soils. This, however, could not be completed
because only 3% of the 12,500 samples within the spatial database occurred on very
poorly- or poorly-drained sites with bogs, marshes, and swamps excluded as well.
Adding wet-area soil data to the database and ensuring equal data representation by
drainage class would greatly improve the general applicability of the DSM approach

as proposed in Chapter 5.

Additionally, there is a need for using LiDAR-derived DEMs for DSM, because LiDAR-
generated DEMs reflect the elevation of the terrain at ground level. As indicated in
Chapter 4, fusing the non-LiDAR DEMs improved the vertical accuracy of the fused
DEM from about £ 20 m to + 2 m 8 times after LiDAR DEM calibration. This advance
generated much-improved DEM-derived hydrographic layers in terms of their 10 m
alignments with existing flow channels, river, lake, shoreline and wetland

delineations.

In the same way, one can expect that LiDAR-based landform delineations will also
become more accurate than what is currently available by locations, extent and form.
The most easily recognized landforms refer to upland ridges, steep slopes,
floodplains, eskers, and drumlins. The delineation of moraines and other localized
glacio-fluvial deposits will require the development of specialized landform
recognition algorithms, likely in the form of machine-based learning procedures like

the approach taken in Chapter 5.
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With the consistent increases in DEM resolutions, thought must be put into choosing
an appropriate resolution for the scope of the project. Ideally, DSM developments
should be evaluated based on a multi-scale and multi-window approach in which
DEMs of different resolutions, each with topographic derivatives developed at
different window sizes, be assessed in a DSM framework. This is because the
relationships between soil forming factors and soil property variability change with
both scale and study extent. Thus, this needs to be adjusted for when modeling soil

properties as depicted in Chapter 5.

There needs to be further assessment on the choice of statistical model for DSM
because this study only applied one of many machine learning approaches.
Alternatively, geostatistical techniques could be applied. A comparison of how

different models compare using the data in this project would be very useful.

Further improvements and expansions can be made in terms of assessing which PTFs
are most accurate for capturing more difficult to measure soil properties. The
reliability of existing PTFs also needs to be assessed for each new area/ region under

investigation, as demonstrated in Chapter 3.

More needs to be done on delineating features across boundaries, whether
provincial or soil survey boundaries. (i) end abruptly at adjacent borders in a non-

seamless fashion, and (ii) following differing soil terminology conventions. These
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differences need to be resolved prior to cross-border DMS applications. Natural
processes are continuous in nature and do not abide by these borders. Thus,
meaningful relationships between spatially-derived datasets and natural processes

may be missed due to the lack of continuity in spatial datasets across borders.

9. Finally, continuous improvements can be made in updating the borders of landform-
and lithology-defined soil associations by correctly placing them in the context of
topographically-correct digital terrain models. Once delineated, soil associations can
then be disaggregated into individual soil types by changing drainage and soil
property patterns, i.e., wet vs. dry, shallow vs. deep, fine-textured vs. coarse, and
high vs. low CF content. Doing so allows for quick determinations of overall soil and

site conditions for land management practices.

6.4. CONCLUSION

The chapters in this dissertation present the requirements to shift from
conventional soil mapping techniques to a DSM framework by spatially determining how
soil properties vary with local and regional variations in topography, climate, surficial
geology, and other soil properties. The development of this framework proceeded from
the compilation of aspatial and spatial soil information and the re-delineation of spatial
data sets deemed essential for modeling and mapping soil properties. The results outlined
have feasible application in land use management, namely forestry due to the variability

of soil properties within stands, which, was otherwise omitted from conventional soil
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mapping approaches. The information generated and documented will be helpful for

allowing further scientific studies and continuing DSM improvements.
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APPENDIX I. OVERVIEW OF NEW BRUNSWICK SOIL ASSOCIATIONS

