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Abstract

Heavy forest operations can lead to extensive soil disturbances in the form of soil
compaction and displacement resulting in deep rut formations, and increased
erosion. To mitigate these effects through forecasting, this Thesis reports on a Soil
Traofficability Model (STRAM) to estimate daily soil moisture, penetrability and
potential machine-specific soil rut depths, using the Forest Hydrology Model
ForHyM in conjunction with digital high-resolution wet-area and soil property
maps. Model development was guided using in-field data for model validation.
The data so acquired refer to (i) biweekly year-round observations of soil moisture
and penetrability conditions at select sites in Fredericton, (i) reporting on
GPS-tfracked wood-forwarding machine clearances in select harvest blocks
across northwestern New Brunswick, and (i) analyzing soil moisture, soil
penetrability and rut depths inside and outside some of the wood-forwarding
fracks, by harvest block conditions. It was found that, through multivariate
regression analysis (MR), 40 to 60 % of the field-determined soil penetrability
variations by way of the cone penetrability index (Cl) could be related to
combined variations in pore space, coarse fragment content and
weather-affected variations in soil moisture. The variations in wood-forwarding
machine clearances and rut depths followed a similar pattern, but the number of
passes over the same track needed to be taken into account as well
Block-specific variations in elevation, forest cover type and time of operation and
machine specific variations in foot-print pressure also contributed to the rut depth

variations. Using Random Forest (RF) fechniques considerably improved the fitting



of the field-determined variations in soil moisture, cone index and
wood-forwarding rut depth to greater than 80 %. From MR to RF, the uncertainty
range narrowed for best-fitted pore-filled soil moisture content from +15 to +£4.5
%, for best-fitted soil cone penetrability from +0.7 to +£0.4 MPa, and for best-fitted
rut depth from +13 to +5cm.
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Chapter 1

Intfroduction

The increased use of heavy machinery in forest operations has led to serious
environmental problems such as a decrease in plant development (Prose, 1985;
Ayers, 1994; Grigal, 2000; Blouin et al., 2004), changing soil hydraulic properties
(Startsev and McNabb, 2000; Haomza and Anderson, 2005; Zhang et al., 2006;
Bryant et al., 2007; Bonell et al., 2010), and soil degradation, in the form of rutting
(creating potentially deep tracks, displacing soil), compaction (compression of
the soil), and erosion (structural loss) (Halvorson et al., 2001; McNabb et al., 2001;
Akay ef al., 2007; Jamshidi et al., 2008; Labelle, 2008; Labelle and Jaeger, 2011).
Understanding and predicting soil frafficability, or the soils ability to support
machine traffic, has become crucial to help limit the impact of heavy forest
operations on soils. Knowing where to build roads and trails, and when to allow
heavy operating machinery onto those trails can increase productivity and
reduce costs associated with machine downtime, and trail maintenance due to

excessive rutting and increased water pooling.

1.1 Modelling forest soil trafficability

The problem faced when trying to forecast soil frafficability is the ability to
predict, not only where a machine will have issues, but also, what time of the

year it will face them, i.e. seasonal planning and day to day operations. A



temporal knowledge of hydrothermal soil properties and atmospheric weather
conditions helps to understand how moisture moves through specific soils over
time. Spatially interpolating those soil and moisture properties as well as applying
varying scenarios of forest operational machinery allows for more complex
modelling of soil trafficability. In order to properly predict trafficability, a better

understanding is needed on the variables at play.

1.1.1 Machine variability

The forest industry ufilizes a wide variety of machines to maintain forest
operations, from forwarders, grapple-skidders, and harvesters to chippers,
loaders, and transport trucks, all of which have a different impact on the sail.
Each machine has varying tire parameters, load weight and distribution, which
contribute to how they interact with the soil beneath it. The weight and payload
of the machine need to be considered when consfructing management plans
for certain soil types. Increased weight load on soil can cause compaction
which can have lasting effects on soil and plant productivity (Nawaz et al., 2013;
Taylor and Burt, 1987). Soil compaction increases the Dy, (Rab et al., 2005; Brady
and Weil, 2008; Berisso et al., 2012; Bagheri ef al., 2012) and lowers porosity and
aeration (Startsev and McNabb, 2001; Parkhurst ef al., 2018). Ufilizing lighter
machines with smaller loads for forest operations can significantly minimize soil

disturbance (Radford et al., 2000).

Specific tire parameters can be important when considering their effects on
efficiency on various soils. Studies have shown that different machine tfires can be
used in different harvesting scenarios, for example, high flotation tires maximize
the soil/tire contact point to lower the load pressure on the ground (Taylor and
Burt, 1987; Jun et al., 2004). Larger tire footprints allow for the axle load weight to

be dispersed over a larger area, minimizing compaction. Similarly, varying levels



of tire pressure can be use to increase or decrease the overall tire footprint
(Raper et al., 1995; Elwaleed et al., 2006). Elwaleed ef al. (2006) found that by
reducing the pressure in agricultural tires from 221 kPa to 193 kPa, the ease of
motion of the fires increased, allowing more fluid movement over the soil. On the
other hand, a study by Eliasson (2005), found that tire pressure had insignificant
effects on soil disturbance when compared to the number of passes. A vehicle
that goes over the same area of land multiple times will do more damage to the
soil, even with a lower tire pressure. Although the biggest changes in solil

mechanical properties happen during the first pass.

Vehicle mobility parameters are forces that affect the tire/soil interaction point,
which include wheel traction and rolling resistance. Wheel slippage, dependent
on fraction, can lead to soil disturbance through compression and loss of shear
strength. Multiple studies have tested the mobility of vehicles and their effects on
soil disturbances (Shoop, 1989; Raghavan et al., 1977; Davies et al., 1973; Suvinen,
2006; Fervers, 2004; Prakash, 2014). Shoop (1989) examined the differential
interface velocity (DIV), the speed of the wheel minus the true speed of the
vehicle and observed that traction between the vehicle tires and the soil, was
strongly influenced by soil moisture content (MC), bulk density (D) and potential
frost depth of the soil. They summarized low soil MC tends to have high cohesion,
caused by the empty pores, but with increasing MC the fraction and strength of
the soil decreases and the vehicle has greater wheel slippage. Raghavan et al.
(1977) ascertained that vehicle slippage compacts the soil the most when
slippage of the tires reaches between 15-20 % of the tire rotafion velocity.
Increased slippage cause excess soil displacement. Understanding the variables
at play under the tire/soil contact point can improved modelling of any soil

disturbances associated with if.

The evaluation of wheel numerics involves simple models of the tire/soil contact

point. Generally these models utilize tire parameters (tire diameter, width, section



height, and deflection) to predict the forque, force, and sinkage of the fire on
the soil. A commonly used wheel numeric is represented as nominal cone index
(NCI), a dimensionless factor which looks at non-tracked off road vehicles with
multiple wheels (Turnage, 1984; Saarilahti, 2002c; Vega-Nieva et al., 2009). NCI
utilizes the soils cone index (CI), or its strength of resistance, as well as tire and
machine parameters to predict a numeric representation of the effects of

machine on soil.

1.1.2 Soil physical and hydraulic properties

The strength of a sail, or its ability to withstand shear stress under pressure, is an
increasingly important topic of research, especially as mechanized forest
operations increases in scale, testing the operational limits of the soil. Extensive
study has been done to befter understand, measure, and predict soil strength
and how external properties affect it. Advancements in the topic began during
World War Il to assess vehicle mobility by the U.S. Army Waterways Experiment
Station (WES). They pioneered the efficient method of testing soil strength with
the use of a cone penetrometer, which measures the cone index (Cl), or the soll
resistance to penetration of a right-circular cone (Rohani and Baladi, 1981). The
cone penetrometer uses calibrated size- and angle- specific cones to determine

the pressure to push the probe into the soil.

Soil strength is dependent on many factors including soil texture, moisture
content (MC), and bulk density (Dy) (Towner, 1974; Muller and Schindler, 1998;
McNabb et al., 2001). A soil’'s moisture level can have a drastic effect on its
capacity to withstand displacement. Studies have shown that increasing soil
moisture content (MC) reduces particle cohesion and allows for easier
displacement (Vaz et al., 2011; Lin et al., 2014). Likewise, soils rich in organic
matter tfend to hold onto moisture and therefore reduce soil strength but frozen

soils increase strength by increasing partficle tension (Andersland and Ladanyi,



1994; Shoop, 1995; Bronick and Lal, 2005; Huntington, 2007). Many studies have
examined the relationship between strength and texture: sandier soils tend to
have lower moisture holding capabilities but have less particle cohesion from low
D, and OM levels (Brady and Weil, 2008; Balland et al., 2008; Kumar et al., 2012).
Similarly, clay rich soils can absorb more water and have a range of optimal
strength prior to distortion from heavy machinery (i.e. strong when dry, but very

weak when wet) (Arnup, 1999).

1.1.3 Trafficability models

Three modelling approaches are available for simulating wheel/soil interactions
to better understand the effects of heavy machinery on soil strength: ()

theoretical/mathematical, (ii) empirical, and (iii) semi-empirical.

The theoretical models are based around terrain-model equations which ufilize
ideal terrain and require known stress limits to model vehicle performance. The
finite element method (FEM) is an example of a theoretical/mathematical model
structure. Fervers (2004) utilized FEM to investigate the inferaction of tires on sail,
focused on modelling the influence of different tire inflation on different soils in a

2-D mathematically derived tire model.

Empirical trafficability models use a given dataset to generate empirical
equations to predict vehicle performance. The WES method was developed by
the US Army Corps Engineer in conjunction with the cone penetrometer and the
nominal cone penetration index (NCI. The WES method calculates the mobility
index (M) for a given machine with a given number of passes over the soil

(Saarilahti, 2002a; Eichrodt, 2003).

Semi-empirical models combine theoretical soil mechanics with empirical

formulations to predict soil trafficability across the land by way of global



information system (GIS) technology. By spatially analyzing soil properties, models
and maps can be created to visually represent areas of high tfrafficability risk.
Generally these models utilize shapefiles, point or polygon shapes which
represent a given dataset (i.e. water bodies, soil polygons, etc), rasters, scalable
graphics made up of individual pixel cells which store single data values (i.e.
digital elevation model (DEM), terrain slope, etc), and GIS integrated tools to
create trafficability maps or cost-efficient frail models. A study by Suvinen (2006)
created a terrain tractability model and opfimal off-road routing which
produced a cost surface based on vehicle parameters, terrain, vegetation, and
weather inputs. It generates different route alternatives based on different
conditions, for example getting from point A to point B using different routes,
based on the time of the year, the machine fraveling, and the under laying
substrate. A similar study by Campbell ef al. (2013) used empirically derived rut
relationships to create trafficability maps for trail damage severity. They used
depth-to-water (DTW), a predicted depth to measurable water raster input,
combined with field derived soil properties (soil texture, Dy, and MC) to create a

rut depth calculation which classified trail damage.

1.2 Research question (Basic Hypotheses)

The research in this thesis is based on these questions:
1. Can field measured cone index and soil moisture content be used to predict

soil trafficability?

H, - Field measured cone index and moisture content correlate to published
modelled equations via spatial wet-areas-mapping and temporal rut

modelling, predict and validate soil trafficability.

Ho - There is no significant correlation between field measured cone index and
moisture content to modelled indices, which then produces poor soil

frafficability predictions.



2. Can soil trafficability be predicted spatially and temporally?

H; - Soil trafficability can be predicted temporally via the Forest Hydrology
Model, and spatially using digital soil maps (DSL), and other digital elevation
map (DEM) derivatives.

Ho - Trafficability can not be predicted both tfemporally and spatially.

The purpose of this thesis is to report and to examine the effects of heavy forestry
machinery on soil rutting by building upon previous research (Vega-Nieva et al.,
2009; Campbell, 2012; Campbell et al., 2013) through comparing model outputs
fo field measurements (results froom machine mounted rut sensors and cone
penetrometers vs. spatial trafficability maps) and creating a tool which will help
increase forecast areas of potential high-risk rutting, specifically integrating

forecasting by season. This will be accomplished by:

(i) understanding the temporal relationship between soil moisture and sail

strength using weekly field measurements of both,

(i) analyzing the effects of heavy equipment using clearance and GPS tracked

SEeNsaors,

(i) creating pedotransfer functions of temporal and spatially modelled soil

moisture and soil strength,

(iv) verifying trafficability model outputs with field measured rut data using

Random Forest statistical analysis,

(v) creating a user-friendly trafficability ArcGIS model to generate spatial
frafficability  predictions, connecting  STELLA-based ForHyM and
ArcGlS-based model,

(vi) generating trafficability maps generated for site specific cut-blocks in Black

Brook, Deersdale, and Dorn Ridge.



The previous studies specific to this research focused on (i) spatial assessment of
trail-soil rutting based on wet-areas mapping (Vega-Nieva ef al., 2009; Campbell,
2012; Campbell ef al., 2013). This project builds on this research to produce a
usable tool in reference to when (via temporal ForHyM) and where (via spatial
modelling) fo minimize off-road soil trafficability impacts. The formulation and
subsequent application of the tool is primarily infended for forest operations
planning, but generalizations should also be possible to assess, e.g.,
weather-affected soil disturbances due to snowmobiles, all-terrain vehicles,

mountain-bikes, and hiking frails.

A flowchart in Figure 1.1 shows the soil frafficability modelling (STRAM)
development, essentially involving the field validation of hydrological modelling
at the daily level, and spatial interpretation of the same involving digital

elevation modelling at 1 to 10 m resolution.

Spatial
Analysis

Temporal Regression
Hydrology
Modelling

Regression

Creation Spatial
Analysis

Temporal
Hydrology

Modelling
PSP / ForHyMm

Random
Forest

Figure 1.1: Simple flowchart of model connections between ForHyM and spatial
trafficability maps.

1.3 Thesis Outline

The Chapters in the main body of this Thesis (Chapters 2, 3, 4, and 5) refer to

individual publications. This Chapter serves the general infroduction purpose.



Chapter 2 (Jones and Arp, 2017) titled “Relating the cone penetration and
rutting resistance to variations in forest soil properties and daily moisture
fluctuations” focuses on presenting the relationship between soil strength (i.e.
cone penetration) with soil properties and measured soil moisture, as these vary

on 3 sites in Fredericton, NB over a 32 week spring-to-fall period.

Chapter 3 Jones et al. (2018) titles “Track-monitoring and analyzing machine
clearances during wood forwarding” examines machine-specific
wood-forwarding clearance data across 11 harvest blocks in northwestern New
Brunswick. This examination was done using soil moisture, machine speed, and

number of passes as machine clearance predictor variables.

Chapter 4 Jones and Arp (2019a) titled “Soil moisture and cone penetrability
conditions in forest soils” focuses on forecasting soil moisture (MC) and soil

strength (CI) variations across the harvest blocks in Chapter 3, with validations.

Chapter 5§ (Jones and Arp (2019b); submitted for publication) ftitled “Soil
Trafficability Forecasting” uses the results from Chapters 2, 3 and 4 to evaluate the
Soil Trafficability Model (STRAM) by way of multivariate and Random Forest

regression techniques.

Chapter 6 concludes with a summary of main research developments and

findings, a list of original contributions, and recommendations for future work.
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Abstract

Soil resistance to penetration and rutting depends on variations in soil texture,
density, and weather-affected changes in moisture content. It is therefore difficult
to know when and where off-road fraffic could lead to rufting-induced soil
disturbances. To establish some of the empirical means to enable the “when”
and “where” determinations, an effort was made to model the soil resistance to
penetration over time for three contrasting forest locations in Fredericton, New
Brunswick: a loam and a clay loam on ablation / basal fill, and a sandy loam on
alluvium. Measurements were taken manually with a soil moisture probe and a
cone penetrometer from spring to fall at weekly intervals. Soil moisture was
measured at 7.5 cm soil depth, and modelled at 15, 30, 45 and 60 cm depth
using the Forest Hydrology Model (ForHyM). Cone penetration in the form of the
cone index (Cl) was determined at the same depths. These determinations were
not only correlated with measured soil moisture but were also affected by the
variations in soil density (or pore space), texture, and coarse fragment and
organic matter content (R? = 0.54; all locations and soil depths). The resulting
regression-derived Cl model was used to emulate how Cl would generally
change at each of the three locations based on daily weather records for rain,
snow, and air temperature. This was done through location-initfialized and
cdlibrated hydrological and geospatial modelling. For practical interpretation
purposes, the resulting Cl projections were transformed into rut depth estimates

regarding multi-pass off-road all-terrain vehicle traffic.

Keywords
Soil resistance to penetration, cone index, soil moisture, texture, coarse
fragments, organic matter, weather records, hydrological modelling, soil

trafficability, rutting depth, recreational vehicles
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2.1 Introduction

The soil cone index (Cl), a measure of a soils resistance to penetration (MPa), is a
commonly used soil mechanical property to determine soil strength (Lowery and
Morrison, 2002; Eid and Stark, 1998). This strength generally increases with
increasing clay, coarse fragment (CF, %) and soil density (D, g/cm?2), or reduced
pore space (PS), but decreases with increasing soil moisture (MC, %) and organic
matter content (OM, %) (Balland et al., 2008; Vega-Nieva et al., 2009; Vaz et al.,
2011; Lin et al., 2014). Hence, non-cohesive soils such as sands and sandy loams
are more easily penetrated than clay soils (Balland et al., 2008; Brady and Weill,
2008; Kumar et al., 2012), wet soils have low penetration resistances and the
resistance to penetration is low for organically enriched soils but high for stony
and frozen soils (Anderslaond and Ladanyi, 1994; Bronick and Lal, 2005;
Huntington, 2007).

In practice, off-road traffic may increase soil compaction and Cl, which
negatively affects crop growth by way of reduced root development (Culley
et al., 1981; Soane and van Ouwerkerk, 1994; Chen and Weil, 2010, 2011; Kumar
et al, 2012). In urban developments, increased Cl due to soil compaction
decreases soil infiltration of water and tree root growth (Gregory et al., 2006;
Kozlowski, 2008). However, sufficient Cl-index soil strength is needed to allow on-
and off-road traffic in agriculture and forestry operations (Moehring and Rawls,
1970; Carter ef al., 2007), while off-road recreational traffic needs to be
controlled to avoid soil rutting. In this, the resistance of soils to rutting is directly
proportional to the ratio between ftire footprint pressure and CI (Saarilahti, 2002¢;
Affleck, 2005). The former increases with increasing loading and decreasing
footprint area, which in turn, decreases with increasing fire width, wheel
diameter, and with decreasing tire pressure. In the field, rut depths further
increase from single to multiple passes, and with slope-induced tire spinning (Han

et al., 2006).
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Efforts to minimize soil rutting requires reliable forecasting of off-road sail
trafficability. Doing this, however, is challenging because soil and machine-use
conditions may vary daily from location to location. By location, low CI
conditions do not last as long for sandy soils than for loams and clays. In addition,
soil trafficability varies by the extent of soil freezing and thawing, especially when

traffic turns frozen soils into mud (Shoop, 1995).

The objective of this chapter is determining how manually derived soil ClI
determinations change in response to weekly spring-to-winter changes in MC
and temperature for three contrasting soil conditions. The data so generated
allowed for (i) quantifying the relationship between Cl and soil MC, (ii) emulating
and interpreting the changes in soil moisture, Cl, and rutting depth, and (iii) daily
year-round modelling of soil trafficability by soil texture and soil depth. While
machine-based cone penetration testing methods (CPT: Robertson (2016))
would be more accurate and precise, manual Cl determinations have the
greater portability and affordability advantage for assessing how soil trafficability

conditions vary from location to location across landscapes and seasons.

2.2 Materials and Methods

2.2.1 Location Description

Three forest sites in Fredericton, New Brunswick, were chosen for this study (Figure
2.1, Table 2.1):

i. a mixed-wood stand on sandy clay loam in a wooded section on the

University of New Brunswick campus (UNB);

ii. ahemlock (Tsuga canadensis) stand on a rich loam in Odell Park (OP);
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iii. a silver maple site (Acer saccharinum) on an alluvial sandy loam next to a

fresh-water marsh within the floodplain of the Nashwaaksis stream (SM).

The two non-alluvial soils developed on grey sandstone ablation / basal fill.
Elevation for the three sites ranges from 6 to 70 m (Stobbe, 1940). The topography
varies from undulating to hilly. The upland forest vegetation is representative of
the Acadian forest species, i.e., sugar maple (Acer saccharum), red maple (Acre
rubrum), white birch (Betula papyrifera), balsam fir (Abies balsameaq), black
spruce (Picea mariana), and hemlock (Tsuga canadensis). The 1950-2017
Fredericton weather record has a mean annual temperature of 6.6 °C, with
monthly means of -1.8 and 14.9 °C for January and July, respectively. Mean
annual precipitation amounts to 1100 mm, including 250 mm of snow

(Department of Environment and Climate Change Canada, 2016a).

5I8M

DPP

UNBB

Figure 2.1: Overview depicting of the three Fredericton (New Brunswick) locations
(left), and site-specific plot locations for SM (fop), OP (middle), UNB (bottom)
(Imagery Source: Esri, DigitalGlobe, Geokye, Earthstar Geographics, CNES/Airbus
DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGR swisstopo, and the GIS User
Community).
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Table 2.1: Location descriptions used for initializing ForHyM.

Site Parameters UNB Silver Maple Odell Park
Latitude (N) 45°56°40 45°57°28 45°58°46
Longitude (W) 66°38'34 66°40°17 66°39°44
Elevation (m) 70 8 29
Slope (%) 4.5 2.5 2.7
Aspect (°) 30 132 24
Canopy Coverage
Deciduous: 20:40 70:0 30:30
Coniferous
Rooting habit Shallow Deep Shallow
Forest floor depth 8 o 5
(cm)
Riverbank /
Soil Series Sunbury /Tl Glaciofluvial ~ Sunbury / Till
Deposits

Gleyed Gleyed Orthic
Soil Classification Sombric Humic Humo-Ferric

Brunisol Regosol Podzol
Mineral soil texture Sandy loam Loamy sand - Silty loam -

Sandy loam Sandy loam

Subsoil texture Sandy loam  Loamy sand Silty loam
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2.2.2 Field Experiment

Soil layers were described and samples were taken from freshly dug soil pits at
each of the three locations. Five soil volumetric moisture content (MC,,) and CI
readings were taken manually each week from May 29, 2015 to November 2,
2015 within two circular plots (1.5 m radius) near the soil pits at each location. This
was done using a Delta T HH2 moisture meter and a Humboldt digital cone
penetrometer (cone area at base = 1.5 cm?; cone angle 60°). The MCy, reading
were taken at 7.5 cm mineral soil depth. The Cl readings were obtained at 15, 30,
45, and 60 cm depths, but were not recorded where obstructed by logs, coarse

roots, and surface-accumulated rocks.

The soil samples were placed into labeled freezer bags for storage. Prior to
analysis, the samples were dried in a forced-air oven 75°C for 24 hours, crushed
with a mortar and pestle and passed through a 2 mm sieve to remove and
determine the CF. The fine-earth fraction was used to determine its sand, silt, and
clay content using the hydrometer method (Shelrick and Wang, 1993). The soil
carbon content (C, %) of this fraction was determined using the LECO CNS-2000
analyzer. Soil OM content by weight (OMg) was determined by setfting OMg =
1.72 x C %. The pore-space filed moisture content (MCps) was inferred by
assuming that the soil gravimetric moisture content (MCy), Dy, and the PS would

be affected by depth and OM content as follows (Balland et al., 2008):

(1.23 4+ (D, — 1.23) x (1 — exp(0.0106 x Depth)))

Dy = 1+ 6.83 x OM,, @D

MC, = MCy x D, (2.2)
MC

MCps = — SV (2.3)

where Dy is particle density (2.65 g/cm?), and PS is cm? of pore space.
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2.2.3 Hydrological Modelling

The forest hydrology model (ForHyM) (Arp and Yin, 1992; Yin and Arp, 1994;
Jutras, 2012) was used to emulate the changes in daily soil moisture, soil
temperature and snowpack conditions for each of the three locations from 2006
to 2017. Doing this involved compiling the daily Fredericton weather records for
air temperature, precipitation (rain, snow), stream discharge and snow depth on
open ground (Department of Environment and Climate Change Canada,
2016a.,b). Also specified were elevation, slope, aspect, and extent of forest cover
(Table 2.1). The model-internal water and head flow parameters pertaining to soil
permeability, thermal conductivity, and heat capacity were plot-adjusted by
texture, OM, and CF content (Table 2.2), and by comparing actual with modeled
soil moisture content. This was done through manually resetting the default values
for: () the air-to-snow-pack heat-transfer coefficient; (i) the initial snowpack
density of freshly fallen snow to reflect the open-ground conditions at the
weather station (Balland et al., 2006), and (i) the lateral soil permeability to
account for lateral flow tortuosity (Jutras and Arp, 2010, 2013). These adjustment
ensured that the model output conformed to actual snowpack depth and

stream discharge records.

2.2.4 Data Analysis and Model Projections (MCy, Cl, rut depth)

The data and ForHyM estimates for MCy,, Cl, texture, CF, OM, Dy, and PS were
entered into a spreadsheet by location, date, and soil depth. This compilation
served (i) to generate basic statistical summaries, (i) to analyze the measured
and modelled time-series plots for MCy, and CI, and (iii) fo determinate the best
fitted linear and multiple regression models with Cl as dependent variable, and
with MC,, (measured, modelled), soil texture, OM, CF, PS, and soil depth as
independent variables. A linear regression model served to relate Cl at 15, 30, 45

and 60 cm soil depth to measured and ForHyM modelled MCy,. A multiple
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Table 2.2: ForHyM initialization requirements by soil layer per plot and location.

Depth Sand Clay

Silt

OM

CF

Site  Plot Layers (cm) %) (%) (%) %) %) Rooting
UNB 1 LF -8 Organic 100 0 Plentiful fine
Ah 0-15 43 14 43 25 1 Plentiful fine
Bmg 15-40 66 10 24 5 10  Abundant fine-med
Cxgl 40-70 66 10 24 1 20 Few coarse
Cxg2 70+ 66 10 24 0 70
2 LF -8 Organic 1 0 Plentiful fine
Ah 0-15 43 17 40 7 1 Plentiful fine
Bmg 15-40 66 10 24 2 10  Abundant fine-med
Cxgl 40-70 66 10 24 1 20 Few coarse
Cxg2 70+ 66 10 24 0 50
SM 1 L 2 Organic 100 0
Ah 0-15 48 17 35 10 0 Abundant fine
Cgal 15-65 44 17 39 5 10 Few coarse
Cg2 65-105 35 18 47 0 15 Few coarse
Cg3 105+ 35 18 47 0 15
2 L 2 Organic 100 0
Ah 0-15 48 17 35 20 0 Abundant fine
Cgal 15-45 44 17 39 10 5 Few coarse
Cg2? 45-95 35 18 47 0 10 Few coarse
Cg3 95+ 35 18 47 0 15
OP 1 LFH -5 Organic 1 0 Plentiful fine
Ahe 0-15 58 18 24 10 1 Plentiful fine-med
Bf 15-40 54 20 26 5 5 Abundant med
BC 40-90 54 20 26 1 10 Few coarse
C 90+ 56 12 32 0 10
2 LFH -5 Organic 1 0 Plentiful fine
Ahe 0-15 58 18 24 10 1 Plentiful fine-med
Bf 15-35 54 20 26 5 15 Abundant med
BC 35-70 54 20 26 1 15 Few coarse
C 70+ 56 12 32 0 15

18



regression model served to relate Cl to MCy, (%), PS (%). and CF (%) as follows:
logigCI = a+bxPS+cx MC+dxCF .4

where MCps is the water-filled portion of the pore space, in percent. The best-fitted
model so generated was incorporated into the ForHyM model to determine how
MCy, Cl, and rutting depths pertaining to all-terrain vehicles (ATV) traffic would
vary over time at each of the three locations. The equations adopted for rut
modelling were as follows (Saarilahti, 2002d; Vega-Nieva et al., 2009):

Potential rut depths for n passes:

1
1627 5

- 2
Zn NCI X N 2.5)

with nominal cone index (NCI) given by:

2.6)

NCI:(1000><CI><b><d)X\/(d/h)x

W (1+2d)

where b is tire width (m), d is fire diameter (m), h is section height (m), § is tire
deflection (m) given by 0.008 + 0.001 (0.365 + 170/p ), p is tire inflation pressure
(kPa), W is vehicle weight + load (kN) per number of wheels, and n is number of
vehicle passes along the same frack. Potential ruftting depths for an all-terrain
recreational vehicle (ATVs) were determined, using the following specifications:

W=31kN;b=0254m; d=0.62m; h=0.3m; p=34.4kPa; n= 10 passes.

To visually represent the temporal changes in MC topographically and over
seasons, the MCpg was spatially related to the depth-to-water index (DTW). This
index was generated from a 1-m resolution bare-earth digital elevation model
(DEM, vertical and horizontal error + 15 cm) for the Fredericton area (GeoNB,
20150). This index determines the elevational rise along the least slope-path from
each cell across the landscape to its nearest open-water cells corresponding to

streams, lakes, rivers and open shores (Murphy ef al., 2009b; White et al., 2012).
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Changing the upslope flow accumulation area by channel flow initiation (FI), i.e.,
changing the amount of upstream area needed to initiate streamflow, allows for
indexing DTW by season. For example, Fl = 4 ha generally represents permanent
streamflow at the end of summer, Fl = 0.25 ha represents the extent of ephemeral
stream segments that flow during and after snowmelt, and Fl = 1 ha represents
channel flow during transitional periods from fall to winter. The resulting DTW
rasters with Fl = 4, 1, and 0.25 ha were used to determine how the soil moisture
condifions and rufting depths would vary across the terrain associated for the
three sampling locations by season. Fl was determined through prior field
validation and studies Murphy ef al. (2007). This was done by applying Eq. 2.7
and Eqg. 2.8, i.e. (Murphy et al., 2009b; Balland ef al., 2008):

MCPS =1- [1 — MCps(DTWTidge)]X

(1 — exp(—k x DTW) ) P @7
(1 —exp(—k x DTWpigqe)
RD,, = RDn,ridge - [RDn,ridge - RDTL,DTWZO} X
2.8

[ (1 —exp(—k x DTW) )] P
(1 —exp(—k x DTW,iqge)

with p=2, p and k as soil-specific parameters ranging from 0.2-2, and DTWjgge
(M), RDnsigge @Nd RDp prw=0 (MM) as rut depth determined from the driest and

wettest parts of each.

2.3 Results

2.3.1 Soil Moisture and Cl Measurements

Each of the three sites showed distinct variations in soil properties, strength, and
moisture readings over the course of 23 weeks. Given the plot-by-plot soil

property differences, and fracking the changes in soil moisture over time,
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revealed that the OP plots drained quickly. In contrast, the UNB plots varied the
most from wet to dry and back again to wet from spring to fall (Figure 2.2). In
direct correspondence, resistance to cone penetration varied the least for the
two SM plots, and the most for the UNB plots. These differences arose from the
compacted and poorly drained sandy loam for the UNB plots, the well-drained
loamy sand with low CF content for the OP plots, and the seasonally recurring
flooding of the SM plots (Tables 2.1 & 2.2). The high springfime levels for MCy,
within the top 15 cm of the soil at the UNB and SM are due to the high Ah-layer
OM contents, which according to Eq. 2.1 - lowers the Dy and enhances the

soil-filled PS between the CF

Figure 2.2: Left: Measured MC,, for the top 15 cm of soil. Right: Measured Cl at 15,
30, 45, and 60 cm depth (right) for Plots 1 and 2 at the OP UNB, and SM locations.

Plotting the Cl measurements at 15 cm depth to the MC,, measurements revealed

that the log-transformed Cl and MC,, values are linearly related to one another as
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shown in Figure 2.3 (left), as follows:

109100[15cm = .62 —0.52 x lOgloMCV +020x UNB 59
2.9

R? = 0.60, RSME = 0.13, MAE = 0.10

with the UNB location coded 1 when applicable and 0 otherwise. Similarly strong
correlations between MC and Cl| have been reported elsewhere (Young and
Berlyn, 1968; Busscher et al., 1997; Vaz et al., 2011). With respect to increasing soil
depth, CI tends to increase, as shown in Figure 2.3 (right) - Cl increases, by
plotting the ratio of the weekly averages of Cl over Clnwax per plot by location. A
similar trend has been reported (Carter et al.,, 2000, Campbell et al., 2013;
Porsinsky et al., 2006).

Figure 2.3: Scatterplots of measured log;oCl versus measured log;,oMCy (left) and
of the weekly averages of Cl / Clngx for the OP. UNB, and SM locations (right).

2.3.2 Estimating Soil Moisture and CI through Hydrological Modelling

The modelling of the yearround MC conditions required Fredericton-specific
ForHyM initialization and calibrations. These included Fredericton-specific
cdalibrations for snowpack depth and stream discharge required using daily

Fredericton Airport weather records for rain, snow and aqir temperature, and
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adjusting the ForHyM-default settings for lateral and downward water flow, as
listed in Table 2.3. The plot-specific ForHyM initializations for are listed in Table 2.1
and Table 2.2 refer to entering the plot- and/or layer-specific values for slope,
aspect, vegetation type and cover, forest floor depth, percentages for sand, silt,
clay, CF, OM, and layer depth. Shown in Figure 2.4 are resulting time-series plots
for air temperature and precipitation (input), snow pack depth, stream
discharge, MCy, (top 15 cm, actual and modelled), and frost depth (modelled).
The resulting scatter plots in Figure 2.5 for actual and best-fitted ForHyM
snowpack depth and top 15 cm MC,, demonstrate a reasonable good fit, with
R? = 0.81 for the snowpack, 0.62 for stream discharge, and 0.76 for the MCy (Table
2.4).

Table 2.3: ForHyM calibration for the Fredericton area: default multipliers.

Parameters Multipliers

Snow-to-air tfemperature

Snowpack Multipliers gradient multiplier 0.16
Density of fresh snow 0.2

Ksot MUltipliers Surface runoff 1
Forest floor infiltration 1
Forest floor interflow 0.01
A&B horizon infiltration 1
A&B horizon interflow 0.02
C horizon infiltration 1
C horizon interflow 0.01
Deep water percolation 1

For the purpose of predicting how Cl would vary across time by soil texture, Dy, and
CF content (Table 2.2), it was necessary to use the ForHyM-generated depth- and
time-dependent MC,, output forthe 0- 15, 15 - 30, 30 - 45 and 45 - 60 cm soil layers

as predictor variables. Doing this involved estimating how much of the infilfrating
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Figure 2.4: ForHyM time-series plots for daily air temperature and precipitation
(ForHyM input), actual as well as modelled output for stream discharge and
snowpack depth for Fredericton, NB, as well as location-specific modelled frost
depth.
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Figure 2.5: Actual versus ForHyM best-fitted scatterplots for MCy, (top 15 cm) (left),
monthly stream discharge (middle), and snowpack depth (right).

Table 2.4: Best-fitted regression model for measured (actual) versus modelled top
15-cm soil MCy, by location (UNB, SM, OP) and overall.

Intercept Coefficient t- pP- . 52
Parameter n (SE) (SE) value  value Adj.R° RSME MAE
UNB 37 13.88(1.69) 0.68 (0.04) 17.31  <0.001 0.90 547 450
SM 41 2054 (1.82) 0.38 (0.04) 9.17  <0.001 0.67 477  3.91
Odell Park 41 11.69 (1.75)  0.41 (0.07) 572  <0.001 0.44 4.01 3.06
All Sites 118 11,63 (1.19)  0.61(0.03) 19.36  <0.001 0.76 6.57 548
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and percolating water would be retained at any fime within the fine-earth fraction
of each layer. For example, the available for water retention would decrease with
increasing CF content. Consequently, there would be less PS to fill between the
CF during wet weather conditions, and there is also less water available for root
uptake during warm summer weather (Baetens et al., 2009). This being so, the
ForHyM-generated projections in 2.6 by location and soil layer show greater MCy,
and MCps variations for the stony UNB location, followed by the less stony SM and
the more sandy OP locations. In combination, the ForHyM projections in Figure 2.6

capture the plot-by-plot MCps variations such that OPpe >SMme >UNBmc.

Figure 2.7 and the correlation coefficients in Table 2.5 show how CI varies with
varying soil fexture (sand), CF, OM, PS, and MCps. In general, Cl decreases with
increasing PS and sand content due to decreasing particle-to-particle contacts.
Increasing OM content decreases Cl by way of soil aggregation, i.e. by further
loosening the point of contact among the aggregated soil particles. The
CF-induced increase in Cl refers to the increasing strength needed to displace
the coarser particles away from cone penetration path (Rucknagel et al., 2013).
Together, sand, OM CF and PS affect the daily variations in Cl and MC retention
through their combined effect on soil pore space, texture, and drainage

(Alexander and Skaggs, 1987; Balland et al., 2006; Wesseling et al., 2009).

Subjecting the correlation matrix in Table 2.6 to factor analysis reveals that the Cl
variations can be grouped into three Cl determining factors. Factor 1is a Location
Factor, which relates a component of the CI variations to location- and layer-
specific CF and PS determinations. Factor 2 is a MC Factor, which relates some of
the Cl variations to MCps. Factor 3 is strongly related to Sand, but has a non-salient

effects on ClI.

Using PS, MCps, and CF as independent variables produced the following best-
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Figure 2.6: ForHyM-generated MCy, and MCps% projection for the 0-15, 25-30, 30-
45 and 45-60 cm soil layers by location and plot.
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Figure 2.7: Plotting plot-by-plot measured Cl vs. OM, Sand, PS, MCps, and CF,
showing PS, MCps, and CF as stronger ClI predictor variables than OM and Sand.
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Table 2.5: Correlation matrix for plot- and layer-determined CIl, OM, Sand, CF and
ForHyM-estimated Dy, MCy/, MChps.

Variables CI  MCps MCy SP CF Sand Dy OM

cl 1
MCps -026 1

MCy -052 072 1

SP 039 -037 032 1

CF 055 035 -0.18 -074 1

sand -0.16 -0.30 -020 021 -042 1

Dp 039 036 032 -1 073 020 1
OM -031 -031 035 096 -059 007 -097 1

Table 2.6: Factor analysis of Table 2.5

Parameters Factor 1 Factor 2 Factor 3

Cl 0.72 0.75 -0.02
MCps 0.18 -0.88 -0.26
SP -0.92 0.11 -0.09
CF 0.86 0.03 -0.23
Sand 0 0.15 1.00
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fitted multiple regression result for all soil layers and locations combined:

log10CI =0.26 — 0.29 x PS —0.41 x MCpg + 1.04 x CF 2.10)

R%? =054, RMSE = 0.36, MAE = 0.29

This result is illustrated in Figure 2.8 by way of the 3D plots, which reveal moderate
Cl increase with decreasing MCps and a rapid CI increase with increasing CF. In
reality, Cl and soil strength should decrease again as MCpg drop towards zero as
the soil becomes more brittle due to reduce particle-to-particle

hydrogen-bonding at low MC (Manuwa, 2012).

Figure 2.8: Modelled CI (Eq. 2.10) in relation (a) to MCpg and PS at CF = 20%, and
(b) to CF and MCpg at SP = 20%.

While Sand and OM are important water retention and porosity predictor
variables (Hausenbuilder, 1978; Krzic ef al., 2004), including them as part of the
multiple regression process did not significantly improve the best-fitted results,
likely due to the significant correlations between OM and PS and between Sand
and CF in Table 2.5. However, adding the sampling locations to the predictor

variables (each location within the data set coded 1 and 0 where applicable,
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else 0) improved the best-fitted result as follows:

logioCI = 0.44 — 0.50 x PS —0.39 x MCpg +0.69 x CF —0.09 x SM )
@211

R? =0.60; RMSE = 0.33, MAFE = 0.27

This means that the CI values at the SM plots are, on average, slightly lower than
at the other locations. This difference may be related to unaccounted difference
pertaining to, e.g., CF size (generally smaller than at the other two locations),

and differences in rooting pattern.

Repeating this analysis by location and by soil depth produced the best-fitted
results listed in Table 2.7. From this, it can be noted that R? remained about the
same by location, varying only from 0.41 (SM) to 0.66 (UNB), but decreased with
increasing soil depth from 0.6 at the top to 0.1 at 60 cm soil depth. This decrease
would mostly be due to the location-by-location Dy, MC and CF differences. This
is because (i) the ForHyM-generated MC estimates already take the effect of CF
on MCpg into account, and (i) the Cl readings become increasingly erratic when

pushed through soils with increasing CF content.

Table 2.7: Linear regression results for measured vs. modelled Cl by depth and
location.

Parameter '"“f;‘éfp' C°e(giE°)ie"' VJI'ue Vg;;e Algj' RMSE MAE
Alldepths 380 0.01(x0.05 1.04(x004) 23.13 <0001 058 034 027
15 cm 119 004(+£008) 1.05(0.09) 1136 <0001 052 029 0.24
30 cm 114 006 (£009) 1.05(+0.08) 1392 <0001 063 034 028
45 cm 90  021(+£0.12) 125(+0.10) 1275 <0001 064 035 028
60 cm 58 0.53(£0.19) 056(x0.16) 345 0001 016 032 027
SM 167  023(x007) 077(x007) 1072 <0001 041 027 023
OdellPark 145 -0.47(+0.13) 151(+£0.12) 1276 <0001 053 035 027
UNB 69  001(£001) 1.02(*009 1159 <0001 066 038 031
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The dependency of ClI data on soil PS, MC, and CF content was further
evaluated through multiple regression analysis based on literature-generated Cl
formulations (Table 2.8). The results of so doing indicated that (i) Eq. 2.10 provides
the best data representation overall, (i) the linear formulations for Cl are
somewhat weaker than the logarithmic formulations. Also, (i) soil porosity (or
density) and MC are the more persistent and significant CI predictor variables

than either sand or CF conftent alone.

Table 2.8: Review of functional relationship between Cl and soil properties.