Soil Associate

Soil
Landform Lithology 9' .
Association W-R -MW VP-P
Weakly calcareous . .
Und Und - -
Sandstone and shale ndine ndine
Residual Sandstone, gritstone, Riley Brook Riley Brook - -
shale Cornbhill Cornhill - -
Granite, gneiss, basalt, Big Bald Big Bald ) )
felsite Mountain Mountain
Residual & Strongly metamorphosed . . .
. gl . P . Serpentine Serpentine Jenkins Adder
Colluvium slate, quartzite, volcanics
Sandstone and Anagance Anagance Dusinane Dusinane
Conglomerate
g . Jeffries Corner = Jeffries Corner - -
(calcareous if un-
weathered) Aulac Aulac Tidnish Tidnish
Granite, quartzite, gneiss, Irving Irving Goodfellow Halls Brook
argillite, volcanics, some
sandstone Juniper Juniper Jummet Brook McKiel
Calcareous shale and Caribou Caribou Carlingford Washburn
slate with/without
limestone, argillite Thibault Thibault Guercheville Lauzier
Sandstone and quartzite,
some argillite, slate, Monquart Monquart - -
Ablation shale, schist
Big Hole Big Hole Beaver Lake -
Sandstone Fair Isle Fair Isle Black Brook -
Sunbury Sunbury Hoyt Cork
Highly calcareous shale,
quartzite, argillite, Jardine Jardine Nickel Mill Five Fingers
sandstone
Sandstone, shale
! ! B i B i
B — ecaguimec ecaguimec Snyder Snyder
Metamorphosed rhyolite,
andesite, schist, slate, Jacquet River Jacquet River - -
granite
Calcareous sandstone Harauail Harauail i i
and shale q q
Calcareous Shale Erb Settlement = Erb Settlement - -
Metamorphosed non- to
kly-cal lat
wearly cé careOl.JS.S e Glassville Glassville Temiscouata Foreston
Ablation/ quartzite, argillite,
Residual sandstone
Metamorphosed rhyolite,
andesite, schist, slate, Lomond Lomond - -
granite
Sandstone and Parleeville Parleeville Midland Midland
conglomerate (calcareous
Queenville Queenville Deed Deed

if unweathered)
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Sandstone and quartzite,

some argillite, slate, Quisbis Quisbis Dube Big Spring
shale, schist
Sandstone, gritstone, Tl Tl ) )
shale
Slat d argillit d . Yell
ate anc arglfie a.n Boston Brook Boston Brook Skin Gulch ellow
sandstone and schist Brook
. East
Interval Interval Waasis as
. Undifferentiated Canaan
Alluvium Sussex Sussex Hampton -
- Bottomland Bottomland - -
Ancient . . . . .
. Undifferentiated Flemming Flemming Martial Kelly
Alluvium
Calcareous shale, slate, . .
L.J L Maliseet Maliseet Wapske Wapske
Alluvium & quartzite, argillite
Glaciofluvial Strongly metamorphosed
i . o . Benedict Benedict - -
slate, quartzite, volcanics
Calcareous sandstone
and quartzite, some Siegas Siegas Salmon Bourgoin
argillite, shale
Kedgwick Kedgwick - -
Calcareous shale
Saltspring Saltspring Byrns Byrns
Granit iss, basalt . .
rani e'i?;fes’ asatt Parry Parry Midway Midway
Granite, quartzite, gneiss, Rogersville Rogersville Acadieville Rosaireville
argillite, volcanics, some
sandstone Tuadook Tuadook Redstone Lewis
Granite, some quartzite, Pinder Pinder Coronary McAdam
sandstone Catamaran Catamaram - -
Sandstone and
conglomerate (calcareous Wakefield Wakefield - -
if un-weathered)
Sandstone and quartzite, Holmesville Holmesville Johnville Poitras
some argillite, slate,
Basal shale, schist Violette Violette Violette
SEESEIE, Parsons Brook Parsons Brook - -
conglomerate, mudstone
Petitcodiac Petitcodiac Kings Kings
Sandstone, . . . .
andstone Salisbury Salisbury Harewood Hicksville
conglomerate, shale
Salem Salem - -
Dorchester Dorchester - -
LS Knightville Knightville Byrns Byrns
mudstone & g 4 v
Tracy Tracy Wirral Rooth
St | t hosed Colt
rongly me .amorp osg Long Lake Long Lake Blue Mountain ° er.
slate, quartzite, volcanics Mountain
Shemogue Shemogue - -
weakly calcareous Stony Brook . Cambridge
St Brook Blackvill
Sandstone and shale ony Broo (Queens) ackviiie (Kings)
Tormentine Tormentine Tidnish Tidnish
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Weakly calcareous shale,

Kingsclear Kingsclear Plaster Rock Nackawic
mudstone
Weakly- to calcareous Carleton Carleton Canterbury Canterbury
shale, slate, quartzite,
some sandstone Green Road Green Road - -
Lower Ridge Lower Ridge - -
Mafic volcanics, gabbro, Kingston Kingston Deed Deed
diorite Tetagouche Tetagouche - -
Metamorphosed rhyolite,
andesite, schist, slate, Popple Depot Popple Depot - -
granite
Metamorphosed non- to
kly-cal |
Basal/ Residual weakly ce? careogs's ate, Green River Green River - -
quartzite, argillite,
sandstone
i i | o
Granite, gne.lss, basalt, Clearwater Clearwater Ogilvie Lake Yellow Lake
felsite
Metamorphosed non- to
eakly-calcareous slate,
W V . u . McGee McGee Nason Trafton
Colluvium & quartzite, argillite,
Water re- sandstone
worked till Non- to weakly-
calcareous sandstone, Victoria Victoria McCluskey Cote
shale, quartzite
| h P
strongly me?amorp OS.Ed Britt Brook Britt Brook Babbit Brook ortage
slate, quartzite, volcanics Lake
Gagetown Gagetown Geary Penobsquis
Granite
Island Lake Island Lake Pennfield Pennfield
Metamorphosed non- to
kly-cal |
PRl Cé carem.,us.s ate, Grand Falls Grand Falls Sirois Cyr
quartzite, argillite,
sandstone
. . . . N
Kennebecasis Kennebecasis Quispamsis evers
Sandstone Road
Lord and Foy Lord and Foy - -
Glaciofluvial Sandstone and
conglomerate (some Gulquac Gulquac - -
quartz)
Sandst 3 ite, . . . . . St.
andstone .some gram € Guimond River = Guimond River St. Oliver
quartzite, gneiss Theodule
Weakly- to calcareous
shale, slate, quartzite, Muniac Muniac Ennishore Cyr
some sandstone
- Bransfield Bransfield - -
- Chockpish Chockpish - -
Aldouane Aldouane Marquant
Glaciofluvial & Baie du Vin Baie du Vin Napan Fontaine
X Sandstone
Marine Kouchibouguac = Kouchibouguac Potters Mill Vautour
Caissie Caissie Robichaud
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Richibucto

Richibucto

Cap Limiere

Nevers

Road
. . N
Riverbank Riverbank Oromocto evers
Road
Undiffi tiated kl
Glaciolacustrine dlifiereiaiad) ey Bellefleur Bellefleur - -
calcareous clay
GRS e EEee Tracadie Tracadie Bouleau Sheila
and shale
Non-cal hale, .
on-caicareous shale Mount Hope Mount Hope Boland Cambridge
some sandstone
laci .
Glaciomarine Babineau Babineau - -
AN S tone Escuminac Escuminac Baie St. Anne -
Briggs
Il Il It Brook
Galloway Galloway Smelt Broo Brook
Sandstone/ clay from Upper Upper Little .
. Shediac
calcareous shale Caraquet Caraquet Shippegan
. . Barrieau Barrieau Cote D’or Shediac
Glaciomarine/ Sandstone/Sandstone
Basal . Buctouche Buctouche Michaud Neguac
and shale or siltstone
Bretagneville Bretagneville - =
St. Charles St. Charles - -
Glaciomarine Sandstone/ clay from Middle
. / Vamy Caraquet Caraquet ! Neguac
Marine calcareous shale Caraquet
Lacustrine Clay Fundy - Fundy Canobie
. . R h R h
Marine/ Basal Undifferentiated esez.;\rc esez.;\rc Baker Brook -
Station Station
Belledune Belledune - -
Marine Undifferentiated Blackland Blackland - -
Acadia Acadia Acadia Acadia
Reece Reece Chipman Pangburn
Ablation/ Basal Sa ndstone/Sar.1dstone
and shale or siltstone Harcourt Harcourt Coal Branch Grangeville
Lavilette - - Lavilette
Acadie
Acadie Sidi - -
cadie Siding Siding
Bog - - Bog
Organic Undifferentiated Fen ) ) Fen
SDTWp - - SDTWp
Legaceville - - Legaceville
Chelmsford - - Chelmsford
St. Quentin - - St. Quentin
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APPENDIX Il. OVERVIEW OF SPATIAL REPRESENTATION OF SOIL ASSOCIATIONS WITH
OVERALL PROFILE REPRESENTATION FOR EACH SOIL ASSOCIATE WITHIN ASPATIAL