¥ Eq Coefficient Parameters Adj. RMSE  MAE
a b c d e f R2
I o Sy e S
larogl]\%gps,:f Jsbps (ig.étl)s) (1]67.8@ (1]6483) (ﬁbg.)t]lc?) 0.36 042 034
Ifg']\t/llgps= ores (ilg.%d) (fb?&) (_iobe.)éa) 033 043 034
géi?ﬂBi e <i§ﬁ3> (ﬁbﬂn (165.)84) E(ig.oo]n 033 042 034
EI\%I]C%STCOD: (i'gf)A) (_267.87) (ig.%z) 035 021 016
5 %Eféﬁé”;i 092 -344 120 389 026 085 .0 oa0 (a3

eDy? + fMCDs (£0.43) (£1.62) (£0.46) (£1.47) (£0.14) (£0.64) —

1: this study; 2: (Vega-Nieva et al., 2009); 3: (Campbell et al., 2013) ; 4: (Kumar ef al., 2012)
5: (Meek, 1996) 6: (Busscher and Sojka, 1987)

2.3.3 Predicting potential ATV-caused soil rutting depth

ForHyM was used to transform the MCpg and CI projections over time into likely
ATV-generated rut depths April 2013 to April 2017, using the average top 15 cm
PS and CF values and Egs. 2.5, 2.6, and 2.10, for the two plots at the three

sampling locations. The results are represented by the time-series plot in Figure
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2.9. As to be expected, deepest ruts would be incurred during the spring and fall,
with minor blips during summer. Ruts could also be incurred during winter when
some of the frozen soils would thaw due to interim warm weather and upward
geothermal heat flow underneath the heat-insulafing snow accumulation
Sudnjar et al., 2006). While trafficability advisories due to wet soil conditions exist
from fall to spring., such advisories are generally aimed at climate regional levels

and therefore fall short in ferms of being precise regarding the when and where.

The extent to which soil rutting would be seasonally affected across the general
neighbourhood of each of the three location was ascertained through digitally
generating the elevation-derived cartographic depth-to-water index (DTW)
associated with 4, T and 0.25 ha upslope areas for streamflow initiation (Murphy
et al., 2009b) (Figure 2.10). Using these patterns in combination with Egs. 2.5 and
2.6 produced the spatial MCps and potential ATV-related rut depth maps in
Figure 2.11, intended to be representative of the off-road soil trafficability
conditions during spring, end of summer and the fall to winter transition. As
shown, the UNB location has the potential to be the most trafficable among the
three locations in the summer, but would be least during spring and fall. In
contrast, the OP location would have the least traffic impact across the area and
seasons based on tfexture-facilitated soil drainage. However, moderate soil
rutting would occur within the 4-ha DTW<1 m zone at OP Overall, the soil rutting
conditions follow the sequences: dry weather. UNB <OP <SM; wet weather. OP

<SM <UNB (Figure 2.9).

2.4 Discussion

This chapter describes ways and means by which the resistance of soils to cone
penetration can be analyzed and modeled at the daily level yearround, over
many years, and for the varying soil conditions by select locations. The results so

obtained are - apart from study specific biases - generally consistent with what
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Figure 2.9: ForHyM-generated unfrozen MCpg, Cl, and rutting from April 2013 to
April 2017 for the topsoil (top 15 cm of soil) for plot 1 (fop) and plot 2 (bottom) at
UNB, OP and SM.

34



Figure 2.10: Cartographic depth-to-water index (DTW 1 m), overlain on the hill-
shaded LiDAR-derived bare-earth digital elevation model for the UNB, OR and
SM locations for the end-of-summer (tfop), the spring-to-summer as well as fall-to-
winter transitions (middle), and early-spring conditions, as emulated using upslope
stream-flow initiation areas amounting to 4, 1 and 0.25 ha, respectively.
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Figure 2.11: Soil MCpg and rut depth interpretations of the season representative
DTW patterns in Figure 2.10. Top: end-of summer. Middle: spring-to-summer and
fall-to-winter transitions. Bottom: after the snowmelt season.
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has been reported in the literature. These biases would inter alia refer to
differences in ClI methodology by, i.e., cone dimensions, speed of cone

penetration, and field versus laboratory testing (Vega-Nieva et al., 2009).

While the plot-by-plot determinations of this study are limited to three contrasting
forest locations, they are at least representative of how MC, Cl, and rutting depth
can vary by soil properties, season and topographic position for the Fredericton
region, as demonstrated through daily and spatial modeling. The extent to which
this approach can be generalized requires additional research. For example, the
spatial and DTW-dependent soil trafficability formulation for Cl and rut depth
should be tested across a wider range of glaciated landforms. Similarly, the
meteorological data used in ForHyM is limited to the Fredericton airport weather
station which is applied across all sites. For a better general understanding of
weather impacts different meteorological parameters would be needed. For this
study the data was limited to the single airport dataset which limits the extend of
meteorological data on the model. Doing so would involve extending the above
regression analyses across a wider range of independently varying soil types and
properties. For example, where soils are cemented because of pedogenic Fe
and Ca accumulations, the approach would need a cementation predictor
variable. In some cases, the mix of the best-fitting regression variable and

regression coefficients may also differ, as demonstrated above in, e.qQ., Table 2.8.

Key to applying the approach across time and landscapes is the ability to
estimate how soil frafficability changes in direct response to spatially and
temporally varying tfopo-pedo-hydrological conditions, meter-by-meter.
Traditional soil survey maps can be helpful in this regard by only if the individual
map units and borders conform to actual soil drainage contours. To this extent,

further progress can be made by:

i. refining and adjusting each map unit to its landform- and DEM- defining
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drainage position;

ii. exploring how the trafficability affecting soil properties (MC, texture, CF, OM,
Dp. depth) vary across the landscape of interest from the highest to the

lowest elevation points, and

iii. determining the point of streamflow initiation inside each flow channel either

through field observations or through DEM-based flow-initiation algorithms.
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Together, these refinements would add further precision to the MC and rut depth
maps in Figure 2.11. For example, there would be a noticeable difference
between DIW, MCps and ATV rut depth projections within and outside the

floodplain associated with the SM location.

Some progress towards these refinements has already been made in terms of
checking existing trail conditions in terms of ATV-induced rutting extent, and by
correlating this extent to the ridge-to-valley of the cartographic depth-to-water
index (DTW. Murphy ef al. (2009b)). The multi-pass implications on
wood-forwarding rutting depth have been reported by Meek (1996) and were
further evaluated by Vega-Nieva et al. (2009) by way of Egs. 2.5 & 2.6. However,
much more work needs to be done by not only addressing the DTW-emulated
variations in soil wetness but also by addressing the changes in Dy, texture, CF
and OM content as these would vary from ridge tops to valleys in a systematic
manner. For example, upslope soils would generally be thinner and coarser with
less OM than downslope soils. The reverse could occur in severely eroded
medium-textured soils, with the more cohesive soil remains upslope and the more

easily eroding sand and silt fractions accumulating downslope.

Since the above analysis is restricted to bare ground conditions and mineral soil
layers, rut-reducing surfaoce accumulations of snow, ice, forest litter, peat, and
roots are not addressed. Bare-ground conditions, however, exist forested
landscapes along non-paved roads, after ground-exposing operations such as
root extractions, mounding and plowing, and underneath forest cover where
litter accumulations are low or absent due to fast litter decomposition rates. The
latter condition is more prevalent under hardwood and pine forests than under fir
and spruce forests. Repeated recreational fraffic in such areas under moist to
wet weather conditions would induce significant rut-induced damage through
trail braiding, soil erosion, gulley formation, and stream and lake sedimentation

(Campbell et al., 2013).
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Also not addressed are the effects of snow and ice build-up on top of the sail
during winter, which would increase the resistance to soil penetration,
compaction, and rutting by increasing the soil bearing capacities. Since not all
the water is frozen in sub-zero clay and OM-enriches soils, there could be
problems associated winter-based soil rutting followed by instantaneous flash
freezing. In summary, the above soil rutting assessment is only applicable for bare
ground conditions. Soils covered by forest litter, slash, snow, and ice would

obviously reduce rutting.

2.5 Concluding Remark

In summary, the above soil rutting assessment via manual testing of the temporal
changes in the soil resistance to penetration is limited to the immediate area at
and around the three sampling locations of this study. More research is needed
to extend and fest this research regarding general applicability. As shown, the
approach taken would allow this by way of hydrological and digital elevation

modeling, and further procurement of Cl-relevant soil information.
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Abstract

This chapter reports on frack-monitoring and analyzing machine clearances
during wood forwarding across seasons and weather, using ultrasonic distance
sensors in combination with time-stamped GPS xy locations, at 10 sec intervals.
The resulting data, obtained from 54 harvesting blocks, were analyzed by
machine type (two wood forwarders and one grapple skidder), stand type
(sofftwood plantation versus natural hardwood stands), month, slope,
cartographic depth-to-water (DTW) classes, number of passes along frack, and
machine speed. For the most part, clearances were highly variable, due to
passing over stumps, rocks, harvest slash, brush mats, ruts, and snow cover when
present. This variability was on average greater for the lighterweight wood
forwarders than for the heavier-weight skidder, with the former mostly moving
along equally spaced lines on brush mats, while the paths of the lafter spread
away from central wood-landing sites. In terms of trends, machines moved (i)
more slowly on wet ground, (ii) faster during returning than forwarding, and (i)
fastest along wood-landing roads, as to be expected. Low clearances were most
notable during winter on snow-covered ground, and on non-frozen shallow DTW
and wet multiple-pass ground. During dry weather conditions, clearances also
increased from low-pass tracks to multi-pass tracks due to repeat soil compaction
of broadened tracks. These results are presented block-by-block and by
machine type. Each block-based clearance frequency pattern was quantified

through regression analysis and using a gamma probability distribution function.
Keywords

Wood forwarding, GPS tracks, clearance frequencies, number of passes, speed,

ground conditions, depth-to-water (DTW)
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3.1 Introduction

Modern wood forwarding operations require heavy machines to move across
sensitive terrain and soil conditions. In this regard, improper timing by season and
weather can lead to substantive soil compression and rutting across and along
flow channels, across ridge tops, through depressions, and moist to wet soils. As

soils become compacted and/or displaced, studies have shown that:

i. soil porosity is reduced affecting the oxygen levels and gas distributions within

the soil (Czyz, 2004; Berisso et al., 2012);

ii. increasing soil bulk density affects plant root distribution and decrease
hydraulic conductivity thereby reducing plant available water while
enhancing runoff and soil erosion (Horn et al., 1995; Startsev and McNabb,

2000; Jamshidi et al., 2008);
iii. roots are damaged, facilitating root rot (Grigal, 2000; Kozlowski, 2008);

iv. soil compaction has lasting effects on soil, with natural soil-structure recovery
varying from a few years to decades (Prose, 1985; Brady and Weil, 2008; Ezzati

et al., 2012).

This chapter focuses on monitoring and examining machine-to-ground
clearances in relation to number of passes, wood forwarding machine speed,
and dry to wet ground conditions involving 54 harvest blocks in New Brunswick,
Canada. For this purpose, two forwarders (JD 1110E and 1510E) and one grapple
skidder (TC 635D) were equipped with ultrasonic distance sensors, and GPS data
loggers. The wood-forwarding operations involved retfrieving logs from clear cuts,
shelter-wood cuts, and commercially thinned forest plantations. The thinning
operations involved laying out brush mats used to reduce soil compression
impacts (Labelle and Jaeger, 2012). The dry to wet variations in ground
conditions were related to changing seasons and weather in fime, and to

tfopography across each harvest block by way of the carfographic
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depth-to-water index (Murphy et al., 2011; White ef al., 2012).

3.2 Methods

3.2.1 Site Description

This harvest-block study was spread across four ecoregions in New Brunswick,
focusing on a North-western area near Saint-Quentin, and a mid-western area
centralized near Juniper and Dorn Ridge, as described below (Figure 3.1). For this
study, the areas were split info three groups - Northwestern uplands (NWU),

Midwestern uplands (MWU), and lowlands (LL).

The NWU study area (elevation range 230 to 450 m) is located on the Chaleur
uplands in northwest New Brunswick, north of Grand Falls and encompasses both
the highlands and the northern part of the Southern Uplands ecoregion. The
forest cover includes tolerant hardwoods, mixed woods and forest plantations
(spruce species). Dominant tree species refer to sugar maple (Acer saccharum
Marsh.), balsam fir (Abies balsamea L.), yellow birch (Betula alleghaniensis Britt.),
red spruce (Picea rubens Sarg.), black spruce (Picea mariana Mill.) and white
spruce (Picea glauca (Moench) Voss). Mean annual air temperature from
1990-2016 amounted to 3.6°C, with mean annual January and July air
temperatures at -5.3°C and 12.5°C. Mean annual precipitation was 1140 mm,
with 310 mm as snow Department of Environment and Climate Change Canada
(20160). Black Brook is underlain by Ordovician-Silurian carbonates and
Ordovician-Silurian-Devonian deep-water clastics. The terrain varies from rolling
o hummocky, interspersed by steeply incised valleys. Surficial deposits vary from
residuals tfo stony ablafion and loamy lodgement fills, glaciofluvial deposits

(moraines, kames, eskers), and alluvium.
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Figure 3.1: Map of New Brunswick showing elevations, ecoregions (GeoNB, 2018)
and harvestblock locations with GPS-tracked clearances by wood-forwarding
machine type (UD11, JD15, TC).
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The MWU study range (elevations 250 to 5680 m) is located in mid-western New
Brunswick, near Juniper and encompasses the lower part of the Southern
Uplands ecoregion. The forest cover consists of tolerant hardwoods with sugar
maple and white birch (Befula papyrifera Marsh), mixed with balsam fir and
black spruce, and interspersed by black and white spruce forest plantations.
Mean annual air temperature from 1990-2016 amounted to 5.2°C, with mean
annual January and July air temperatures at -3.5°C and 13.9°C. Mean annudl
precipitation was 1180 mm, with 280 mm as snow Department of Environment

and Climate Change Canada (20160).

The LL study range (elevations 120 to 290 m) is located around 50 km northwest of
Fredericton and covers both the Confinental Lowlands and Eastern Lowlands
ecoregions. This area is predominantly covered by tolerant hardwoods consisting
of yellow birch, beech (Fagus grandifolia Enhrh.), and sugar maple, mixed with
balsam fir, Eastern white cedar (Thuja occidentalis L.) and black spruce. The
mean annual air temperature from 1990-2016 amounted to 5.5°C, with mean
annual January and July air temperatures at -2.8 and 13.8°C. Mean annuadl
precipitation amounted to 1100 mm, with 260 mm as snow Department of
Environment and Climate Change Canada (2016a). Both MWU and LL are
located on the Miramichi Caledonia highlands at the northeast stretch of the
Appalachian Mountain range. Surficial deposits on rolling to moderate terrain
vary from bouldery loamy lodgement fill to moraines, eskers, kames and sandy
glaciofluvial outwash plains. Bedrock formations on LL mainly refer to
Cambrian-Ordovician-Silurian  deep-water clastics, and on MWU mainly

Carboniferous to Silurian felsic to mafic extrusions.

3.2.2 Machinery and Sensory Installations

In NWU, two John Deere (JD) forwarders, i.e., model JD 1110E equipped with fire

chains (referred to as JD11 below), and model JD 1510E with front and back tire
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fracks (referred to as JD15 below) were used for tracking wood-forwarding
machine clearances (Table 3.1, Figure 3.2). In MWU and LL, Tigercat model TC
635D grapple skidder (referred to as TC below) was used, with chained tires in
front and fracked ftires in the rear. Machine clearances were fracked using
custom-built data loggers (c/o FPInnovations Ltd., Montreal, Canada, Figure 3.3)
to record fime-stamped GPS locations and machine-to-ground clearances
during back and forth machine travel within up to 54 harvesting blocks from
February 2012 through November 2014, all at time-stamped 10-second intervals.
The dataloggers were installed within the operator cabs, with polycarbonate
GPS antennas firmly attached to the cab roofs. Clearance tracking involved two
ultrasonic sensors, each vertically placed in an open steel pipe welded or bolted
to the least vulnerable position on the outside chassis of each machine, with
sensor wires safely guided to the dataloggers. On the two forwarders, the
ultrasonic sensors were mounted on the right and left of the chassis (145 cm for
JD11 and 140 cm for JD15 from the ground up to sensor). On the TC, the sensors
were mounted on the front and back of the chassis (170 cm and 152 cm from the
ground to sensor, respectively). The sensors signalled machine clearances to
ground, stumps, protruding rocks and brush piles directly below the sensors,
adjacent to the tracks (Figure 3.4). Each sensor was calibrated to ensure sensor
accuracy by testing distance to ground. No recalibration was done under the
different seasons to account for variations in temperature which may infroduce

potential error to the sensor data.

Operations involved JD11 and JD15 wood forwarding from commercially thinned
forest plantations in northwest NB, mostly centred on NWU, and TC wood
forwarding from shelter-wood and clear-cutting operations in central west NB,
mostly centered on MWU and LL. The commercial thinning operations involved
laying out brush mats (Labelle, 2012). The shelterr-wood and clearcutting
operations proceeded on bare ground covered by organic forest floor

accumulations about 5 to 10 cm thick. JD15 operations were clearance
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monitored year-round, including operations on snow accumulations. The JDT11

and TC operations were monitored spring to fall.

Figure 3.2: Sensors installed on the John Deere 1110E (top), John Deere 1510E
(middle), and Tigercat 635D (bottom).
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Figure 3.3: Ultrasonic distance sensor (left), datalogger box and inclinometer
(right) installed in the Tigercat 635D.

Figure 3.4: Various sensor distance measurements and error potential from the
ultrasonic distance sensor. Left to right: rutting due to soil compaction, protruding
rock, stump, branches and slash, soil displacement.
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Table 3.1: Machine specifications.

. JD11 JD15 TC
Machine Specs

Front Rear Front Rear Front Rear
Vehicle Weight (ton) 16.5 17.3 21.4
Full Load Weight (tfon) 11.0 12.0 15
Chassis Clearance, Mg 60 60.5 63.5
(cm)
Sensor-to  solid-ground 145 139.7 170.2 162.4
clearance, S (cm)
Wheel Rim (cm) 67.3 67.3 81.3
Number of Wheels 4 4 4 4 2 4
Tire Type 710/45-26.5 710/45-26.5 35.51x32 30.51x32
Accessories Chains Tracks Tracks Tracks Chains Tracks
Diameter (cm) 134.1 134.1 201.2 184.4
Section Height (cm) 33.4 33.4 59.9 51.6
Width (cm) 71.1 71.1 90.2 77.5
Pressure (max, psi) 32 32 32
Foot print area (m?2) 2.1 4.2 8.3 1.7 6.1
Foot print pressure  0.63 0.32 0.34 1.2 0.24
(atm)@

Soil compression (cm)“: well-drained soil; 50% sand; dry to moist at field
capacity (=~ plastic limit); not frozen; bulk density = 1.25 g cm?3; all assumed
fo remain the same with increasing depth.

1 pass 4-7 2-5 3-6 59 2-4
10 passes 8-19 5-11 7-16 10-22 4-7
100 passes 20-50 8-20 16-45 20-62 7-16
Sensor Installation 26-Oct-12 25-Oct-12 14-May-12
Number of Data Points

2012 258,578 232,974 382,652
2013 589,146 188,631 789,204
2014 - 72,065 778,662

9 Derived from the above machine specifications, and using the methods
described in Balland et al. (2008); Vega-Nieva et al. (2009); Jones and Arp
(2017). P Fully loaded.
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3.2.3 Data Production

The logged data generated over 4.1 million data points across 54 harvesting
blocks (Table 3.2). Data due to sensor malfunction, fixed distance-to-ground
obstructions, machine idling, or traveling on paved and unpaved roads were
removed. The remaining data were enfered to determine point-for-point
machine elevation (M), direction, slope (m/m), and speed (m/sec) along each
frack. Data were catalogued for each forwarding (loaded) and returning
(unloaded) pass towards the loading zones. The number of passes per same
forwarding and returning tfrack was also determined. All data were processed
through ArcGIS, which also included determining frack densities and number of
passes per same track using point buffering (2.5 to equal 5 m width of machine)
and overlapping tools (Buja, 2012). The data was averaged to the 90th
percentile which helped to reduce the observations and increase processing
time for the data analysis. The sensor-to-ground distance data (S) were
normalized relative to the sensor-to-ground distance on solid ground measured
at installation (Sp), referred to below as normalized sensor clearances (S/Sg), or
normalized clearances for short. These numbers can be converted info actual
machine clearances (M) by setting M = S (& - Mg), where My is the
machine-to-solid-ground (chassis) clearance (Table 3.1, Figure 3.4). Hence, at
zero machine clearance (M = 0), S/Sg = 1- Mg/Sg. For tracks with S < S - Mg ,
machines boftoms would have sunk below the signal reflecting surface, as would
be the case when the machines grind into wet soil or move across deep snow

accumulatfions.

Table 3.2: Block description by machine, forest, operation and soil type, operation
date, and ocular DTW % area coverage.