DATABASE.
Soil Association % Spatial Soil Associates # of Profiles % Representation
Coverage
Acadia (w) 0
Acadia 3.83 Acadia (1) 2 0.36
Acadia (P) 0
Aldouane - Aldouane 3 0.71
Marquant 1
Anagance 2
Anagance - Dusinane (I) 0 0.36
Dusinane (P) 0
Aulac 0
Aulac - Tidnish (1) 0 -
Tidnish (P) 0
Babineau - Babineau 0 -
Baie du Vin 5
Baie du Vin - Napan 0 1.07
Fontaine 1
Barrieau 6
Barrieau 1.31 Cote D’or 5 2.50
Shediac 3
Becaguimec 0
Becaguimec 0.18 Snyder (1) 0 -
Snyder (P) 0
Belledune - Belledune 0 -
Bellefleur 3
Bellefleur - Rob 1 1.07
St. Amand 2
Benedict - Benedict 1 0.18
Big Bald Mountain 0.67 Big Bald Mountain 0 -
. Big Hole 3
Big Hole i Beaver Lake (1) 1 0.71
Blackland - Blackland 0 -
Boston Brook 7
Boston Brook - Skin Gulch 3 1.96
Yellow Brook 1
Bottomland - Bottomland 1 0.18
Bransfield - Bransfield 1 0.18
Bretagneville - Bretagneville 1 0.18
Britt Brook 2
Britt Brook 3.28 Babbit Brook 1 0.71
Portage Lake 1
Buctouche 3
Buctouche 1.31 Michaud 0 0.54
Neguac 0
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.. Caissie 0
Caissie i Robichaud 0 i
Caraquet 0
Caraquet - Middle Caraquet 2 0.36
Neguac 0
Caribou 11
Caribou 2.74 Carlingford 6 3.75
Washburn 4
Carleton 1
Carleton 3.33 Canterbury (1) 3 1.07
Canterbury (P) 2
Catamaran 1.62 Catamaran 0 -
Chockpish - Chockpish 1 0.18
Clearwater 3
Clearwater - Ogilvie Lake 1
Yellow Lake 1
Cornbhill 0.33 Cornhill 1 0.18
Dorchester - Dorchester 1 0.18
Erb Settlement 0.12 Erb Settlement 1 0.18
Escuminac i Escuminac 0 i
Baie St. Anne 0
. Fair Isle 1
Fair Isle 0.88 Black Brook 1 0.36
Flemming 3
Flemming - Martial 4 1.79
Kelly 3
Fundy (1) 2
Fundy i Canobie (P) 1 0.54
Gagetown 8
Gagetown 1.17 Geary 1 1.79
Penobsquis 1
Galloway 3
Galloway - Smelt Brook 1 0.71
Briggs Brook 0
Glassville 9
Glassville 2.68 Temiscouata 1 2.14
Foreston 2
Grand Falls 6
Grand Falls 1.00 Sirois 2 1.61
Cyr 1
Green River - Green River 1 0.18
Green Road - Green Road 2 0.36
Guimond River 3
Guimond River - St. Oliver 0 0.54
St. Theodule 0
Gulquac - Gulquac 2 0.36
Harcourt 5
Harcourt 7.33 Coal Branch 6 2.68
Grangeville 4
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Harquail

Harquail

0.54

Holmesville

4.47

Holmesville
Johnwville
Poitras

7.50

Interval

0.55

Interval
Waasis
East Canaan

1.25

Irving

1.67

Irving
Goodfellow
Halls Brook

0.54

Island Lake

Island Lake
Pennfield (1)
Pennfield (P)

0.18

Jacquet River

1.37

Jacquet River

Jardine

Jardine
Nickel Mill
Five Fingers

1.43

Jeffries Corner

Jeffries Corner

0.18

Juniper

3.37

Juniper
Jummet Brook
McKiel

1.07

Kedgwick

1.28

Kedgwick

0.71

Kennebecasis

0.33

Kennebecasis
Quispamsis
Nevers Road

0.36

Kingsclear

Kingsclear
Plaster Rock
Nackawic

1.61

Kingston

0.87

Kingston
Deed (1)
Deed (P)

Knightville

Knightville
Byrns (l)
Byrns (P)

0.36

Kouchibouguac

Kouchibouguac
Potters Mill
Vautour

0.54

Lomond

2.30

Lomond

0.36

Long Lake

4.63

Long Lake
Blue Mountain
Colter Mountain

0.71

Lord and Foy

Lord and Foy

0.18

Lower Ridge

Lower Ridge

0.18

Maliseet

Maliseet
Wapske (1)
Wapske (P)

1.43

McGee

4.64

McGee
Nason
Trafton
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1.96

187



Monquart

Monquart

1.43

Mount Hope

Mount Hope
Boland
Cambridge

1.79

Muniac

0.40

Muniac
Ennishore
Cyr

1.07

Organic

11.38

Acadie Siding
Lavilette
Muck
St. Quentin
Legaceville
Bog
Fen
SDTWp

6.43

Parleeville

0.08

Parleeville
Midland (1)
Midland (P)

1.61

Parry

2.14

Parry
Midway (1)
Midway (P)

1.07

Parsons Brook

Parsons Brook

0.71

Petitcodiac

Petitcodiac
Kings (1)
Kings (P)

0.18

Pinder

0.53

Pinder
Coronary
McAdam

0.36

Popple Depot

2.71

Popple Depot

Queenville

Queenville
Deed (1)
Deed (P)

0.36

Quisbis

Quisbis
Dube
Big Spring

1.07

Reece

7.18

Reece
Chipman
Pangburn

1.96

Research Station

Research Station
Baker Brook (I)

Richibucto

Richibucto
Cap Limiere
Nevers Road

1.79

Riley Brook

Riley Brook

0.18

Riverbank

2.05

Riverbank
Oromocto
Nevers Road

1.79

Rogersville

0.54

Rogersville
Acadieville
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Rosaireville 1

Salem - Salem 2 0.36
Salisbury 6

Salisbury 2.30 Harewood 3 2.14
Hicksville 3
Saltspring 1

Saltspring 0.13 Byrns (1) 2 0.71
Byrns (P) 1
Serpentine 2

Serpentine 0.56 Jenkins 1 0.71
Adder 1

Shemogue - Shemogue 2 0.36
Siegas 3

Siegas 0.60 Salmon 6 2.14
Bourgoin 3

St. Charles - St. Charles 1 0.18
Stony Brook 11

Stony Brook 6.38 (Queens) 4.11
Blackville 6
Cambridge (Kings) 6
Sunbury 7

Sunbury 3.85 Hoyt 1 1.43
Cork 0

Sussex - Sussex 2 0.54
Hampton 1

Tetagouche 0.60 Tetagouche 0 -

Thibault 10

Thibault 2.95 Guercheville 2 2.50
Lauzier 2

Tobique - Tobgqiue 2 0.36
Tormentine 7

Tormentine - Tidnish (1) 5 2.86
Tidnish (P) 4
Tracadie 1

Tracadie 0.47 Bouleau 1 0.89
Sheila 3
Tracy 4

Tracy 0.74 Wirral 5 1.96
Rooth 2
Tuadook 2

Tuadook 1.96 Redstone 1 0.71
Lewis 1

Undine 0.24 Undine 6 1.07
Upper Caraquet 0

Upper Caraquet - Little Shippegan 0 0.18
Shediac 1
Victoria 6

Victoria 1.99 McCluskey 3 2.14
Cote 3
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. Violette (1) 2
Violett - 0.71
lofette Violette (P)

N

Wakefield - Wakefield 1 0.18
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APPENDIX Ill. COVARIATES ASSESSED FOR USE IN DSM WITH DESCRIPTION, REFERENCE,

AND SOFTWARE UTILIZED.

Derivative

Definition

Reference

Software
Used

Catchment Area

Flow Accumulation

Horizontal Distance
to Stream

Vertical Distance to
Stream

Cartographic Depth-
to-Water Index

Distance to Coast

Distance to Wetland

Slope (degrees)

Slope (%)

Aspect (degrees)

Annual Average
Rainfall

Annual Average
Temperature

Average Daily
Maximum High
Temperature

Latitude

Upslope area contributing
discharge into any given cell,
calculated from flow accumulation

Total number of cells flowing into
any given cell

Euclidean distance to nearest
stream
Vertical distance from nearest
stream based on increasing
elevation
Index of depth-to-water table for

any given cell

Euclidean distance to nearest
coastal shore

Euclidean distance to nearest

mapped wetland feature

Rate of elevation change between
adjacent cells (in °)

Rate of elevation change between
adjacent cells (as %)

Cardinal direction of slope

Annual average rainfall (mm)
retrieved from weather stations,
interpolated from elevation,
latitude and longitude
Annual average temperature (°C)
retrieved from weather stations,
interpolated from elevation,
latitude and longitude
Annual average daily maximum
high temperature (°C) retrieved
from weather stations,
interpolated from elevation,
latitude and longitude
Gridded representation of
changing latitude from north to
south (decimal degree format)
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Freeman (1991),
Tarboton (1997)