Block Forest Operation

. . o

Machine D Type Operation Date DTW %

JD 1110E 1 SW-BS CT Jan-14 0.95
2 SW-WS CT Apr-May/14 0.5

Confinued on next page
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Table 3.2 - Confinued from previous page

Block Forest Operation

Machine D Type Operation Date DTW %
3 SW-WS CT Aug-14 04
4 SW-WS CT Aug-14 0.3
5 SW-WS CT Nov-12 0.25
6 SW-WS CT Mar-May/ 14 0.2
7 SW-WS CT Aug-Sep/12 0.15
8 SW-WS CT May-Jun/14 0.1
9 SW-BS CT Jun-14 0.05
10 SW-WS CT Jul-Aug/14 0.05
11 SW-WS CT Jul-14 0.05
12 SW-WS CT Dec-12 0.01

JD 1510E 13 SW-BF CcC Nov-Dec/12 0.95
14 SW-BS CT Jan-Feb/13 0.7
15 MW-BF SHW Dec-12 0.6
16 SW-SPBF CcC May-14 0.5
17 Unk CT Jan-Feb/13 04
18 SW-BF CC Nov-Dec/12 0.4
19 SW-BF CcC Dec-12 04
20 HW-WB CcC Jun-14 0.25
21 MX CC Jan-13 0.2
22 SW-RP CT Oct-Nov/12 0.1
23 HW-WB SHW Jun-14 0.1
24 SW-BF CT May-June/14 0.1
25 SW-BF CT May-June/14 0.1
26 SW-BF CT Jun-14 0.1
27 Unk CT Nov-12 0.05
28 HW-SM SHW Jan-13 0.05
29 HWBI  SHW oo 0.05
30 SW-BF CcC Nov-Dec/13 0.05
31 HW-BI SHW Nov-12 0.05

TC 635D 32 MX-PO CC Sep-14 0.75
33 MX-PO CcC Sep-14 0.75
34 Unk CC Jul-Aug/13 0.7
35 HW-MA SHW Jul-12 0.35
36 HW-MA SHW Jul-12 0.35

Continued on next page
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Table 3.2 - Confinued from previous page

Block

Forest

Operation

Machine D Type Operation Date DTW %
37 HW-SM SHW Oct-14 0.25
38 SW-NS CcC Jul-13 0.2
39 HW-MA SHW Jul-12 0.2
40 Unk CcC Jul-14 0.15
41 HW-SM SHW Sep-Oct/14 0.15
42 Unk CcC Aug-13 0.15
43 HW-BI CcC Sep-14 0.1
44 SW-NS CcC Jun-13 0.1
45 HW-MA SHW Aug-Sept/12 0.1
46 HW-MA SHW Oct-Nov/13 0.1
47 SW-RS CT Aug-13 0.1
48 Unk CcC Jun-Jul/14 0.05
49 MX-PO CcC Aug-Sep/14 0.05
50 HW-MA SHW Sep-Oct/12 0.05
51 SW-NS CcC Aug-12 0.05
52 Unk SHW Jun-14 0.05
53 HW-BE SHW Jun-Aug/13 0.05
54 HW-BE SHW Jun-13 0.05

3.2.4 DTW Delineation

Each data point was placed into its geospatial elevation context using digital
elevation models (DEMs) and associated depth-to-water maps (DTW, Figure 3.5;
Murphy et al. (2009a)). The DTW map delineates the extent of the least elevation
rise next the nearest water bodies such as streams, rivers, and lakes (Murphy
et al., 2009a; White et al., 2012).
end-of-summer water level for water bodies emulates soil drainage across the
mapped areas from very poor (DTW < 10 cm), to poor (10 < DTW < 25 cm),
imperfect (25 < DTW < 50 cm), moderate (60 < DTW < 100 cm), well (1 < DTW <
20 m) and excessive (DTW > 20m) (Murphy et al., 2009a). The end-of-summer

The DTW map, when derived for the
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DTW condition was emulated using 4 ha of upslope flow accumulation area for
permanent stream flow initiation. For visualizing the varying DTW extent away
from local flow channels by weather and season, ephemeral stream flow was

initiated using 1T and 0.25 ha of upslope flow accumulation areas.

Figure 3.5: Cartographic depth-to-water index (DTW) diagram (Ogilvie, 2017).

3.2.5 Hydrological Modelling

For contextual evaluation purposes, daily temporal variations in upland soil
moisture, snowpack depth and frost depth were simulated for the NWU and for
the combined MWU and LL areas using weather records for daily precipitation
(rain, snow) and air temperature (daily means) from September 2011 to end of
2014 from Edmundston and Fredericton weather stations (Department of
Environment and Climate Change Canada, 2016a) (Appendix B.7 and B.8). Soil
properties were set as follows: NWU = soil depth 1.5 m, loam to sandy loam,
organic matter content 5-1%, coarse fragment content 20-30%; forest floor depth
10 cm; MWU = soil depth 1.20 m, sandy loam, organic matter content 1-10%,
coarse fragment 25%, forest floor depth 5 cm. LL = soil depth 1.0 m, loamy sand,

organic matter content 1-5%, coarse fragment 30%, forest floor depth 10 cm.
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3.2.6 Data Processing

For geospatial visualization purposes, the individual data points per harvest block
were mapped on top of the hill-shaded bare-earth DEM, with DTW drainage
classes overlaid. The normalized clearance data were compiled into a single
spreadsheet to enable the machine clearance analysis in relation to (i) month of
harvesting, (i) weather-induced soil wetness, (ii) machine speed, (iv) machine
load, (v) back and forth track direction, (vi) number of passes, (vi) machine type,
(vii) harvesting type (clearcutting, commercial thinning, shelter-wood cutting),
(viii) slope, and (ix) DTW. This was done for each harvest block to allow for
detailed per block analyses in terms of (i) histogram and frequency distribution
assessment, and (i) fo determine how the clearance data were affected by pass

number, machine speed, and by DTW classes.

3.2.7 Histogram and Frequency Distribution Assessment

The histograms for the normalized clearance data were clustered about 1, with
values >1 trailing off sharply, while values <1 trailed off slowly tfowards 0, following
a probability distribution function (pdf) given by (Devore, 1999):

o 1 k—1_—z/0
pdf = 7I‘(l<:)0kx e @D

where x = (Cmax - ©)/f, for which Cmax is the maximum normalized clearance value
(range of 0.2-0.6), I'(k) is the gamma function, k is its shape parameter, and and f
are scale parameters for x and c, respectively. For the pdf non-linear
least-squares fitting process, Cmax. K. and f were used as adjustable parameters,
with f kept in common across all blocks. Using Eg. 3.1 implies the following
properties for (Crmax - C)/f: mean =k , variance = k 2, skewness = 2/k%°, mode (for k
> 1) = k-1) (Devore, 1999). Hence, increasing k and implies widening the

distribution function.
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3.2.8 Multiple Regression Analysis

The normalized clearance data were summarized by way of a pivot table using

the following class specifications:
i. speed (m/sec);
i. number of passes (10, 20, 30, etc.);

i. DTW (1 =0-05m,2=05TmM,3=12mM,4=24m,5=4-8m,6=8-16m, 7 =
16-32m, 8 32m);

iv. forwarding (1) versus returning (0).

The data so assembled were examined using multivariate regression analysis,
using the 1 normalized clearance data as dependent variables, and number of
passes, speed, and DTW classes as independent variables, by harvest block.
Other topographic derivatives were analyzed (elevation, slope, aspect), but

were found to be insignificant in comparison to the machine parameters.

3.3 Results and Discussion

3.3.1 Wood-Forwarding Track Patterns

Figures 3.6-3.8 show the wood forwarding and end-of-summer drainage (DTW)
patterns per harvest block, by machine type. As mapped. drainage varied in
area by block from poor to imperfect (DTW < 0.5 m), and moderate (0.5 < DTW <
1 m) to well drained (DTW > 1 m). Within the DTW < 0.5 m zone, soils were
generally wet to moist. Within the 0.5 < DTW < 2 m zone, soil wetness tends to be
fransitional from wet to dry depending on extent and weather-dependent

upslope water seepage. Some of the main multiple-pass TC wood-forwarding
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fracks straddled across these fransitions, and were rutted extensively.

The average number of passes, as well as speed, and normalized clearance are
listed in Table 3.3. Typically, machine clearance increased towards 1 with
increasing pass numbers along the same frack regardless of loading, however
the lowest clearances are produced during the inifial unloaded passes (Figure
3.9). Conversely, machine speeds were significantly faster when empty than
when loaded. By machine type, wood forwarding speed was significantly lower
for JD11 and JD15 than for TC while clearances increased with increasing

machine speed, and especially so for JD11 (Figure 3.9).

Figure 3.6: Composite of JD 1110E stands, including the point locations of the
machines underlain by the 4 ha DTW map.
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Figure 3.7: Composite of JD 1510E stands, including the point locations of the
machines underlain by the 4 ha DTW map.
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Figure 3.8: Composite of TC 635D stands, including the point locations of the
machines underlain by the 4 ha DTW map.
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Figure 3.9: Mean machine specific normalized clearance versus number of passes
(first 10 and all passes), empty vs. full loads, and machine speed versus empty or
full loads.

60



Table 3.3: Variability in normalized clearance, number of passes, and speed by
machine and operation type.

JD11 JD15 TC
CT cC CT SHW | CC CT SHW

Meaon 084 | 088 089 089 | 091 092 091

Normalized s 0.11 | 0.10 0.10 0.10 | 0.08 0.08 0.09
Clearance Min 039 | 037 037 037 | 052 052 052
Mox 1.00 | 1.00 100 1.00 | 1.00 100 1.00
Mean 7 1 12 8 28 10 29
Number of SD 12 19 18 14 39 10 40
Passes (n) Min 1 1 ] ] 1 1 1

Max 252 186 198 154 548 58 568

Mean 1.7 | 214 217 192 | 396 403 4.7

Speed SD 273 | 28 268 256 | 3.63 424 411

(m/s) Min 0 0 0 0 0 0 0
Mox 24 24 2317 23.17 | 24 2365 23.98

CT. commercial thinning, CT: clearcut, SHW: shelterwood cut

3.3.2 Normalized Clearance Distribution Patterns

The histograms of the standardized clearances per block follow a left-skewed
pattern, as shown in the Appendix (Figures B.1, B.2, and B.3). The corresponding
Eq. 3.1 generated probability distributions are overlaid on these histograms, with
corresponding best-fitted k, cmax and values listed in Table 3.4, by harvest block.

Examining these values revealed that log gk correlates with such that

logiok = (1.16 + 0.05) — (0.76 =+ 0.09) x 6
3.2

R? = 0.602

The combination of k and as in log gk correlates with cmax and machine type, i.e.:

logiok = — (1.7 £0.2) — (1.7 £ 0.2) X ¢paa + (0.22 +£0.02) x JD11 33
3.3

R? = 0.755

UD11,JD15 and TC coded 1 when present, otherwise 0).
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In general, increasing k# values reflect a broadening of the clearance frequency

distributions, and Eq. 3.3 implies that this broadening increases with increasing

Cmax. With further increases to be noted for the JD11 operations. This can be

attributed to differences in machine operation, as follows:

JD11 was mainly used for commercial thinning, which involved generating
brush mats from free delimbing and topping by single-grip harvesters along
wood forwarding trails; the broadening of the clearance distributions would
be due to the ultrasonic signals bouncing off machine-induced brush-mat

sagging and lifting.

. By machine type, the k product varied as flows: JD11 = 3.9 + 04, JD15 =

2.8 +£0.1; TC =2.5 £ 0.1, JD11 significantly higher than JD15 and TC, p-value
<0.001, and JD15 significantly higher than TC, p-value = 0.14.

Using the <10% tail of the standardized clearance marker produced the
following sequence: JD11 = 0.67 + 0.02; JD15 =0.80 + 0.02, TC = 0.84 + 0.01
(p-value <0.05). Hence, forwarding wood on brush mats produced longer
standardized clearance ftrails towards zero-clearance than forwarding on
bare ground. By Eq. 3.4, the 10th percentile clearances per block are
directly relatable to the best-fitted Gamma distribution parameters as

follows:

10th percentile clearances = — (0.35 + 0.10) — (0.73 £ 0.4) x log10k0
+ (1.23 4 0.09) X cmax 3.4)

R? = (.892

iv. Trails for the shelterwood and clear-cut operations without brush mats had

standardized clearance peaks at or near 1. Clearances greater than 1 are
due to machine movements over stumps, rocks and uneven ground. The

Cmax ranges were similar by machine type, as follows: 1.04 < JD11 < 1.22;
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1.14 < JD15 < 1.30: 1.13 <TC <1.29.

Table 3.4: Best-fitted Eq. 3.1 and Eqg. 3.5 regression results for the clearance
frequency distributions and the normalized clearances <1, by machine and block;
speed, passes, and DTW coefficients x10-2; f = 0.122+0.002.

Gamma Dist. Function (Eq. 3.1) Normalized Clearances <1 (Eq. 3.5)
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Continued on next page
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Table 3.4 - Continued from previous page

Gamma Dist. Function (Eq. 3.1)

Normalized Clearances <1 (Eq. 3.5)
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Table 3.4 - Continued from previous page

Gamma Dist. Function (Eq. 3.1) Normalized Clearances <1 (Eq. 3.5)
10th Parameters (+SE) . Inter- Coefficients (+SE) Adij.
ID n Percen- Adj. | cept R2
tile ~(BS) B Ak R (SE) Speed Passes  DIW

3.3.3 Box Plots

The normalized data with clearances <1 are presented in Appendix B by way of
box plots showing 10th, 25th, 50th, 75th and 90th normalized clearance
percentiles and associated outliers per block and machine type by number of
passes, speed and DTW classes (Figures B.4, B.5, and B.6 (Appendix B)). These
plots show that machine clearances varied from block to block in relation by
machine operations. For TC, these variations were in part attributable to the
biweekly and June to November cumulative precipitation pattern from 2012 to
2014 (Figure 3.10), with lower clearances less prominent in the fall of 2012
following dry summer conditions, but more prominent in summer blocks where

DTW < 1 m (Blocks 32, 35, 36; Figure B.6 (Appendix B)).

3.3.4 Normalized Clearance

Regressing the normalized clearances < 1 values against number of passes, speed

and DTW classes by way of

normalized clearance < 1 = intercept + kpqss X passes+
(3.5

kspeed x speed + kprw X DTW

produced the best-fitted interception and regression coefficient results also listed
in Table 3.4, with R? values ranging from near 0 to 0.67. These results are

summarized as follows:

i. Normalized clearances increased with increasing machine speed, with only
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Figure 3.10: Weekly cumulative rainfall, overall cumulative rainfall, and normalized
sensor clearance trends for the TC 635D during 2012-2014.
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one reduction registered on a wet TC trail (block # 32).

. Increasing the number of wood-forwarding passes per frack had mostly

positive to no clearance effects, with two exceptions: on blocks #18 and
#25. For the TC wood-skidding operations, increasing the pass numbers per
frack varied from mainly positive during dry conditions to negative during

wet conditions, respectively.

The influence of DTW on TC clearances also varied from positive to negative.
The positive trend occurred when the ground was dry due to increased soil
resistance to compaction. The negative trend occurred when operating on
wet ground during and after soil-saturating rain events, due to decreased

soil resistance to compaction and tire slippage.

Analyzing the normalized clearance intercepts in Table 3.4 in terms of their

associated speed, number of passes and DTW regression coefficients generated

the following multiple regression result:

clearance infercept = (0.910 + 0.04) — (1.23 £ 0.06) X kpqss

— (0.041 £+ 0.005) X kgpeeq — (0.052 £ 0.003) x kprw ~ (3.0)

R? = 0.946; RMSE = 0.020

This equation implies that the normalized clearance intercept:

is equal to 0.910 4+ 0.04 , or 75 to 78% actual machine-to-ground clearances
on average, when machine speed, number of passes and DTW have no
clearance influence; in terms of actual depth, this number amounts to about
12 cm; a considerable part of this would be due to the compression of the

organic forest floor accumulations;

. decreases below 0.910 on dry to moist and wet soils with increasing number

of passes and/or machine speed, this would be due to repeating soil
compaction along the same track and increased shearing stress with

increased tire rotation;
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ii. decreases below 0.910 as the DTW-projected influence on soil resistance to
compaction becomes stronger from very poor (where DTW is near 0) to well
and excessive (where DTW is >1 m); i.e., a positive DTW influence causes
the regression intercept to be lowest at DTW = 0; a negative DTW influence
would do the opposite and may occur where DTW > 0 due to increased

slope-induced wheel slippage.

Eqg. 3.6 suggests that the lowest normalized intercept for class-averaged normal
clearances <1 would amount 10 0.910 -1.23 X (Kpass = 0.19) - 0.041 X (Kspeeq = 2.34)
0.052 x (kprw = 3.65) = 0.39. The lowest average normalized clearance intercept
per number of pass, speed and DTW classes registered in Table 3.4 was 0.60, for
block #30 (JD15, Nov. 2012), i.e., approximately equal to chassis clearance, and
this occurred on a well-drained soil (DTW > 2 m) following a rain event. The lowest
non-averaged normalized signal-to-ground surface distance was 043, i.e.,
equivalent 60.1 cm, thereby amounting to 19.5 cm below the reflecting ground
surface. This occurred on block #15 in January 2013 when the ground was

covered with snow.

The correlation matrix in Table 3.5 pertaining to the four Eq. 3.6 variables indicates
that the influence of number of passes and machine speed on the clearance
infercepts are positively correlated with one another, while both are negatively
correlated to DTW clearance influence. Hence, DTW-influenced soffening of the
ground fends to decrease machine speed and reduces repeat traffic along the

same tfrack.

3.3.5 Block-Specific Examples

An example of low to extensive rutting is shown in Figure 3.11 for TC block # 41
(Sept.-Oct. 2014), where soil conditions varied from dry to moist fo wet due to

season- and weather-induced variations in the local DTW pattern. Moderate soil
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Table 3.5: Correlation matrix for the Eq. 3.6 variables and associated per block
entries in Table 3.4

Speed Number of passes DTW Intercept
Speed 1
Number of passes 0.495 1
DTW -0.262 -0.369 1
Intercept -0.547 -0.744 -0.26 1
n =49

compression occurred along trails where soils remained dry at DTW > 1 m, with
compression decreasing towards zero with increasing number of passes. On the
landing site where DTW was < 0.5 m, soil rufts were deeper and number of passes
per track increased up to 270. For the trail through transitional and somewhat
sloped DTW zones, normalized clearances decreased with increasing number of
passes per track. In general, the extent of soil compaction is highest at or near
the plastic soil moisture limits, while soil displacement is highest at and above the

liquid soil moisture limits.

The data for machine clearance, number of passes per track and speed are
illustrated in Figure 3.12 for harvest blocks 10, 32, 33, 43. The mapped dots so

shown demonstrate the following effects:

i. Normalised clearances along the central wood forwarding road in block 10

approach 1 at high track numibers and speed.

ii. Rutting as indicated by persistently low clearances occur along the most
frequently used TC skidding passes as shown for blocks 43, 32, and 33;
elsewhere, TC clearances tend to be near 1. In contrast, the JDI11
clearances along brush-matted wood forwarding tracks are lower due to

brush-mat flexing.

ii. TC machine frack speeds vary more than JD11 track speeds, with TC being

faster on higher DTW ground. JD11 speeds are consistently slower along the
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commercial wood forwarding tracks.

Figure 3.11: Top left panel: TC block #41 showing weather-affected DEM-derived
DTW patterns based on assuming 4 ha (top-left), 1 ha (fop-right) and 0.25 ha
(bottom-left) of upslope flow accumulation area for flow initiation. The high-
resolution surface image (bottom-right) shows ruts with low machine clearances
along high multiple-pass connector trails. Top right panel: block 41 normalized
clearance versus increasing number of passes along dry and wet forwarding frails
and on landing site. Bottom: dry trail (no rufting), wet trail (deep rutfting), and
landing site (braided rutting) images. Normalized clearance in terms of chassis- to
sensor-to solid-ground distances (front): Mg/Sg = 0.63.
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(a) Normalized Machine Clearance (b) Number of Passes per Track

(¢) Machine Speed (d) Ortho Images

Figure 3.12: Visual correlation between DTW and normalized clearance (top left),
number of passes per track (top right), and machine speed (bottom left), for
blocks 47, 32, 34, and 10. Ortho imagery of blocks (bottom right) showcasing
harvest type and soil disturbance (Imagery Source: Esri, DigitalGlobe, Geokye,
Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping. Aerogrid,
IGN, IGR swisstopo, and the GIS User Community).
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3.4 Further Observations

3.4.1 Clearances by Machine Type and Number of Passes

Some of the normalized clearance differences would be caused by differences
in machine weight, loads, tire pressure, number of tires, and whether the fires are
chained or tracked (Table 3.1). For example, TC has higher front footprint
pressure about 2 to 3 fimes higher than the JD11 and JD15 forwarders, hence -
according to the Table 3.1 entries - soil compression should be deeper with TC
than with JD11 and JD15 operations. This was indeed the case along repeated
TC forwarding tracks on moist to wet ground (Figure 3.12). Under dry conditions,
however, normalized clearance patterns peaked around one, except for the
lower JD11 brush-mat clearances. Compared to JD15, JD11-exerted footprint
pressure is about double (Table 3.1). Consequently, and consistent with the
experimental machineload and brush-mat observations by Labelle and Jaeger
(2012), JD11 brush-mat clearances were not only lower than for JD15 brush-mat
clearances, but JD11 clearance were also significantly lower during forwarding
than returning (Figure 3.9). In tferms of increasing number of passes, brush-mat

clearances flattened through repeated crushing and consolidating.

3.4.2 Machine Speed

Machine speeds are affected by soil-tire interactions, including soil compaction
and soil displacement (Shmulevich et al., 1998). In this regard, Liu ef al. (2009)
reported increasing soil displacement with increased fire rotation on dry ground.
On softf ground, however, slow ftraffic increased soil compression and soil
displacement (Grahn, 1991; Taghavifar and Mardani, 2014). For the JD11, JD15,
and TC operations, machine speed was definitely affected by machine load,
being lower when fully loaded than when empty, with TC speeds significantly
greater than JD11 and JD15 speeds (Figure 3.9). This effect was likely due to

operating under more open than dense stand conditions, i.e., forwarding logs
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following clear-cutting and shelter-wood cutting versus logs following forest

plantation thinning.

3.4.3 Bare-Ground Operations

When operafing on bare ground during clear-cutting and shelterr-wood
harvesting, off-road clearances can also be expected to decrease with
increasing footprint pressure and increasing number of passes due to increasing
soil compression (Jamshidi ef al., 2008; Vega-Nieva ef al., 2009; Taghavifar and
Mardani, 2014) (Table 3.1). This, however, did not happen because of the lateral
sensor restrictions, and track broadening as the soil continue to be compressed
with increasing number of passes (Figures 3.2, 3.9). In contrast, clearances were
low on wet ground and repeatedly so with increasing number of passes due to
deep and recurring soil displacements as exemplified in Figure 3.11. In addition,
soil rutting would become even deeper on wet slopes through load- and

slope-induced tire and frack slippage.

3.4.4 Season and Weather Details

With varying soil wetness by weather and across seasons, there is a general
correspondence between TC clearances and ground conditions (Figure 3.13).
For TC, lower clearances and deeper soil rutting were incurred within or across
the harvest blocks on account of: (i) low DTW locations, (i) snow accumulations,
(i) snow melt and prolonged rain events, and (iv) low evapotranspiration (Raven
et al., 1999: Acs et al., 2011; Jones and Arp, 2017) before leaf-out (May - June)
and after leaf-fall (October - November). In confrast, JD11 and JD15 clearances
were less relatable to the varying ground conditions due to low footprint pressure

(Table 3.1) and brush-mat operations.

An example of weather-induced soil rutting on dry ground (4 < DTW < 32 m) is

shown in the form of normalized clearances <0.8 in Figure 3.13. This occurred
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during TC operations in block #48 two days after a 110 mm rain event in July 2014
(Hurricane Arthur). Similarly, Block #41 operations immediately after a 30 mm rain
event on wet October soils led to extensive soil rutting (Figure 3.11). To avoid such
occurrences, wood forwarding operations were generally deferred to occur on
dry ground spring, summer and fall, and on frozen ground during winter. During
the JD11 and JD15 winter operations (block #1, 12-15, 17-19, and 28-30), the
normalized clearances were mostly affected by ultrasonic reflections from snow
surfaces. Hence, clearances on snow-covered ground also decreased with
increasing number of passes due to snow compaction and track widening. This
would be of greater concern for NWU due to the snowpack present on site for
the winter blocks of the JD11 and JD15 being almost twice as large as in the
more southern blocks (Appendix B.7 and B.8). While this compaction has no
effect on frozen soil rutting, it has been shown to cause soils along the tracks to
freeze deeper and longer, thereby delaying soil thawing along the established

tfracks (Grady, 1982; Garcia et al., 2015).

3.5 Conclusion and Concluding Remarks

The assessment of the machine clearance data provided the following insights:

i. The normalized clearances were affected by brush mat versus bare ground
operations, with the former producing lower but still broader clearance

distributions than the lafter.

ii. All of the block-based clearance histograms followed asymmetric Gamma

frequency distributions.

ii. Clearances increased systematically with increasing passes towards 1 on
dry ground due 1o successive soil compression and frack widening. On wet
ground, clearances would decrease because of successive soil

re-displacements.
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Figure 3.13: Normalized clearances across block 2, showing low TC clearances on
DTW >4 m ground following a 110 mm per day storm event in July 2014, with two
close-ups (bottom panels; A, B red boxes in top panel), with DTW background.
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Vi.

Vil

viii.

The TC centralizihg wood-forwarding pattern following clear-cutting and
shelter-wood operations included long tracks with number of passes
exceeding 100 per track, which would lead to rutting along wet and along

wet-to-dry transitional ground conditions.

Number of passes, machine speed and low to high DTW classes all affected
the normalized clearance results in ferms of block and weather-specific
conditions, with least effects registered along brush mat and dry-ground
tfracks, all based on fairly low machine footprint pressures in the order JD15

<JD11 < TC.

Clearances along the same bare-ground tracks do not necessarily reflect
rut depths due to track broadening and using machine-fixed positions for
machine-to-ground distance monitoring. On brush mats, the clearance

data reflect brush mat re-conditioning due to repeated track fraffic.

Actual machine clearance can be obstructed due fto ultrasonic sensor
blockaoge by way of debris, and by the presence of snowpack

accumulations.

The extent of soil rufting versus machine clearance needs to be evaluated
separately by way of ,e.g., high-resolution block surveys following completion
of block operations (Salmivaara et al., 2018), or through machine-mounted

LiDAR-based ground scanning (Giannetti et al., 2017).

. GPS tracking of tire rotation in connection with machine speed would assist

in determining actual to potential soil displacement in ferms of tire slippage

and tread design.

76



3.6 Acknowledgments

This research was supported by J.D. Irving Limited (UDI) as a part of the
NSERC-sponsored Cooperative Research Development (CRD) Project on Forest
Soil Trafficability. Special thanks go Greg Adams at JDI for facilitating this project,
and to FP Innovations personnel for the development and installations of the
ulfrasonic sensor dataloggers. Also many thanks to the Shane Furze, Doug Hiltz,

and John Paul Arp for help with data retrieval and GIS processing.

77



Chapter 4

Soil moisture and cone penetrability conditions in forest soils

Marie-France Jones, and Paul Arp
Faculty of Forestry and Environmental Management,
University of New Brunswick, Fredericton NB, Canada E3B 6C2

Email: arp2@unb.ca

Foreword:
The following chapter is a published article within the Open Journal of Forestry. It
was submitted on January 22, 2019 and accepted for publication on March 21,

2019. Publication permission can be found in Appendix C.1.
Citation:

Jones, M.-F, Arp, PA. (2019) Soil moisture and cone penetrability conditions in

forest soils. Open Journal of Forestry. 9, 109-142.

78



Abstract

This chapter details how forest soil moisture content (MC) and subsequent
resistances to cone penetration (referred below as Cone Index, CI) vary by daily
weather, season, topography, site and soil properties across eleven harvest
blocks in northwestern New Brunswick. The MC and CI affecting soil variables
refer to density, texture, organic matter content, coarse fragment content, and
topographic position (i.e., elevation, and the seasonally affected cartographic
depth-to-water (DTW) pattern). The harvest blocks were transect-sampled inside
and outside their wood-forwarding tracks at varying times throughout the year. In
detail, 61 % of the pore-filled moisture content (MCps) determinations inside and
outside the tracks could be related to topographic position, coarse fragments,
bulk density, and forest cover type specifications. In detail, 40 % of the CI
variations could be related to soil depth, MCpg, and block-specific cover type.
Actual versus model-projected uncertainties amounted to AMCps + 15% and
ACIl £ 0.5 MPa, 8 times out of 10. Block-specific MC and CI projections were
obtained through (i) daily hydrological modelling using daily precipitation and air
tfemperature weather-station records nearest each block, and (i) digitally
modifying these results based on the upslope to downslope variations in soil

property, elevation, and DTW variations in each block, at 10 m resolution.
Keywords

Forest Soils, Soil Moisture, Cone Penetration, Digital Elevation Modelling,

Cartographic Depth-to-Water, Multilinear Regression, Confusion Matrix
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4.1 Introduction

Estimating soil moisture and subsequent resistance to cone penetration is at the
base of forecasting potential soil disturbance effects due to off-road machine
fraffic.  For example, modern forest harvesting operations including wood
forwarding can lead to substantial soil compaction, ruftting and displacements,
rut-induced water logging and re-direction of flow patterns leading to soil
erosion, operation inefficiencies, and increased wear of machinery component,
especially when these operations are not properly fimed. Machine-induced soil
compaction and associated rut-induced soil displacements commonly occur on
moist fo wet ground, are long-lasting, and affect the growth of remaining or
planted vegetation (Cambi et al., 2015; Solgi et al., 2018). The impacts are
stfrongest along trails with multiple wood-forwarding passes, and on wood landing
sites (Jones et al., 2018). To remain productive, post-harvest soils need to remain
well drained with soil bulk densities at <1.5 g cm (Soane and van Ouwerkerk,
1994; Sutherland, 2003; Bassett ef al., 2005; Brady and Weil, 2008; Chen and Well,
2011).

Forecasting soil compaction and penetrability across fime and terrain is,
however, difficult due to changing weather-affected soil moisture conditions, and
meter-by-meter changes in soil substrates and properties (Elbanna and Witney,
1987; Smith et al., 1997; Vaz et al., 2001). Soil penetrability is further modified by
soil fexture, coarse fragment content, and organic matter content. The presence
of soil organic matter modifies this effect due to organically-supported soil
aggregation and related pore-space stabilization. The presence of coarse
fragments generally reduces soil compaction and penetrability by increasing the
force needed to displace these fragments downward and laterally (Baetens
et al., 2009; Rucknagel et al., 2013). Soil penetrability leads to deep rutting on
wet soils mainly due to soil displacement and on moist soils mainly due to soil

compaction. Dry and dense soils are mostly resistant to penetration, compaction
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and rutting. Across terrains, soil penetrability changes due to:

i. changes in soil moisture confent, which generally varies from well to
excessively well drained on ridge tops to moist to water saturated soils along
streams, shorelines, wetlands, in low-lying depressions, and in toe-slope

seepdage zones,

ii. changes in soil type, depth, texture, coarse fragment and organic matter

content, and bedrock exposure;

ii. changes in tracked versus non-tracked ground, which - in turn - depends on
extent of machine foot print, load, number of passes, and surface
condifions as affected by the presence of stumps, roots, logging slash,

rocks, depth of forest litter, and brushmats.

This chapter focuses on presenting a framework to model temporal and spatial
weather-, forest-, terrain-, and machine-induced plot-by-plot changes in
volumetric soil moisture (MCy/) and soil penetrability cone index (Cl) for a case
study in northwestern New Brunswick, Canada. This study involved
fransect-sampling eleven forest blocks that were subject to clear cuts, selection
cuts, shelterwood cuts, and pre-commercial thinning at different fimes of the
year. The plot-generated MC,, data were expressed in terms of pore-space filled
(MCps) soil moisture content to serve as a useful Cl predictor (Vega-Nieva et al.,
2009). The data so obtained were used to model MC,,, MCps and CI in spatially
and temporally. The spatial modelling component addressed emulating the data
variations across the terrain from ridge tops to valleys as proposed by Vega-Nieva
et al. (2009). The temporal component addressed emulating the data variations
by weather and season using the Forest Hydrology Model (ForHyM) Jones and

Arp (2017).

The goodness-of-fit of the resulting best-fitted MC and CI models were evaluated

in ferms of, level of uncertainty, and non-randomness indicators. This was done

81



in two ways: (i) focusing on the field-determined data only, and (ii) determining
the extent to which province-wide elevation, cartographic depth to water (DTW),
and soil property data layers (Furze, 2018) could also be used for local MC and Cil
projections, and hence soil tfrafficability prediction purposes. Knowing where and
when locations are subject to rutting has become a vital component of planning
best forest management practices. To that effect, rut-avoidance regulations are
dlready in place across many federal and provincial jurisdictions. For example,
ruts >15 cm deep are deemed to represent hazardous soil disturbances (Alberta

Forest Products Association, 1994; Page-Dumroese et al., 2000; Van Rees, 2002).

4.2 Methods

4.2.1 Block Descriptions

The harvest blocks for this study were selected across the mid-western to
northwestern sections of New Brunswick (Figure 4.1). Table 4.1 informs about
block-specific attributes pertaining to species composition, harvesting type with
and without brushmats laid down along tracks, soil type, elevation, slope and
aspect. Information about soil association, landform, and lithology for each

block can be found in Table C.1 (Appendix C).

Northwestern Uplands (NWU)

Blocks 1-5 are located within the Southern Uplands Ecoregion of New Brunswick.
Mean annual air femperature is 3.6°C. Mean monthly temperatures vary from
-5.3°C (January) to 12.5°C (July). The area has a mean precipitation of 1140 mm
with 310 mm of snow, inclusively (Department of Environment and Climate
Change Canada, 2016a). The forested vegetation mainly consists of sugar
maple (Acer Saccharum Marsh.), balsam fir (Abies balsamea L.), yellow birch

(Betula alleghaniensis Britt.), and black spruce (Picea mariana Mill.). Blocks 1, 2,
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Figure 4.1: Digital elevation model for New Brunswick (10 m resolution) with
regional upland and lowland delineations, block locations, and weather station
locations.
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4, 5 involved white and black spruce plantations, whereas Block 3 involved
naturally grown birch and maple trees. The bedrock formations of the area
consist of late Ordovician deep water marine clastics. The topography comprises

gently rolling ftill-covered plateaus with steeply incised valleys.

Midwestern Uplands (MWU)

Blocks 8, 10, and 11 are located on the Miramichi Caledonia Highlands, which
are also part of the Southern Uplands Ecoregion of New Brunswick. Mean annual
air temperature is 5.2C. Mean monthly temperatures vary from -3.5°C (January)
to 13.9°C (July). The area has mean precipitation of 1180 mm with 280 mm of
snow (Department of Environment and Climate Change Canada, 20160). Block
8 consisted of a naturally regenerated tolerant hardwood stand, with mostly
sugar maples and yellow birch frees. The bedrock formations of the area consist
of early Devonian felsic plutons, generally overlain by loamy lodgment fills and

sandy glaciofluvial outwash sediments.

Lowlands (LL)

Blocks 6, 7, and 9 are located in the midwestern portion of the Continent
Lowlands Ecoregion of New Brunswick. Mean annual air temperature is 5.5°C.
Mean monthly temperatures vary from -2.8°C (January) to 13.8°C (July). Annual
precipitation amounts fo 1100 mm, of which 250 mm is snow (Department of
Environment and Climate Change Canada, 2016a). Blocks 6, 7, and 9 supported
natural mixedwood and ftolerant hardwood stands, comprised of Eastern
hemlock (Tsuga canadensis L. Carrire), yellow birch, sugar maples, beech (Fagus
grandifolia Ehrh), and some balsam fir, Eastern white cedar (Thuja occidentalis
L), and black spruce. The bedrock formations of the area consist of early
Devonian mafic volcanic and late Ordovician deep-water marine-clastics,

generally overlain by ablation and boulder fills), glaciofluvial sediments and
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eskers.

4.2.2 Data sources and processing

Data layers needed for the spatfial and temporal evaluation and modelling the

plot-by-plot data involved:

Producing region-wide digital elevation models (DEMs, 1 m resolution) from

GeoNBs LIDAR elevation point cloud data using LAS tools.

i. Producing the cartographic depth-to-water layer (DTW), for the purpose of

emulating plot-by-plot changes on soil moisture content as affected by

weather conditions at the time of field sampling (see below).

Using the province-wide 10 m resolution soil property data layers for soil bulk
density (Dp), coarse fragments (CF), organic matter (OM), and texture
developed by (Furze, 2018). This development used topographic, climatic
and geological data layers to emulate soil drainage, horizon depth, depth,
texture, coarse fragment content, organic matter content, and bulk density

data as specified for 12,058 geo-referenced soil pedon locations.

Obtaining daily weather records for daily rain and snow amounts and
snowpack depth from weather station, within or near the NWU, MWU and LL
regions (Department of Environment and Climate Change Canada, 2016a)

for block specific soil moisture emulations.

Obtaining daily stream discharge records from hydrometric monitoring
stations representative of stream water flow within or near the NWU, MWU
and LL regions for hydrological model calibration (Department of
Environment and Climate Change Canada, 2016b) to ensure that the soil
moisture emulations were consistent with regional weather and stream

discharge events.
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vi. Acquiring forest inventory and road layers, to navigate to and access harvest

blocks.

All raster and shapefile data layers were assembled with ArcMap software, using
the same projection system (NAD 1983 CSRS New Brunswick Stereographic).
Transect plots within blocks were georeferenced to align with data layers. The
resulting coordinates were used to extract plot-specific data values from the
elevation, DTW, Dy, CF, OM, and soil texture data layers. The DEM layer was also
used to determine mean elevation, slope, and aspect for each block (Table 4.1),

needed as additional input for the block-specific soil moisture modelling purpose.

4.2.3 Field Measurements

Soil property evaluations were done along 696 geo-referenced fransect plots
inside and outside wood-forwarding tracks (i) for Blocks 1 to @ intermittently from
May 27, 2014 through November 21, 2014, and (i) for Blocks 10 and 11 in June
2013 (Table 4.1). The plots within blocks were established pairwise, each pair 100
m apart containing one plot within and one plot adjacent to the track on

undisturbed soil, 10 m apart (Figure 4.2).

Soil samples were retrieved from the top 15 cm of mineral soil. Each sample was
placed into labeled freezer bags for storage. Samples were dried in a forced-air
oven at 75 °C for 24 hours, then crushed and passed through a 2 mm sieve to
separate the fine earth from the CF The latter was used to determine CF %. The
former was used to determine (i) sand, silt, and clay % for each sample (sand % +
silt % + clay % = 100 %), using the hydrometer method (Shelrick and Wang, 1993),
and (i) soil carbon % by oven-dry weight using a LECO CNS-2000 analyzer. The

resulting soil carbon numbers were converted into soil OM via Eq. 4.1.

OM% =1.72 x C% 4.1
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Figure 4.2: Penetrometer being used inside and outside forwarder tracks without
prushmats.

Soil density samples were also collected from each plot by tapping and
extracting a metal ring of known volume (85 cm3) into the mineral soil. Following
frozen storage, these samples were weighed and dried in a forced-air oven at 75

°C for 24 hours. From this, soil bulk density (Dy) was determined as per EqQ. 4.2.

_ Weight of dried soil (g) + Weight of coarse fragments (g)

D
b Volume of soil (cm3)

4.2)

The fine-earth bulk density of the soil between rocks and roots was estimated using
the oven-dry weight fractions of sand (Sandy,), OMy and mineral soil depth (cm)

as predictor variables as per Eq. 4.3 (Balland ef al., 2008).

5, — (1:234 (Dy = 1.23 — (0.75 x Sandu) x (1 — exp(=0.0106 x Depth)))) @.3)
b 1+ 6.83 X OMyy '

A Humboldt digital cone penetrometer (cone base = 1.5 cm?; cone angle 60°)
was used to determine soil penetrability through recording Clin MPa at 15, 30, 45,
and 60 cm depths within each sampling plot. Similarly, a Delta T HH2 moisture
meter (TDR: a time-domain reflectometer) was used to determine volumetric soil
moisture content of the fine-earth fraction between coarse fragments for each
plot at 15 cm mineral soil depth. Five ClI and MC,, readings were obtained for

each plot: one at the center point (location of GPS coordinates), and four
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arranged at each cardinal direction (north, south, east, and west), 1 m apart
from centre. For blocks 10 and 11, the ClI measurements were taken once per
subplot to the deepest depth reached with the penetrometer. Measurements
were not recorded if obstructed by surface rocks, roots or logs. The subplots were

then averaged to provide single numbers per plot for further analysis.

Since Cl tends to be related to pore-space soil moisture content (MCys, see Vega-
Nieva ef al., 2009), it was important to derive PS and MCpg from inferred soil (Dy,)

and particle (Dp), as follows:

1 D, 1-0M,

D, D,  Dpin @4

PS%=1- D, (4.5)
MC, %

MCpe % = 5’7 (4.6)

where MCy, is the volumetric moisture content of the fine earth, and Doy and

Drin Were set to 1.3 and 2.6 g/cm3, respectively.

4.2.4 Temporal MC Variations

Soil moisture was modelled block-by-block over time using the temporal aspatial
Forest Hydrology Model (ForHyM) (Arp and Yin, 1992; Yin and Arp, 1994; Jutras,
2012). This model uses (i) daily weather records for temperature, and
precipitation for input (Table 4.2), (i) block-specific specifications for fopography
(elevation, slope, and aspect), (i) soil-surveyed properties (horizon depth,
texture, depth, OM, CF) as per mapped soil type (Table 4.3), and (vi) vegetation
type and % canopy closure. These specifications were needed to emulate daily
soil moisture, temperature, snowpack conditions and stream discharge. In this

model, soil permeability at saturation was empirically related to Dy, Dy, and soil
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sand fraction by weight (Sandy) by setting:

logi0Ksat = — 0.98 4+ 7.94 x logio(Dp — Dp) + 1.96 x Sandw @

R?2 =10.80

In ForHyM, Ksqt and snowpack are further calibration-adjusted to quantify the
extent of inflow (lafteral flow) along layers versus downward percolation (vertical
flow) into layers (Table 4.2, Figure C.1 (Appendix C)). In soils where soil density
increases with depth, downward Ky is general less than the Eq. 4.7
specifications. Also of note is the ForHyM formulation for water retention at field

saturation (FCy,), given by:

FCyw = SPy (1 — eap [‘0'588(1 — Sandy) — 1.73 x OMD

S Pw (4.8)

R? =0.96

where FCy, SPy, and Sandy all refer to total weight fractions per dried and
gently crushed fine soil that passes through a 2 mm sieve. In combination, any
ForHyM generated block-by-block soil moisture output by soil layer is a function of
soil bulk density sand, organic matter, and coarse fragment content. Specifically,
Eq. 4.8 implies that soil moisture retention at field capacity increases with
increasing organic matter content and decreasing bulk density, sand, and

coarse fragment content (Balland et al., 2008).
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Table 4.2: ForHyM calibration variables for snowpack and saturated soil
permeability by block, including weather and hydrometric station locations for

primary ForHyM input data.