O’Callaghan and Mark
(1984), Fairfield and
Leymarie (1991),
Freeman (1991), Quinn
etal. (1991)

This study

O’Callaghan and Mark
(1984), Nobre et al.
(2011)
Murphy et al. (2007,
2009)

This study

This study

Zevenbergen and
Thorne (1987), Wilson
and Gallant (2000)
Zevenbergen and
Thorne (1987), Wilson
and Gallant (2000)
Zevenbergen and
Thorne (1987), Wilson
and Gallant (2000)

This study

This study

This study

This study

ArcGIS

ArcGIS

ArcGIS

ArcGIS

ArcGIS

ArcGIS

ArcGIS

SAGA GIS

SAGA GIS

SAGA GIS

ArcGIS

ArcGIS

ArcGIS

ArcGIS



Longitude

Landform

Lithology

Mineral Hardness

Grain Size

Rock Type

Geology Type

Elevation

Diurnal Anistropic
Heating
Real Surface Area

Catchment Slope

Modified Catchment
Area

Specific catchment
area

Topographic
Position Index

Multi-resolution
index of valley
bottom flatness
(MRVBF)
Multi-resolution
index of ridgetop
flatness (MRRTF)

Terrain Surface
Convexity

Terrain Surface
Concavity

Gridded representation of
changing longitude from west to
east (decimal degree format)
Gridded representation of parent
material (surficial geology) mode
of deposition
Gridded representation of parent
material (surficial geology
lithology)

Gridded representation of the
hardness of lithologic types based
on Moh’s hardness scale
Gridded representation of
changing mineral sizes from very
fine to coarse based on lithology
Gridded representation of
changing rock types based on
lithology
Gridded representation of
changing geological types
(sedimentary, igneous,
metamorphic)
Representation of elevation
change across landscape, height
above sea level
Influence of topography on diurnal
heat balance
Calculation of ‘real’ cell area
Slope of catchment, derived as
intermediate with SAGA Wetness
Index
Adjustment to catchment area
calculation to correct for flow in
low-lying flat areas.
Catchment area divided by cell
width

Position on hillslope in relation to
adjacent cells

Delineation of valley bottom
flatness from surrounding
hillslopes

Delineation of ridgetops flatness
from surrounding hillslopes,
intermediate of MRVBF
Determines percentage of upward
and convex cells within a defined
radius
Determines percentage of upward
and concave cells within a defined
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This study

This study

This study

This study

This study

This study

This study

Moore et al. (1991), Yue

et al. (2007)

Hengl and Hannes
(2009)

Grohmann et al. (2011)
Boehner et al. (2002),

Boehner and Selige
(2006)

Boehner et al. (2002),

Boehner and Selige
(2006)

Freeman (1991)

Guisan et al. (1999),
Wilson and Gallant
(2000)

Gallant and Dowling
(2003)

Gallant and Dowling
(2003)

Iwahashi and Pike
(2007)

Iwahashi and Pike
(2007)

ArcGIS

ArcGIS

ArcGIS

ArcGIS

ArcGIS

ArcGIS

ArcGIS

ArcGIS

SAGA GIS
SAGA GIS

SAGA GIS

SAGA GIS

ArcGIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS



Terrain Surface
Texture

Topographic
Positive Openness

Topographic
Negative Openness

Curvature
Classification

Maximum Curvature

Minimum Curvature

Upslope Curvature

Downslope
Curvature

General curvature

Local Downslope
Curvature
Local Upslope
Curvature

Local Curvature
Profile Curvature

Planar Curvature

Longitudinal
Curvature
Cross-sectional
Curvature

Tangential
Curvature

Flow Line Curvature
Total Curvature

Downslope Distance
Gradient

radius, same algorithm as terrain
surface convexity
Determines the variability in
frequency and intensity of pits and
peaks within a defined radius

Represents landscape exposure to
atmosphere

Represents landscape enclosure/
protection from atmosphere

Representation of surface
curvature/ 9 geometric forms of
hillslopes

Calculates the maximum slope of
the slope on a defined search
radius (secondary derivative)

Calculates the minimum slope of
the slope on a defined search
radius (secondary derivative)

Average local curvature of upslope
contributing area for any given cell

Like profile curvature

Combination of planar and profile
curvature
Same as local curvature but only
looks at downslope cells
Same as local curvature but only
looks at upslope contributing cells
Calculates the total gradient to
neighboring cells

Curvature parallel to slope
Curvature perpendicular to slope
Like profile curvature

Like planar curvature

Determines areas of convex and
concave flows, calculated from
planar and profile curvature
Like profile curvature

Curvature of the surface

Measures impact of local slope on
hydraulic gradient
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Iwahashi and Pike
(2007)

Yokoyama and
Shirasawa (2002), Prima
et al. (2006)
Yokoyama and
Shirasawa (2002), Prima
et al. (2006)

Dikau (1988), Birkeland
(1999), Hugget (2007)

Zevenbergen and
Thorne (1987), Irvin et
al. (1997), Petry et al.