A - NWU B - MWU C-LlL
Blocks 1-5 8,10, 11 6,7,9
Leonard Station .
Weather Station! Airport & WOOdS.TOCk & Fredericton
Juniper CDA
Edmundston
Hydrometric Station! Black Brook Narrows Nashwaaksis
Y Watershed Data? Mountain Brook Stream
Model Run Years 1990-2016 1990-2016 1940-2016
Snowpack T Sno;/v-’ro-owdl ’r 0.16 0.2 0.2
parameter emperature gradien
adjustments ~ Density of fresh snow 0.16 0.15 0.2
Surface runoff 1 1 1
Forest floor infiltration 1 1 1
gg?;ur ated Forest floor interflow 0.01 1 0.01
i , o .
Permeability A&B horlgon |rlwf|l’rro’r|on 1 1 1
parameter A&B horizon interflow 0.05 0.1 0.01
adjustments C horizon infiltration 1 1 1
C horizon interflow 0.1 0.8 0.1

Deep water
percolation

T (Department of Environment and Climate Change Canada,

2 (Black Brook Watershed Research site, 2014)
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Table 4.3: ForHyM soil profile information used to initialize each blocks.

Region Block Vegetation Layer Depth Texture OMy % CF%
NWU  1,2,4,5  SW, LFH 5 Organic 100 0
shallow A 10 SL 1 20

rooted B 75 SL 8 24

C 100 S 1 35

NWU 3 IntHW, LFH 5 Organic 100 0
deep A 10 SL 20 20

rooted B 75 SL 5 24

C 100 S 1 35

MWU 8 MW, LFH 7 Organic 100 0
medium A 5 SL 1 20

rooted B 40 SCL 5 20

C 100 L 2 30

MWU 10, 11 ToIHW, LFH 7 Organic 100 0
deep A 10 SL 5 20

rooted B 40 SCL 2 20

C 100 L 1 30

LL 6,7 ToIHW, LFH 7 Organic 100 0
deep A 5 SL 5 20

rooted B 40 L 5 20

C 150 L 1 30

LL 9 ToIHW, LFH 7 Organic 100 0
deep A 5 SL 5 20

rooted B 40 L 5 20

C 150 L 1 30
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4.2.5 MC and CI Variations, plot-by-plot

In general, soil moisture increases from ridges and steep slopes to
water-saturated wetlands, depressions and hyporheic zones adjacent to streams,
rivers, lakes and shores. To some extent, this tfendency is quantitatively related to
the cartographic depth-to-water index (DTW) which is a metric that represents
the least elevation rise to any point on the land way from the nearest open water
locations, where DTW = 0. Conceptually, soil moisture levels should therefore
decrease at DIW increases. For the changes in volumetric and pore-filled soil
moisture content over time, this can be expressed as follows (Vega-Nieva et al.,
2009):

MCyv.prw

B =100~ [100 — MCpso]x

1 — exp(—kme x DTW) ]Pme
1 —exp(—kme X DTWinas)

MCpsprw =
4.9

where MCps pwr MCypwr the pore-filled and volumetric soil moisture content at
any point in the landscape in relation to DTW, with DTW = 0 referenced to local
flow channel network and other connected open-water features when bankfull.
The local flow-channel network was generated by applying the D8
flow-accumulation algorithm to the 1 m resolution LIDAR-generated digital
elevation model for New Brunswick, as described in Figure 4.3, The seasonality
extent of the resulting flow network was emulated by varying the minimum
upslope flow-accumulation area for flow initiation (tfermed flow initiation areq, or

FIA for short) by season and weather, as illustrated in Figure 4.4.

In Eq. 4.9, parameters kyc and pyc (0.5 and 1.5, respectively) quantify how
MCps prw Varies with DTW across areas of interest as MCpgy varies from, for
example, 20 % on ridges to 100 % at and near waterfilled flow channels. When
soils become uniformly saturated, MCps prw = 100 % everywhere. At other times,

MCpsg < MCpsprw <1.
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Figure 4.3: Cartographic depth-to-water index (DTW) diagram (Murphy et al.,
2009b).

Figure 4.4: Cartographic DTW <1m pattern by minimum upslope open-channel
flow initiation area (FIA), i.e., DTWga, tO0 emulate changes in soil moisture content
by weather and season. For most of New Brunswick and the forested areas across
Canada, the DTW 1m pattern for FIA = 4 ha reflects end of the summer soil
moisture and drainage conditions from very poor to moderate.
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Since soil moisture at any point in the landscape are also affected by block-by-
block and plot-by-plot variations in soil properties and wood-forwarding tracks,
MCps also needed to be evaluated as function forest cover and soil properties

inside and outside wood-forwarding tracks. This was done by setting:

MCps = f(DTW,elevation, forest cover, soil properties,
4.10)

block, track, brushmat)

with Forest Cover (SW, HW, MW), Block, Track and Brushmat coded 1 when
applicable and 0 when not. The elevation variable accounted for additional
topographic variations as they exist block-to-block across the NWU, MWU, and LL
regions. The soil properties refer to plot-by plot variations in soil texture (sand, silt,
clay content), soil density (Dy, inferred from sand and clay content), CF, OM, and
layer depth. The block-by-block and plot-by-plot CI variations were evaluated
similarly by setting:

CI = f(DTW,elevation, forest cover, soil properties,
“@1m

block, track, brushmat)

4.2.6 Statistical analyses, followed by generalized block-generated MCps

and CI projections

The block- and plot-descriptive, field, laboratory, ForHyM-generated and
raster-extracted data were compiled into a single datasheet, were summarized
and were subjected to correlation, factor, multivariate regression analyses in R (R
Core Team, 2015), using MC,,, MCps and CI as dependent variables. The resulting
regression models for Egs. 4.9, 4.10, and 4.11 were assessed in terms of
scafterplots for the actual versus modelled values, the best-fitted regression
coefficients for each independent variable of non-zero significance values
(p-values <0.01), and R? and RMSE goodness-of-fit indicators. In addition, the
conformance levels between actual and model projected 0-10, 10-20, 20-30....%

MCps classes and 0-0.5, 0.5-1, 1-1.5.... MPa CI classes were evaluated in terms of
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confusion matrices, non-randomness, and cumulative conformance probabilities
to determine the uncertainty range of Dbest-fitted model projections.
Subsequently, the MC,,, MCps and ClI regression evaluations were repeated using
variables amenable for area-wide projection purposes. These variables referred
to () DTW, elevation, digitally-generated province-wide soil property rasters for
Sand, CF OM and Dy (Figure 4.5; Furze, 2008), (ii) block- and season- or
month-specific assignments for FIA, (iii) soil depth, and (iv) forest cover type for
non-tracked soil conditions. The process of doing so by soil depth and season

(month) is illustrated in Figure 4.6.

Figure 4.5: Spatial raster examples for DTW (1), DEM (2), Dy, (3)., CF (4) for block-
specific MCpg projections (Block 3).
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Figure 4.6: Digital soil mapping process combining topographic and soil features
(A) with temporal features (B) to generate best-fitted weather-affected MCpg (B)
and CI (C) projections for each block (e.g., Block 3) by way of best-fitted Egs. 4.9,
4.10, and 4.11 models.

4.3 Results & Discussions

4.3.1 General observations and trends

The plot-based determinations for sand, silt, and clay, OM, CF, MCpg, and CI are
summarized per block in Figure 4.7 by box plot in in ferms of number of plots, and
minimum, maximum, average and standard deviation values in Table C.2
(Appendix C). These plots reveal that the MCpg, Cl and Dy were not always
higher inside than outside the wood-forwarding tracks, as one would expect
(Allen, 1997; Han et al., 2009; Labelle and Jaeger, 2011; Cambi et al., 2015; Solgi

et al., 2018). Possible reasons for the lack of systematic MCpg, Dy, and CI
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increases refer to (i) the wide range of operational multi-frack observations
across ground conditions comprised of rocks, stumps, and variable forest litter
depths including brushmats, and (ii) differences in MCpg, Dy, and CI survey-ing
methodologies, e.g., using Dy, and MC sensors that required no soil displacement
(Labelle and Jaeger, 2011) and hydraulic cone penetrators (Cambi ef al., 2015;
Solgi et al., 2018). The results reported below were obtained through manual soil

extraction and probe insertions.

In ferms of tracks with and without brushmats, it was found that measured values
for Dy, Cl, and MCpg for the top mineral soil 15 cm were somewhat lower and less
variable under matted than non-matted tracks (Figure 4.8). Systematic increases
for D, and CI from the matted and non-matted tracks as reported by Han et al.
(2009) and Labelle et al. (2015) were therefore not found, likely due to the

strongly varying substrate conditions along the tracks.

In terms of the higher trending MC levels on matted versus non-matted plofts,
Roberts et al. (2005) and Moroni ef al. (2009) reported lower cumulative soil
moisture losses under matted than non-mafted fracks likely through

mulch-related shading, insulation, and lowered evaporation benefits.

The overall trends between MCpg and CI versus CF sand, OM and Dy, are
presented in Figure 4.9. As shown, increasing CF generally lowered MCpg
presumably due to () increasing porosities between the fragments, (i)
subsequent increases in soil moisture loss due to increased soil permeability, and
(i) enhanced evaporation due to fact that CF conduct heat faster than soil

(Poesen and Lavee, 1994; Chow ef al., 2007).

The increasing MCpg trend with increasing Dy, relates to decreasing pore space.
Similarly, decreasing MCpg with increasing OM % relates to increased pore space

due to OM-facilitated soil granulation (Han ef al, 2006). There is also the
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Figure 4.7: Boxplots of MCpg, ClI, CF, sand and Dy, within the top 15 cm soil layer
inside and outside the wood-forwarding tracks.

Figure 4.8: Scatterplots pertaining to ClI, Dy, and MCpg inside and outside
brushmatted and non-brushmatted tracks.

possibility of decreasing MCps due to increasing hydrophobicity as
OM-containing soils dry out (Vogelmann ef al., 2013). In contrast, the increasing
MCps trend with increasing sand % may be due to preferential pore space

saturation in sandier topsoil portions.
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In terms of ClI, increasing levels of CF contributes to increasing soil resistance to
penetration because of skeletal soil stabilization (Manuwa, 2012) and the need
to push some of the fragments to the side to gain greater penetration depths.
Increasing sand % generally decreases the strength of the soil, due to lower
particle-to-particle cohesion. The opposite occurs with increasing clay % (Raven
et al., 1999). The trend between increasing Cl and increasing soil depth (Figure

4.10) because of depth-related increases in D, (Carter et al., 2007).

Analyzing the trends among the MCps and CI affecting variables more closely
produced the correlation matrix and its factor analysis results in Table 4.4. The

bolded Factor 1-3 loadings indicate that:

i. Factor 1 is positively associated with increasing Cl, CF, Dy, elevation and
fracks, but negatively associated with increasing soil organic matter

content.

ii. Factor 2 is positively associated with higher elevations where tolerant
hardwood forests dominate, where brushmats were rarely used, and where

soils are somewhat sandier.

ii. Factor 3 is positively associated with increasing MCpg but negatively
associated with increasing CF sand, and decreasing DTW, as to be
expected. Also, soil pores tend to be drier at higher elevations but fill more

easily and remain wet or moist longer inside than outside the tracks.
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Figure 4.9: Scatterplots for fop 15 cm MCpg (tfop) and CI (bottom) versus top 15
cm CF, sand, OM and Dy,.
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Figure 4.10: Boxplots of field-determined CI versus soil depth for Blocks 1 to 9,
including significance value of implied trend. Also shown (bottom): summary
boxplots of all Cl determinations off-track and inside tracks.
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4.3.2 Temporal Soil Moisture Derivations

The ForHyM-generated results for daily soil moisture, stream discharge, snowpack
depth and depth of soil frost are illustrated in Figure 4.11, which also displays the
reported weather station records for rain, snow snowpack depth, and air
temperature for Blocks 1 and @ from 2011 to end of 2014. The daily MCpgg output
so produced block-by-block (Table 4.5) was obtained through calibrating the
ForHyM output with reported snowpack depth and cumulative stream discharge
values for each of the three regions (Figure C.1 (Appendix)). These calibrations
involved adjusting the ForHyM parameters for snowpack depth and lateral versus

vertical layer-by-layer soil permeability, as detailed in Table 4.5.

Fitting the actual plot-specific MCps determinations for the top 15 cm of mineral
soil versus the corresponding log10DTW values with FIA = 1 ha across all the plots
by way of Eq. 4.9 produced the following equation once FIA and MCpgy Was

specified for each block:

1 — exp(—0.5 x DTW) 1-°
1 — exp(—0.5 X DTWaz) 4.12)

MCps.prw = 100 — [100 — MCpgo] x

R?>=10.29

This result improved considerably by using 10g;0DTW; g as an additional MCpg

predictor variable:

MCpg = 48.16 — 5.80 x log1oDTW1ha + 0.19 x MCPS,DTW
4.13)

R? =10.38
In detail, the inclusion of 10goDTW g spread the MCpg prediction range from
about 30 to 75 % (Eq. 4.12) to about 20 to 90 % (Eq. 4.13). Even further
improvements were obtained by including the plot determinations for Dy,

Elevation, HW and Track as independent variables. This led to the best-fitted

104



Figure 4.11: Daily variations in Block 1 (left) and Block 9 (right) for air temperature
and precipitation (ForHyM input) and stream discharge, MCpg for top 15 cm of
mineral soil, estimated field capacity, snowpack depth, and frost depth (ForHyM
output; (Jones et al., 2018)).

Table 4.5: Mean block-specific soil property values including soil moisture content
at ridge top (MCpsp) and minimum upslope open-channel flow initiation area FIA.

Dp Sand Clay oM CF MCPSO FIA

Block -3 o, o o o, o

cm Yo Yo Yo Yo %o ha
1 0.92 27.1 6.5 11.6 42.4 31.9 1
2 0.91 16.7 6.8 11.4 52.3 34.1 8
3 0.96 25.5 5.4 10.3 48.2 31.5 1
4 0.98 25.5 34 9.4 52.5 28.9 8
5 0.91 8.6 2.2 12.5 72.5 29.6 8
6 0.90 22.5 7.1 14.6 44.8 42.0 1
7 0.99 30.1 4.7 9.0 44.7 42.0 1
8 1.09 32.5 5.3 7.3 44.9 36.2 4
% 0.79 33.6 4.4 241 28.9 449 0.25
10 0.85 10.8 5.5 14.4 60.5 47.4 8
11 0.85 9.4 4.9 21.2 61.9 40.0 16
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MCps regression results listed in Table 4.6, and to Eq. 4.14:

MCpg = 32.18 — 1.49 x logloDTWF]AJha + 0.27 % MCPS,DTW +42.56 X Dy
—0.10 x Elevation + 13.09 x HW + 3.93 x Track 4.14)

R? =0.61
The corresponding best-fitted MCy, results, also listed in Table 4.6, led to Eq. 4.15:

MCy = 35.25 — 1.33 x logioDTWrraihe +0.19 x MCps prw + 13.37 x Dy
— 0.07 x Elevation + 9.38 x HW + 2.43 x Track (4.15)

R? =051

Based on the t-value enftries in Table 4.6, one deftermines that the significance
contributions of all the MCps and MCy predictor variables follow these

seguences:

for MCps: Dy = MCps pwr = Elevation ~ HW >10Q9gDTWga 1hg >Tracks >Sand >CF;

for MCy: MCps pwr = Elevation =~ HW >109gDTWga 1ha >Sand >Tracks >Dy, ~ CF.

As to be noted, there is a high to low Dy regression coefficient and significance
change from MCpg (Eq. 4.14) to MCy, (Eq. 4.15) due to the greater dependence
of MCps On Dy, via Egs.4.5 and 4.6 while the significance levels for the predictor
variables remain about the same. Also note that the best-fitted R? and RMSE

drop from MCpg to MC,, due to the narrower MC,, data range.

The + and - signs for the regression coefficients in Egs. 4.14 and 4.15 follow

expected frends for MC, namely:

i. MC decreases with increasing DTW but increases as MCpgg % (and therefore

MCps pwr %) inCcrease, as to be expected,

ii. MC decreases towards higher and generally steeper elevations,
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Table 4.6: Best-fitted MCps % and MCy % models based on using plot-generated
(Egs. 4.14, 4.15; top) versus plot-projected (Egs. 4.16, 4.17; bottom), listing
significant regression variables and their coefficients, standard error estimates, and
t- and p-values, together with RZ, RMSE values and sample size (n).

Regression Dependent Interce_pf & Regr.
AR - predictor +SE t-value p-value R?2 RMSE n
optimization variables variables coeff.
Using MCps % Intercept 48.396  6.131 7.894 <0.0001 0.61 10.11 394
plot-specific Eq. 4.14 MCpspw 0.212  0.063 3.357  0.0009
determinations logioDTWihe 2178 0.813 2680  0.0077
for each Sand -0.144 0046 -3014 00018
CF -0.075 0.287 -2624 0.0090
Dy, 41.537 3.407 12.189 <0.0001
Elevafion -0.107 0.010 -10.499 <0.0001
HW Blocks 12.190 1.541 7.909 <0.0001
Tracks 3.899 1.026  3.800 0.0001
MCy % Intercept 42.748 4.309 9.921 <0.0001 051 749 394
Eq. 4.15 MCpsprw  0.155  0.047  3.304 0.0010
|Og]0DTW]hO -1.854  0.606 -3.057 0.0024
Dy, 14437 2438 5920 <0.0001
Elevation -0.077 0.008 -10.308 <0.0001
HW Blocks 9.012 1.146 7.862 <0.0001
Tracks 2.378 0.766 3.104 0.0021
Using MCps % Intercept 70.883 6.326 11.205 <0.0001 046 945 394
regionally Eq. 4.16 MCpsprw  0.264 0.073  3.589 0.0003
available log1DTWine 2764 0926 -2.986  0.0003
Bfw'lgysgfs' OMpsy -0.981 0278 -3529 00005
together Elevation -0.091 0.013 -6.937 <0.0001
with forest HW Blocks 10224 2,136 4.788  <0.0001
cover and Tracks 4.090 1233 3316 0.0010
plot/weather-
specific FIA MCy % Intercept 49.018 4.096 11.968 <0.0001 048 7.72 394
assignments Eq. 4.17 MCpsprw  0.186  0.047 3.932  <0.0001
l0g1gDTWihg  -1.665 0599 -2.927  0.0057
OMpsv  -0.421 0.180 -2.338  0.0199
Elevation -0.073 0.008 -8.650 <0.0001
HW Blocks 9.000 1.383 6.509 <0.0001
Tracks 2.449 0.798 3.067 0.0023
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ii. MC is higher inside than outside soil fracks,

iv. Soils under hardwood cover tend to be moisture than elsewhere, in part due

to deeper rooting and higher top-soil OM accumulation.

v. Contributions of sand and CF (both negative) to MC were also found to be
significant, but only marginally sO: excluding these from the analysis
changed R? for MCy from 0.51 to 0.50, and for MCpg from 0.63 to 0.60

(details not shown).

The best-fitted MCpg and MC,, equations - obtained from substituting the plot-
generated values for MCps prw % With the block-assessed FIA values and with plot-
level Eq. 4.3 estimates for OM generated from the digital soil layers for OM %

(labelled OMpg\) - are as follows (Table 4.6):

MCps = 60.80 + 0.26 x MCpg.prw — 1.84 x logioDTWip, — 0.74 x FIA
4+ 0.14 x Sandpspyr — 0.10 x Elevation + 9.96 x HW + 4.32 x Tracks (4.16)
R? =0.46
MCy = 45.22 + 0.18 x MCpg,prw — 1.75 x logioDTWpa + 0.13 x Sandpsas
—0.54 x OMpgp — 0.07 x Elevation + 8.48 x HW +2.53 x Track ~ (4.17)

R? = 0.46

The corresponding actual versus best-fitted scatterplots associated with MCpg via

Eas. 4.12,4.13, 4.14 and 4.16 are shown in Figure 4.12.

Using Eq. 4.14 produced the block-by- block presentation in Figure 4.7, which
also shows the field-determined MCpg plot values for the top 15 cm of soil outside
and inside the tracks. Visually, there is a general agreement between the
off-tfrack field determinations and the corresponding projection, with off-track

MCps generally higher than inside frack.
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Figure 4.12: Scatterplots of actual versus best-fitted MCpg scatterplots. Eq. 4.12
demonstrates the influence of block-generated DTW mapping on MCpg alone. Eq.
4.13 demonstrates the improvements generated by way of block- and weather-
influenced DTW mapping. Eq. 4.14 demonstrates the addifional improvements
obtained by adding variables describing forest cover type, elevation, soil density
and tfrack versus non-fracked specifications to the MCpg regression analysis. EQ.
4.15 demonstrates that MCpg can also be emulated using block-specific estimates
for upslope soil- and weather-dependent flow-channel initiation (FIA) and organic
matter estimates (OMpg\) based of digital soil mapping (DSM).
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Grouping the off- and in-frack projections and corresponding field
determinations into 10 % MCpg classes produced the MCpg confusion matrix and
associated MCpg cumulative conformance plots in Figure 4.13. In summary, the +
5 % MCps conformance level so found amounts to 34 % across the 20 <MCpg
<100 % range, but increases to 81 and 96 % as the conformance uncertainty
increases to A MCpg increases to 4+ 15 and + 25 %, respectively. The possibility of
randomly achieving these conformance levels have kappa values of 0.26, 0.73
and 0.92, respectively. The kappa value for random chance agreements equals

zero, by definition.

Figure 4.13: Confusion matrix for actual versus Eq. 4.14 projected MCpg (left) and
cumulative conformance probability for Eqs. 4.12,4.13, 4.14, and 4.16 (right). Blue
squares align 1 on 1 for the actual versus projected MC% classes, while the shades
from dark to light red represent increasing projection differences.
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Figure 4.14: Overlay of field- and track- determined MCps on the Equation
4.16 generated MCpg projections for Blocks 1 to 11 (blocks 9-11 have only field
measured MCpg)
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4.3.3 Cl Derivation

The best-fitted Cl results using plot-determined and plot-projected data are listed

in Table 4.7 and led to the following equations:

CI(plot — determined) = 1.60 — 0.01 x MCpg + 0.03 x Depth+
0.76 x Tracks + 0.40 x SW (4.18)
R? =041
ClI(plot — projected) = 1.60 — 0.03 x log1oDTWipe — 0.02 x MCpgo+
0.02 x Depth + 0.64 x Tracks + 0.32 x SW 4.19)

R?>=10.39

where 0.03 10g1gDTW g - 0.02 MCpgg in EQ. 4.19 replaced -0.01 MCpg in EQ. 4.18.
These results affirm that the plot-determined Cl values, as to be expected,
increase with decreasing soil depth, are higher inside that than outside the
fracks, are higher under soffwood forest cover, decrease with increasing soil
moisture content, and increase with increasing soil density. The associated

significance levels vary as follows:

for Eq. 4.18: Track >Depth >MCpg >SW >Dy
for Eq. 4.19: Track >Depth >SW x~ DTW ;g >MCpgg

Other variables such as Sand, Clay, CF and OM would also affect Cl, but these
variables were not found to make additionally significant Cl contributions to the
plot-determined or projected values. Quantitatively, Eq. 4.17 indicates that a
change in MCPS from 0 to 100 % would lead to a change in Cl by 3.1 MPa (all
other conditions remaining the same). In comparison, Cl would on average
increase by 2.6 MPa from 0 tfo 1m soil depth. In comparison, Cl values are about

0.7 MPa higher inside than outside tracks.
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Table 4.7: Best-fitted Cl models based on using plot-generated (Eq. 4.18) versus
plot-projected (Eq. 4.19) and log,g plot-generated CI (Eq. 4.20), listing significant
regression variables and their coefficients, standard error estimates, and t- and
p-values, together with R2, RMSE values and sample size (n).

Intercept &
Dependent Prediztor Regr. e ' pvalue R2 RMSE n
variables . coeff. value
variables
ClIMPa Intercept 1599 0.159 1006 <0.0001 041 059 372
Eqg. 4.18 MCps -0.011 0002 -598 <0.0001
Depth 0.025 0.002 9.90 0.0583
Tracks 0.760 0.064 1191 <0.0001
SWBlocks 0.397 0.064 620 <0.0001
ClI MPa Infercept  1.604 0367 437 <0.0001 039 060 376
Eq. 4.19 MCpsy -0.023 0.009 -2.53 0.0119
DTW;ne 0.034 0.009 3.85 <0.0001
Depth 0.022 0002 887 <0.0001
Tracks 0.644 0067 9.62 <0.0001
SWBlocks 0.319 0.087 3.66 0.0003
logig CI MPa Intercept 0.152 0.039 390 <0.0001 0.41 0.14 372
Eq. 4.20 MCps 0.002 0.001 -558 <0.0001

Depth 0.006 0.001 10.03 <0.0001
HW Blocks 0.091 0016 584 <0.0001
Tracks 0.189 0.015 1211 <0.0001
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The scatterplots associated with Eqs. 4.18 and 4.19 are presented in Figure 4.15.
The scatterplot for the former is more heteroscedastic than the latter.
Log-transforming Cl the best-fitted results so obtained as listed in Table 4.7

produces an even scatterplot in Figure 4.15, and the following equation:

log10CT = 0.152 — 0.002 x M Cpg + 0.006 x Depth
4+ 0.189 x Tracks + 0.091 x SW (4.20)

R? =0.41

The overlays of the field-determined on the Eq. 4.18 projected CI values for the
tfop 15 cm of soil are shown by Block in Figure 4.15, which also shows the

corresponding values at 30, 45, and 60 cm depth for Block 3.

Grouping the field-determined and projected Cl values into 0.25 MPa classes
produced the Cl confusion matrix and associated cumulative conformance plots
in Figure 4.16. As shown, the CI confusion matrix has an actual with projected A
Cl < 0.25 MPa class conformance of 32 % across the 0.5 <ClI <4.5 MPa range. This
conformance increases to 78 and 95 % as the uncertainty range for Cl increases
from +£0.5 and + 0.75 MPaq, respectively. Achieving these agreements have
kappa values equal to 0.23, 0.67 and 0.88, respectively. In comparison with the
MCps kappa values, this suggests that the Cl projections are slightly more random

than the MCpg projections.
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Field Determined CI MPa

Figure 4.15:

Eq. 18, R? =041
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4.18 demonstrates the additional improvements obtained by adding variables

describing forest cover type,

depth and track versus non-fracked
specifications to the CI regression analysis. Eq. 4.19 demonstrates that Cl can
also be emulated using block-specific estimates for upslope soil- and weather-
dependent ForHyM MCpgg and depth-to-water. Eq. 4.20 demonstrates the 1ogig
of ClI.

Figure 4.16: Confusion matrix for modelled vs Eq. 4.18 projected CI (left) and
cumulative conformance probability for Egs. 4.18 and 4.19 (right). Blue squares
align 1 on 1 for the actual versus projected MC% classes, while the shades from
dark to light red represent increasing projection differences.
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Figure 4.17: Eq. 4.18 generated Cl projections at 15 cm depth for Blocks 1-9 outside
wood-forwarding (tfop), and for 15, 30, 45 and 60 cm soil depths outside (left) and
inside (right) the wood forwarding tracks for Block 3 (bottom).
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4.3.4 Forecasting Block-specific Soil Moisture and Penetrability Conditions

The above results show that the combination of emulating layered soil properties
and daily soil moisture simulations produces non-random soil moisture and cone
penetrability projections across harvest blocks of varying topography, forest cover,
geological substrates and weather conditions. To this effect, the extent of pore-
filled moisture content can be predicted with a tolerance of 15 %, 8 times out
of 10 within the 20 to 100 % soil moisture range. Similarly, the cone penetrability
index can be predicted with a tolerance of +0.5 MPq, 8 times out of 10 within the
0.2 to 4.5 MPa range. In summary, generalizing similar results for the purpose of

forecasting soil trafficability block-by-block requires:

i. A 10 m resolution DEM layer with a tolerance of at least 2 m, 8 times of out

10 (Furze et al., 2017);

ii. A digital soil mapping process that emulates the required soil property layers

at a general conformance level of 80 % (Furze, 2018);

ii. An assessment of the season and weather dependent minimum upslope
open-channel flow initiation area (FIA) as this could vary from 0.25to 8 ha

(Figure 4.4).

iv. A forest hydrology model that can be used to estimate weather- and season-
affected soil moisture content (MCpgg) for ridge-top soils, to initiate, e.g., the
Eq. 4.14 and 4.16 calculations (Jones and Arp, 2017), based on block-by-
block elevation, slope, aspect, texture, D, OM, CF, vegetation type and %

canopy closure.

The MC and Cl results so produce are projected in Figure 4.18 for hardwood and
softwood areas somewhat larger than Block 3 and Block 4. This was done for
weather conditions that varied from essentially frozen in February to wet in May,
dry in July, and moist in October. The blue shading in these plots suggests where
rutting would occur on account of elevated MC and lowered Cl values once

wood-forwarding operations cross the areas so marked. For the most part, areas
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prone to rufting would be aligned with the DEM-based flow-channel and
associated DTW delineations as these vary by weather and season. Least rutting
would have occurred in February (ground mostly frozen) and July (ground mostly
dry), but would have been most extensive in May and later fall (ground mostly

moist to wet).

4.3.5 Additional comments

While the above study provides a useful framework for delineating and
evaluating soil trafficability restrictions on account of changes in soil moisture and

soil penetrability, there is a need to validate the generality of this framnework by:
i. festing across all dominant and minor soil types within the same region;
ii. application across other regions;

ii. conducting sequential MC and CI determinations as ground conditions

fransit from wet to dry and from frozen to non-frozen.

iv. advancing the digital soil property mapping process from coarse textured
DEMs (Furze, 2018) to 1T m LiDAR-generated terrain elevation resolution. Doing
so will likely increase the significance by which projected sand, clay, organic
matter, coarse fragments and bulk density gain significance as MC and Cl

predictors.

Repeated topsoil moisture and density testing should ideally be done without
probe insertions, i.e. via nuclear moisture-density gauge (Corns, 1988; Brown
et al., 1998; Labelle and Jaeger, 2011). CI testing would benefit from hydraulic
rather than manual testing (Hooks and Jansen, 1984; Herrick and Jones, 2002).
Doing so would assist in reducing manually generated errors, inconsistencies, and

biases, but would increase sampling expense.

There are other DEM-utilizing soil MC projection techniques. Most notably among

these is the topographic wetness index (TWI; Beven and Kirkby (1979); Sgrensen
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Figure 4.18: ForHyM modelled MCpg for ice and water combined, in relation o soil
moisture retention at field capacity (tfop) with spatially projected MCps (EQ. 4.14)
and CI (Eg. 4.18) on block 3 (hardwood forest and soil conditions; middle) and
block 4 (softwood forest and soil conditions; bottom).
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et al. (2006)). This index emulates soil wetness to local upslope flow-accumulation
areas and slopes, i.e., TWI = In (flow accumulation area / slope). Comparative
studies revealed that TWIl-inferred MC depends strongly on TWI-cell averaging
(Murphy et al., 2009b; Agren et al., 2014), while DTW-inferred MC can directly be
related to field-based DTW measurements (Dobbie and Smith, 2006; Murphy
et al., 2009b).

Optimal TWI-based MC interpretations are generated by filling noise-generated
DEM pits, followed by changing the focal search radius for cell-centered mean
elevation differences, slope and TWI (Southee et al., 2012). The resulting MC
correlations with TWI had R? values ranging from 0.06 to 0.36, with best-results
obtained for the 5 fo 10 m cell-size range. Aftempts focused on analyzing soil
moisture conditions from spectral surface images tend to produce mixed results,
especially for soils covered by vegetation and vegetation litter (Njoku and
Entekhabi, 1996; Das and Paul, 2015). Best results are generally observed for bare
to open mineral soil surfaces (Jackson, 1993; Engman and Chauhan, 1995; Wang

and Qu, 2009; Das and Paul, 2015).

Further digital soil property mapping improvements can likely be obtained using
LiDAR-generated DEMs at 1 m resolution. Doing so would likely increase the
significance by which projected sand, clay, organic matter, coarse fragments

and bulk density gain significance as MC and CI predictors.

With reasonable soil- and weather-informed MC and CI projections, it is feasible
to generate machine- and load-specific rut depth maps as affected by machine
type, loads, fire dimensions, and number of wood-forwarding passes, as
demonstrated by Vega-Nieva ef al. (2009) and Jones ef al. (2018). In turn, such
projections can be used to evaluate existing traffic-induced soil disturbance

impacts as demonstrated by Campbell et al. (2013).
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4.4 Conclusion

The above soil MC and Cl assessment is limited to forested areas within
northwestern New Brunswick, Canada. The approach taken emulates
block-specific soil MC and ClI variations with R? = 0.61 and 0.40, respectively. The
dominant predictor variable refers to daily soil moisture levels as affected by
weather, DIW, sand, Dy, CF soil depth, stand type (HW or SW) and sampling
location, inside or away from harvest tracks). Other potentially important MC
and/or CI contributing variables yet to be addressed refer to the presence and
extent of stumps and roots, depth of local forest litter accumulations, local
variations in micro-topography pertaining fo mounds and pits, and the number
of passes per frack. Implicitly addressed are the variations in soil OM due to
general association between OM, D, and soil pore space via Equations 4.3 to
4.6. The effect of brush-matting on MC and CI was found to be too variable to
make significant contributions to the best-fitted MC and CI regression results. The
lack thereof is likely related to branch-specific soil compaction and

displacement variations at the centimeter scale.
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Abstract

This chapter infroduces and evaluates a Soil Trafficability Model (STRAM)
designed to estimate and forecast potential rutting depth on forest soils due to
heavy machine fraffic. This approach was developed within the
wood-forwarding context of four harvest blocks in Northern and Central New
Brunswick. Field measurements used for model calibration involved determining
soil rut depths, volumetric moisture content, bulk density, soil resistance to cone
penetration (referred to as cone index, or Cl), and the dimensionless nominal soil
cone index NCI defined by the ratfio of Cl over wheel foot print pressure. With
STRAM, rut depth is inferred from: (i) machine dimensions pertaining to estimating
foot print area and pressure; (i) pore-filled soil moisture content and related Cl
projections guided by yearround daily weather records using the Forest
Hydrology Model (ForHyM); (i) accounting for within-block soil property
variations using multiple and Random Forest regression techniques. Subsequent
evaluations of projected soil moisture, Cl and rut-depth values accounted for
about 40 (multiple regression) and 80 (Random Forest) percent of the

corresponding field measured values.
Keywords

Soil trafficability, forecasting, rutting, soil moisture, density, cone index, wood

forwarding, regression comparisons, depth-to-water index.
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5.1 Introduction

With the wide-spread use of modern mechanized harvest machinery, forest and
agricultural planners have to deal with the effects of heavy machine loads on soil
rutting, compaction, erosion, and subsequent reductions in crop yields (Brady
and Weil, 2008). Increased soil compaction reduces soil porosity, increases soll
runoff, damages and crushes rootfs, and leads to reduced root growth due to
decreased soil oxygen levels (Grigal, 2000; Horn et al., 2004; Bassett et al., 2005;
Singer and Munns, 2006; Chen and Weil, 2011). Rutting results from combined soil
compaction and soil displacement. Soil displacement occurs when the soils
within depressions and along slopes are moist to wet above field capacity
(Raper, 2005; Naghdi et al., 2009). Depending on their slope orientations, ruts
can increase, decrease, or collect run-off (Sutherland, 2003; Antille and Godwin,

2013; Poltorak et al., 2018).

A measure of soil strength, known as cone index (Cl) is used to understand soil
compaction and rutting. This strength and related Cl measurements varies from
weak to strong as soil moisture content decreases, and this is particularly so in
fine-textured soils. In contrast, sandy soils remain friable from wet to dry (Earl,
1997; Vaz, 2003; a.R. Dexter et al., 2007; Tekeste et al., 2008; Vaz et al., 2011;
Kumar ef al., 2012; Jones and Arp, 2017).

To enhance compliances towards best forest management practices, various
jurisdictions have established criteria as to what constitutes a rut. For example,
the Province of British Columbia (Canada) classifies ruts >15 cm deep to be a
hazardous disturbance. The Province of Alberta considers any soil disturbance
tfrack deeper than 10 cm as ruts (Alberta Forest Products Association, 1994; Van
Rees, 2002). The Pacific Northwest region of the USA defines ruts to be at least 15
cm deep (Page-Dumroese et al., 2000). Images of what constitutes minor to

severe soil disturbances including rut depths are presented in Table D.1.
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As summarized in Table 5.1, the earlier rut-depth prediction models by Maclaurin
(1990) and Rantala (2001) focused on regression-related rut depth as caused by
single wheel and single machine passes to the ratio of tire footfprint pressure over
soil resistance to penetration, also referred to as nominal cone index, or NCI.
Scholander (1974) and Saarilahti (2002b) extended this approach towards
multiple passes. Vega-Nieva et al. (2009) modified the NCl-based multi-pass
regression model by examining the experimental wood-forwarding rut-depth
data by Meek (1996) for a sandy and a clay loam soil at varying moisture
content, and with a suggestion to correct for coarse fragment content. A recent
study by Sirén et al. (2019a) also related rut depth to number of machine passes,
volumetric soil moisture content, and CI. All these studies, however, captured
only a small portion of the field determined rut depth variations whether these

were based on fixed or fixed plus random effects regression models.

Table 5.1: Historical rut depth model.

Rut Depth

. - . 2
Parameter Study Citation Rut Depth Equation R
First wheel pass (Maclaurin, 1990) Z =dx %55 0.10
First cycle pass (Rantala, 2001) Z =-0.026 + %9 0.11
Multi-pass (Scholander, 1974) Z =271 X ne 0.23
(Saarilahti, 2002b) Zp=(Zy + Zfb)ﬁ 0.10
(Vegao-Nieva ef al.,

2009) 70 = gRennen (1 - CF)?2  0.25

logZ = by + by x M + by x

MC, + b3 x CI + uym + €tm NR

(Sirén et al., 2019b)

z = rut depth; bn = parameter coefficients; D = wheel diameter; Cl = cone index; n = number of
passes; NCI = nominal cone index; CF = coarse fragment; MC, = volumetric moisture content; M =
cumulative machine mass; a = multi-pass coefficient (0=0.3 x CI; a= 1.5 x NCI°.7); p1. pz. and r =
site specific calibration parameters; utm = random line effect; etm = pass effect.

This chapter reports on the extent of improving wood-forwarding rut depth

modelling based on:
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i. using field-determined data for soil density, fexture, organic matter, coarse
fragment and weather-inferred ridge-to-valley soil moisture, Cl, and

machine-specific NCI variations for the rut depth projection purpose;

i. employing fixed and random forest regression techniques for optimizing

these projections;

iii. selecting four of the eleven harvest blocks described in Jones and Arp
(20190) for this purpose; these blocks involved wood forwarding from
shelterwood cutting (2) and from commercial thinning (2) in Northern and

Central New Brunswick, Canada.

5.2 Materials and Methods

5.2.1 Block Descriptions

Details regarding the wood-forwarding operations within the four harvest blocks
chosen for this study are presented Figure 5.1 and 5.2 by location, and in Table
5.2 by block-specific attributes. These blocks are a subset of the 11 blocks used

by Jones and Arp (2019a) for their on- and off-tfrack soil moisture and ClI study.

Blocks T and 2 are within T km of each other, and share similar site characteristics.
They are located within the Western reach of the Chaleaur uplands. Both Blocks
are white spruce (Picea glauca (Moench) Voss) plantations. Block 2 covers a 2
ha area and block 3 covers 20.8 ha, but sampled in a 3.5 ha area. The region has
an annual temperature of 3.8 °C, ranging between -11.5 °C and 18.2 °C in
January and July averages, respectively. Mean precipitation is roughly 1110 mm
with 300 mm as snow (Department of Environment and Climate Change
Canada, 2016a). Surficial fopography is mainly morainal sediment, including
loamy lodgment fills, and is underlain by late Ordovician deep water marine

clastics rocks.
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Block 3 is a 20.9 ha shelterwood cut located in the southern reach of Notre Dame
Mountains, within the Appalachians Mountain range. The area has a mean air
temperature of 3.5 °C, ranging from -12.9 °C to 17.6 °C January and July
averages, respectively. It has a mean precipitation of 1140 mm, with 310 mm as
snow (Department of Environment and Climate Change Canada, 2016a). The
block is composed moderate to intolerant hardwood/mixedwood rich in red
maple (Acer rubrum L.), yellow birch (Betula alleghaniensis Britt.) and balsam fir
(Abies balsamea L.). Geology of the area is later late Ordovician deep water
marine clastics rocks, with topography ranging from gentle, rolling plateaus to

steep valleys of hummocky ablation moraines.

Block 9 is a 25.5 ha shelterwood cut located in the Southern tip of the Miramichi
highlands. It is roughly 50 km from the Fredericton, the provincial capital. The
area has a mean air temperature of 5.5 °C, with a range of -9.4 to 19.4 °C,
respectively for January and July, and roughly 1100 mm of annual precipitation,
with 260 mm as snow (Department of Environment and Climate Change
Canada, 2016a). The block is comprised of natural mixedwood and tolerant
hardwood, including Eastern hemlock (Tsuga canadensis L. Carrire), yellow birch,
sugar maples (Acer Saccharum Marsh.), beech (Fagus grandifolia Ehrh.), with
some balsam fir, Eastern white cedar (Thuja occidentalis L.), and black spruce
(Picea mariana Mill). The ferrain of the region consists of morainal sediment
(ablations and boulder tills) underlain by early Devonian mafic volcanic rock and

late Ordovician deep water marine clastic rocks.
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Figure 5.1: Map showing block locations (Blocks 1 to 11), with Blocks 1, 2, 3, and
9 selected for rut depth determinations following wood forwarding and a grapple
skidder.
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Figure 5.2: Plot specific location including machine fracks, field plot locations
(top), and photos from within the blocks (bottom).