(2005), Olaya (2006)

Zevenbergen and
Thorne (1987), Irvin et
al. (1997), Petry et al.

(2005), Olaya (2006)

Freeman (1991)

Freeman (1991)

Zevenbergen and
Thorne (1987)

Freeman (1991)
Freeman (1991)

Freeman (1991)

Zevenbergen and
Thorne (1987)
Zevenbergen and
Thorne (1987)
Zevenbergen and
Thorne (1987)
Zevenbergen and
Thorne (1987)

Wilson and Gallant
(2000)

Freeman (1991)
Wilson and Gallant
(2000)

Hjerdt et al. (2004)

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS

SAGA GIS
SAGA GIS

SAGA GIS



Boehner et al. (2002),
Boehner and Selige SAGA GIS
(2006)
Desmet and Govers
(1996), Kinnell (2005),

SAGA Wetness Computes a modified topographic
Index wetness index

Calculates sl length fact
Slope Length and alculates slope length tactor,

typicall in Revi i I AGA GIS
Steepness yplgzirLissidEmua;\(;l;e(igsni\é)ersa Boehner and Selige >
g (2006)
Terrain Ruggedness Tota! change.m elevat|or.1 within a Riley et al. (1999) SAGA GIS
Index defined radius of any given cell
Like i f vertical dist t
Valley Depth ike inverse of vertical distance to i SAGA GIS

channel network
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APPENDIX IV. RANDOM FOREST-DERIVED VARIABLE IMPORTANCE FOR 5 DOMINANT
PREDICTORS FROM MODEL RESULTS FOR SAND, SILT, CLAY, CF, SOM, AND DB AT
DEFINED DEPTH INTERVALS AND BY SOLUM DEPTH.

Depth
Property 0-15cm 15-30cm 30-60cm 60-90cm Solum
Var. Imp. Var. Imp. Var. Imp. Var. Imp. Var. Imp.
Rock_Type 100 Rock_Type 100.00 SLP 100 Val_Depth 100 Admax 100.00
Admax 77.17 Admax 97.33 Rock_Type 98.06 Land 71.57 Rock_Type 69.31
Sand Min_Curve 69.06 Lithology 91.13 Max_Curve 91.79 Max_Curve 71.16 Prof_Curve 58.77
Land 68.51 Max_Curve 70.01 Admax 88.69 Cur_Cls 58.76 Land 48.10
Lithology 66.08 Di_Heat 66.42 MRRTF 82.15 Geo_Type 52.75 Lithology 41.50
Admax 100.00 Admax 100.00 Lithology 100.00 Val_Depth 100.00 Admax 100.00
DTW 53.83 Min_Curve 64.04 Admax 89.94 Geo_Type 97.79 Lng_Curve 66.70
Silt Rock_Type 45.40 Max_Curve 63.73 Grain_Size 76.29 Rock_Type 75.33 Geo_Type 55.59
CA 44.36 SLP 63.65 DTW 73.75 Dwn_Grade 78.06 SLP 54.72
Cur_Cls 34.10 Lng_Curve 55.34 SLP 64.35 Wetland 72.12 Prof_Curve 54.21
Wetland 100.00 Rock_Type 100.00 TPI 100.00 Admax 100.00 Wetland 100.00
MRRTF 74.72 Admax 94.72 Val_Depth 94.58 Max_Curve 80.41 Rock_Type 80.94
Clay Lng_Curve 48.95 MRVBF 78.65 Rock_Type 71.45 Val_Depth 76.17 Cur_Cls 68.09
MRVBF 44.12 Lithology 70.69 Max_Curve 70.24 Cur_Cls 66.26 Crs_Curve 63.06
Rock_Type 40.94 Geo_Type 57.36 Admax 67.23 Wetland 62.79 DTW 62.17
Admax 100.00 SLP 100.00 Admax 100.00 Admax 100.00 Val_Depth 100.00
MRRTF 73.29 Admax 71.57 Tan_Curve 52.38 Land 76.40 MRVBF 85.45
CF Cur_Cls 50.56 Dwn_Grade 67.77 Prof_Curve 47.84 Min_Cuve 74.49 Admax 71.98
MRVBF 43.71 Max_Curve 63.97 Max_Curve 45.40 Geo_Type 67.07 Rock_Type 61.93
Rock_Type 39.04 ASP 62.09 DTW 42.84 DTW 66.61 MRRTF 60.48
Wetland 100.00 Land 100.00 Admax 100.00 Plan_Curve 100.00 Geo_Type 100.00
Dwn_Grade 94.37 CA 98.38 TPI 53.46 Admax 95.22 Val_Depth 91.71
oM Lng_Curve 86.35 Lng_Curve 92.63 ASP 53.26 ASP 91.18 Rock_Type 83.54
Land 83.18 Rock_Type 92.09 Land 53.19 Crs_Curve 8694 Max_Curve 82.80
Crs_Curve 77.21 FA 90.95 Wetland 53.02 Tan_Curve 86.28 Crs_Curve 73.40
MRVBF 100.00 Lithology 100.00 Admax 100.00 Lithology 100.00 Admax 100.00
MRRTF 75.72 Max_Curve 94.27 SLP 57.71 ASP 54.59 Crs_Curve 92.05
Db Prof_Curve 72.07 Rock_Type 91.55 Cur_Cls 51.95 DTW 54.29 SLP 91.73
Val_Depth 72.01 Wetland 87.03 CA 45.34 Land 53.67 Ts_Conv 91.11
Lng_curve 71.17 DTW 77.10 ASP 45.02 Cur_Cls 49.55 MRVBF 80.15
A Depth B Depth Solum Depth Drainage

Admax 100.00 CA 100.00 Admax 100.00 SLP 100.00

Others FA 91.10 MRVBF 96.65 Cur_Cls 93.37 Max_Curve 87.95

TPI 90.22 Cur_Cls 87.31 CA 76.53 Admax 78.61

Geo_Type 85.66 Admax 77.84 Tan_Curve 69.86 TPI 77.35

Max_Curve 82.13 TPI 75.99 Di_Heat 68.43 Dwn_Grade 71.32

195



VITAE

Candidate’s full name:

Universities Attended:

Publications:

Shane Robert Furze

University of New Brunswick 2013-2018
Doctor of Philosophy in Forestry
(Candidate)

University of New Brunswick 2011-2013
Master of Environmental Management

St. Francis Xavier University 2006-2010
Bachelor of Science in Environmental Science
in Biology

Furze, S., Castonguay M., Ogilvie J., Nasr, M., Cormier, P.,
Gagnon, R., Adams, G., Arp, P.A. 2017. Assessing Soil-
Related Black Spruce and White Spruce Plantation
Productivity. Open Journal of Forestry, 7, 209-227.

Furze, S., Ogilvie, J., Arp, P.A. 2017. Fusing Digital Elevation
Models to Improve Hydrological Interpretations. Journal of
Geographic Information System, 9, 558-575.

Furze, S., Arp, P.A. 2018. Amalgamation and Harmonization
of Soil Survey Reports into a Multi-purpose Database: An
Example. Open Journal of Soil Science (submitted).

Furze, S., Arp, P.A. 2018. From Soil Surveys to Pedotransfer
Function Development and Performance Assessment. Open
Journal of Soil Science (submitted).



Conference Presentations:

Soil Erosion and Sedimentation Estimates for the Northwest
Miramichi Watershed, New Brunswick, Canada. ESRI
Atlantic User Conference, Halifax, NS, November, 2013.

Removing Digital Elevation Model (DEM) Artifacts through
a Weighted Average Optimization. ESRI Atlantic User
Conference, Fredericton, NB, October, 2014.

Improving Available DEMs for Enhanced Applications
(Poster). Canadian Symposium on Remote Sensing, St.
Johns, Newfoundland, June, 2015

Enhancing Digital Elevation Models for Improved Soils
Mapping. Canadian Symposium on Soil Science, Montreal,
Quebec, July, 2015.

Enhancing Digital Elevation Models (DEMs) for Improved
Soils Mapping. ESRI Atlantic User Conference, Halifax, NS,
October, 2015.

Enhancing Digital Elevation Models (DEMs) for Improved
Soils Mapping (Poster). ESRI International User Conference,
San Diego, California, July, 2016.