5.2.2 Wood Forwarding

Three GPS-tracking wood-forwarding machines were used: a John Deere 1510E
forwarding Blocks 1T and 2, a John Deere 1110E forwarder in Block 3, and a
Tigercat 635D in Block 4 (Table 5.3). The resulting GPS data were processed 1o
determine the number of passes per same track using point buffering and
overlapping tools (Buja, 2012). Studies have shown that the number of
wood-forwarding passes affects soil structure, compaction, and rut depth
(Eliasson, 2005; Ampoorter ef al., 2007; Farzaneh et al., 2012; Jones et al., 2018).
Some studies have looked at mitigating multiple-pass soil rutting using brushmats
(McDonald and Sexias, 1997; Labelle et al., 2015). Brushmats were not found
along the forwarding trails in Blocks 3 and 9, but were present to varying degree
in Blocks 1 and 2 as part of the commercial thinning operation. Machine footprint
is related to the amount of disturbance on a harvested site. Studies have shown
that with increasing tire pressure there is a lower overall tire footprint which
increases rutting (Raper et al., 1995; Saarilahti, 2002c; Jun ef al., 2004; Affleck,

2005; Sakai et al., 2008). Lower pressured tires are used in wetter or sensitive areas
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for this reason.

Table 5.3: Machine specifications (Jones ef al., 2018).

. JD1110E JD1510E TC635D
Machine Specs

Front Rear Front Rear Front Rear
Vehicle Weight (ton) 16.5 17.3 21.4
Full Load Weight (ton) 11.0 12.0 15
Chassis Clearance (cm) 60 60.5 63.5
Wheel Rim (cm) 67.3 67.3 81.3
Number of Wheels 4 4 4 4 2 4
Tire Type 710/45-26.5 710/45-26.5 35.51x32 30.5Lx32
Accessories Chains Tracks Tracks Tracks Chains Tracks
Diameter (cm) 134.1 134.1 201.2 184.4
Section Height (cm) 33.4 33.4 59.9 51.6
Width (cm) 71.1 71.1 90.2 77.5
Pressure (max, psi) 32 32 32

5.2.3 Data Sources

The data needed to process the temporal and spatial modelling of MC, CI, and

soil rutting consists of:

i. Daily precipitafion (snow and rain) and mean air temperature dataq,

needed for the hydrological soil moisture calculations for Blocks 1-3 and

Block 9, were obtained from the airport weather station records at Saint

Leonard and Fredericton, respectively (Department of Environment and

Climate Change Canada, 20160);

ii. Hydrometric stream discharge data is needed to calibrate ForHyM from the

nearby Black Brook Watershed group for Blocks 1-3 (Black Brook Watershed

Research site, 2014), and Nashwaaksis stream data for Block 4 (Department

of Environment and Climate Change Canada, 2016a);
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iii. LIDAR-generated bare-ground elevation data were downloaded from

geoNBs website at 1 m resolution (GeoNB, 2015b);

iv. Digital soil maps (DSM layers) for soil texture (sand, silt and clay content),
bulk density, coarse fragments, and soil organic matter for top 30 cm of sail
were downloaded from the Forest Watershed Research web-site server

(Furze, 2019).

v. GPS-recorded machine-clearance pattern spaced at 10 sec intervals along

each wood-forwarding track (Jones et al., 2018).

5.2.4 Field Measurements

Soil samples as well as volumetric soil moisture (MC,) and cone index (CI)
readings were obtained from the top 15 cm layer of undisturbed mineral soil
across Blocks 1 to 11, as described in Jones and Arp (2019a) in the Fall of 2014
after the wood-forwarding operations (Table 5.2). The samples were analyzed for
texture (sand, silt and clay %), coarse fragments (%), organic matter content (%),
and bulk density (g/cm3). Wood-forwarding rut depths were determined at
GPS-recorded intervals along the tracks. The number of passes along the tracks
were obtained from the GPS-tracked wood-forwarding machine-clearance
records (Jones ef al.,, 2018) through counting the number of passes per same

frack using digital point buffering and overlapping tools (Buja, 2012).

5.2.5 Soil Moisture Modelling

The Forest Hydrology Model ForHyM was used to estimate daily variations in
pore-filled soil moisture content (MCps) on the well-drained soils in each block.
The MCpg output so generated then served to determine how MCpg would have
varied at the time of wood forwarding across the terrain of each block

according to season- and weather- affected flow channel locations by way of
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cartographic depth-to-water (DTW) modelling (Murphy et al., 2009a; White et al.,

2012). This process is conceptualized and illustrated in Figure 4.3 and 4.4.
The cross-terrain MCpg projections were originally based on Vega-Nieva et al.
(2009) and Jones and Arp (2019a):

1 — exp(—kme x DTW) 1Pme
1 — exp(—kme X DTWiop)

MCPS,DTW =100 — [100 — MCp57top] X (5])

where MCeps 1o refers to the pore-filed soil moisture content, and DTWiq, refers to
at the DTW at highest elevation in each block. Also, kme and pme are
block-specific calibration parameters (0.5 and 1.5), and MCps prw = 100 % along
water-filled flow channels where DTW = 0 m by definition (Table 5.4). As indicated
by Jones and Arp (2019a), the MCpg projections were augmented via multiple
regression analysis inside and outside wood-forwarding tracks to account for
ferrain changes in response to changes in elevation, forest cover type
(hardwoods, soffwood, open areas), and soil organic matter content (OMpgy) as

follows:

MCps =70.88+0.26 x MCps prw — 2.76 x logioDTWrra —0.98 x OMpsm
—0.10 x Elevation + 10.22 x HW + 4.09 x Track b.2)

R?> =0.46

with 10g10DTWFpa referring to the logarithm of the rasterized depth-to-water index
adjusted to the upslope flow initiation area (FIA) at the time of wood forwarding.
In addition, OMpgy is the digitally derived soil organic matter raster (Furze 2018; in
%), DEM is elevation in meters, Track = 1 for ruts and O otherwise, and HW = 1
refers to locations dominated by hardwood, otherwise HW = 0. The values of

model parameters required for Egs 1. and 2 are listed in Table 5.4.
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Table 5.4: Model parameters for stands 1, 2, 3, and 9. MCps (%) refers to the
ForHyM-modelled soil moisture content at highest elevation within each block at
the time of wood forwarding.

DTWEA  MGCpstop

Block tha) %)
1 1 39.9
2 16 35.3
3 1 39.4
9 0.25 26.4

5.2.6 Cone Index and Rut Depth Modelling

Rut locations and depths were GPS tracked and measured in the fall of 2014
immediately after the wood-forwarding operations, as listed in (Table 5.2).
Volumetric soil moisture, bulk density (Dp) and cone penetration measurements
were obtained prior to these operations (for details, see Jones and Arp, 2019).
Once MCpg was rasterized, Cl (in MPa) and NCI version were emulated using the

following expression (Jones and Arp, 2019a):

CI =1.60—-0.01 x MCpg + 0.03 x Depth 4+ 0.76 x Track + 0.40 x SW 5 3
b.3)

R? =0.41

where Depth is the chosen soil depth (cm), Track = 1 signifies presence of track
with Track = 0, is undisturbed soil, and SW = 1 signifies where softwoods are

dominant, otherwise SW = 0.

The normalized cone index NCI (dimensionless) was derived from:

(100 % CT % d +b) \/3 1
NCIo = W Vh 't ar2xd) oD

with d as tire diameter (m), b as tire width (m), W as total wheel load (kN) given
by (machine weight + load) / number of tires, h as section height of the tire (m),

and ¢ is tire deflection (m) given by 0.008 + 0.001 (0.365 + 170/p), with p is tire
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inflation pressure (in kPa).

Machine-induced rut depths was estimated using multivariate regression by
setting:

z = logigPasses x log1oNCI x logi1oDTWpra
5.5

R?>=10.28

where z is the rut depth, NCl is EQ. 5.4, and DTWfg, is the depth to water at the

chosen FIA to accomodate seasonality. Further non-linear regression was used to

develop:
L 40.8 % Passes" 071X NClag,
NClug (5.6)
R? =10.32

where NClyg is EQ. 5.4 which has been adapted for increase proportional
representation of DTW (NCI + 0.48 x DTWa), and passes is the number of frail

passes by machinery.

5.2.7 Statistical Analyses

All analyses were performed in R (R Core Team, 2015) after combining the
rasterized data layers info a covariate stack. A correlation matrix was created to
show the general association pattern between the covariates, and was
evaluated by way of factor analysis to determine the general covariate
association pattern. This was followed modelling MCpg, Cl, and z,, (5 = number of
passes) using multivariate regression (MR) and Random Forest (RF) regression

formulations (Breiman, 2001).

The multivariate regression (MR) formulation as detailed above by way of Egs. 5.1
to 5.6 served to explore the extent of functional dependence of MCpg, ClI, and z,

on weather, season, machine-type, and digital soil mapping layers. This include a
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non-linear DTW-based adjustment for Eq. 5.6. The Random Forest formulation
served to explore the extent to which the field-determined MCpg, Cl, and z,
values could be replicated using the same specifications. The dataset for
modelling MCps (n= 394) and CI (n = 372) included all top 15 cm soil sampling
locations inside and outside the tracks in Blocks 1 tfo 11. The dataset for modelling

rut depth (n = 207) applied to Blocks 1, 2, 3, and 9 only,

The required input for modelling MCpg Vvia Eq. 5.2 refers to MCpsprw (Eg. 5.1),
l0g10DTW, OMpgpm, DEM, HW = 1 or 0, and Track = 0 or 1. The required input for
modelling CI via Eq. 5.3 refers to modelled MCpg, Depth, SW = 1 or 0, and Track =
0 or 1. The required input for modelling rut depth via Eq. 5.4 refers to modelled

NCI and number of passes.

The Random Forest analysis was conducted using k-fold cross validation of the
entire dataset using the randomForest R package Liaw and Wiener (2002). The
data tfraining process was limited to optimizing the outcome of 10 fold validation
with 10 replicates. Each analysis ufilized optimized variables to decide on
best-fitting MCpg, CI, NCI and rut depth outcomes. Model performance was
determined by evaluating the mean decreased accuracy and variable
importance and then compared to linear regression using RMSE and R? for the

MCps, ClI, and rut depth evaluation outcomes.

5.2.8 Soil Trafficability Model (STRAM)

The information flow generated from modelling soil moisture, Cl and rut depth via
MR and RF was organized in the form of a Soil Trafficability Projection framework

(STRAM), as represented by the flow chart in (Figure 5.3).
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Applying STRAM involves:

i. Initializing and calibrating ForHyM to determine MCpg for specific weather
conditions, by block and stand type.

ii. Projecting MCpg across the terrain based on digital elevation, DTW, and soil
mapping techniques, by block, using Eq. 5.2.

ii. Combining the weather-specific MCpg projections with digitally generated
soil property to generate the Cl, NCI and rut depth data layers, by block,
using Eqgs. 5.3 10 5.5.

iv. Optimizing these data layers through R-tool regression techniques (fixed
effects, Random Forest) based on actual field observations where

available.

Figure 5.3: Flowchart for the soil trafficability model (STRAM): generating the rut
depth raster for Block 3.

5.3 Results

The basic statistics of the plot-centered rut depth, MCps, CFpgnv. Sandpgv. OMpsu .

Dopsm. Cpsm. elevation, DTW, CI, and NCI values are listed in Table 5.5. The
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correlation coefficients and their non-zero significance levels between these
variations in association with block location are compiled in Table 5.6, along with
the corresponding factor analysis. Factor 1 indicates that the rut-depth
determinations relate positively to number of wood-forwarding passes, to sand
and organic matter content, and to soil depth (Cpgv). but negatively to NCI, as
to be expected. In addition, rut depth is generally deeper in the hardwood
blocks (Blocks 3 and 9). Factor 2 reflects that the hardwood blocks at the higher
elevation and DTW locations had lower soil density and hence and lower soil
resistance to penetration than the softwood blocks located at the lower

elevations.

The MR-generated results revealed that MCpg increased significantly with
MCps prw Os influenced by wet weather and by decreasing DTW from ridge tops
to low-lying areas next to water-filled flow channels. In addition, MCpg was higher
inside than outside the fracks, and higher under hardwood vegetation while
decreasing towards the higher elevation blocks (Table 5.7). Cl| decreased with
increasing pore-filled soil moisture content, but was noticeable higher within the
soffwood blocks and inside the tracks due to cumulative wheel-induced
compaction. As per Eq. 5.5, rut depth increased significantly with number of
forwarding passes (logigPasses) and decreased significantly with increasing
log1oNCI. The non-linear DTW-adjustment for Eq. 5.5 improved the MR regression

results and related best-fitted scatterplot, but only to a small extent.

The RF regression process (Table 5.7) selected MCpg, DTW, elevation (DEM) and
OMpgyv as dominant MCps influencing predictors. For Cl, RF selected elevation,
MCps, Sandpsp . Depth, and track location as dominant predictors. For rut depth,
RF selected number of passes, NCI, DTW and CF as best predictors. Compared
to MR, the best-fitted RF-generated R? values for MCpg, Cl and rut depth in Table
5.7 were considerably higher. The scatterplofs in Figure 5.4 demonstrate the

extent of MR versus FR generated goodness-of-fit: not only much less scafter and
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greater 1:1 conformance of actual versus fitted values generated with RF

compared with MR for MCpg, Cl, and rut depth.

Figure 5.4: Comparison between modelled multiple linear regression and Random
Forest for MCpg, Cl and rut depth.

The plots in Figure 5.5 shows the conformance extent between actual and best-
fited STRAM-projected MCpg, Cl and rut depth values via MR and RF. In detail the

eight-tfimes-out-of-ten conformances within uncertainty brackets amounts to:

i. + 14% for pore-filed moisture content, £+ 0.7 MPA for CI, and + 14 cm for rut
depth via MR, and

ii. + 4% for pore-filled moisture content, + 0.3 MPA for CI, and + 4 cm for rut
depth via RFE.

Inclusion of additional predictor variables increases the resulting best-fitted R?
and RSME values for MCpg, Cl, and rut depth, but with diminishing gains following
the inclusion of 4 or more variables. Using only one continuous predictor variable
for MCpg led to an RF-R? value of about 0.80, in comparison with MR-R? value of
about 0.2. For Cl and rut depth, MR and FR have about the same low R? values

using the binary 0, 1 Track variable, and the grouped Passes variable,
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Table 5.7: Regression results for MCpg and Cl from Jones and Arp (2019), regression
results for rut depth and variable importance for Random Forest Model for MCps,
Cl and rut depth.

Regression Models

Intercept &

Dependent  Predictor Para- Regr. SE - p-value R? RMSE n
Variables Variables m:ter value
MChps Intercept 70.883 6.326 11.205 <0.0001 0.47 11.69 394
Eqg. 5.2 Elevation 4 -0.091 0013 -6.937 <0.0001
HW Blocks 5 10224 2,136 4,788  <0.0001
MCps prw 1 0.262 0.073 3.589 0.0003
OMpsm 3 -0.981 0278  -3.529 0.0005
Tracks 6 4,090 1.233 3.316 0.0010
log1oDTW 2 -2.764 0926 -2.986 0.0030
Cl Intercept 1.599 0.159  10.060 <0.0001 0.41 0.571 372
Eqg. 5.3 Tracks 3 0.760 0.064 11910 <0.0001
SW Blocks 4 0.397 0.064 6.200 <0.0001
MCps 1 -0.011 0.002 -5980 <0.0001
Depth 2 0.025 0.002 9.900 0.0583
Rut Depth Intercept 18.880  6.592 2.864  <0.0001 0.28 9.094 207
Eqg. 5.5 logroPasses 1 14.327 1.856 7.721 <0.0001
log;oNCI 2 22213 10625 -2.091 0.038
l0g10DTWea 3 -2.669 1.071 -2.492 0.014
Ea.56 o E'eCSLGNd‘ X 032 9000 207
a 40.886 3275 12728 <0.0001
b 0.072 0.007 9.676  <0.0001
Random Forest Models
_ Para- % Mean Variable ,
Dependent Variables meter Decrease R RMSE n
Variables # Accuracy Importance
MCps MChps prw 1 191.04 5332.12 0.91 4,962 394
Elevation 2 180.54 32079.21
OMpsm 3 38.17 16292.63
Cl Tracks 1 0.224 33.20 0.88 0.263 372
Depth 2 0.159 37.43
Elevation 3 0.108 49.27
MCops rr 4 0.097 47.64
Sandpswm 5 0.070 36.86
Rut Depth Passes 1 71.77 7121.22 0.84 4.307 207
NClrr 2 24.26 5744.51
DTWga 3 11.35 5971.05
CFpsm 4 0.65 3813.68
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respectively. While the predictive Cl and rut-depth outcomes using these
variables is low to modest, they serve in MR and especially so in RF to resolve the
otherwise unresolved scafter associated with using the continuous predictor
variables alone. The field-determined and projected MCpg, Cl, and rut depth
were evaluated into cumulative conformance plots in Figure 5.6. 80 %
conformance of the difference from actual to measured values ranged from 4 to

14 % for MCpg, 0.4 to 0.7 MPa for Cl, and 4 to 14 cm for rut depth, using RF and MR

respectively.
0
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Figure 5.5: Best-fitted RF- and MR- R2 and RSME value achieved using predictor
variables in the order of decreasing numerical significance or influence.

The GPS-fracked wood forwarding fracks across Blocks 1, 2, 3, and 9 are overlaid
on the delineated DTW <1m and hill-shaded DEM background, also showing the
number of passes (top) and field-measured rut depths (bottom) at each location

(Figure 5.7). Among these, Block 3 reveals a close association between deeper
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Figure 5.6: Cumulative conformance probability for differences in MCpg, ClI, and
rut depth for RF and MR.

rut depths and DTW, followed by Block 9 and Block 2. Block T had no association
between rut-depth and pass number. Rutting was deepest in Blocks 3 and 9

along multi-pass fracks across streams and wet-areas.

Figure 5.8 provides a closer look about the extent of track rutting in Block 9 in
relation to the DIW <05 m delineation through overlay on the
hillshaded-DEM(top) and the surface-image (boftom) backgrounds. This image
was generated a year after the wood-forwarding operations. At this time, the
extent of rutting had faded to some extent but remained prominent in the lower
left corner of the block. Rutting >40 cm deep occurred along multiple pass

tracks where DTW <0.5m.

5.3.1 MCGC;s, Cl, and rut-depth projections

Figure 5.9 presents the MR-and RF-generated projections and data points for
MCps (top) and CI (bottom) for Blocks 1, 2, 3, and 9 with the latter more detailed
than the former. In addition, there is also a considerably greater point to RF- than

MR- projection conformance, as to be expected from the scatterplofs in Figure
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Figure 5.7: Field-measured rut-depth locations with number of passes along rut
tfracks (tfop) and rut depth (bottom) across Blocks 1, 2, 3 and 9, also showing
the block-specific weather-affected DTWga assignments, i.e. FIA =1, 16, 1, 0.25,
respectively. For A and B close-ups, see Figure 5.8.
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Figure 5.8: Close-ups A and B from Figure 5.7 showing rut-depth measurement
locations in Block 9 overlaid on a 10 cm resolution hill-shaded DEM and a high-
resolution surface image one year after field operations. Also shown is the
DEM-generated DTW 1 m extent (fop; blue-shaded, 50% transparent) and its
corresponding DTW = 0.5 m contour (boftom; red). The 10 cm DEM (top) was
generated from scanned opftical AUV surface images (boftom; Phantom 4)
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5.4, and from the results listed in Table 5.7. Among them, Block 9 is shown to be
the wettest, on account of 70 mm rain event two days before prior to the day of
wood forwarding, and as reflected by the a consequential use of the DTWg =
0.25 ha data layer as dominant MCpg predictor in Eg. 5.4. In contrast, Block 1 was
found to be excessively dry, such that the DTWga = 16 ha projection was found to
best representative of the field-determined MCpg values for this block outside the
fracks. For Blocks 2 and 3, the MCpg were best presented using the DTWga = 1 ha
assignment to reflect the May and June soil moisture condifions at the time of
wood forwarding.  Although Blocks 2 and 3 use the same DIWga = 1ha
assignment, they differed in terms of Cl-measured soil strength which was weaker
for the hardwood block (Block 3) than for the softwood softwood block (Block 2).
Typically, shallow-rootfing softwood forests are found on coarser and stonier soils

with lower organic matter accumulations than deeper-rooting hardwood forests.

Figure 5.10 presents the overlay of rut depth points on the corresponding MR
(top) and RF (bottom) projections for Blocks 1, 2, 3, and 9 after 1, 10 and 50
passes, with better and more resolved RF than MR data-to-projection
conformances. These plots confirm that the spatial variations in soil moisture and
increasing number of passes are important rut-depth predictor variables. Actual
rut depth, however, also depend on machine weight/load and soil properties,
and load as quantified by way Cl and NCI in general and by the variables listed

in Table 5.7.
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Figure 5.9: Measured MCpg and CI values at 15 cm soil depth overlaid on the
corresponding Eqg. 5.2 and Eq. 5.3 map projections for Blocks 1, 2, 3 and 9, using
FIA=1T, 16, 1,0.25, respectively.
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Figure 5.10: Random Forest modelled 2- and 10-pass rut depths for Blocks 1, 2, 3, @
with machines carrying full loads, with the field plot results overlaid, using FIA = 1,
16, 1, 0.25, respectively.
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5.4 Discussion

While RF produces a considerably better results between the field-measured
values for MCps, ClI and rut depth, it still needs literature- and theoretical
MR-based guidance to interpret to results so generated. For example, moist to
wet soils have lowered physical strength due to water filling pores and reducing
particle cohesion (Kumar ef al., 2012), and many studies have shown that there is
a correlation between soil disturbance and soil moisture (Sutherland, 2003; Han
et al., 2006; Nikooy et al., 2016; Jones and Arp, 2017). To illustrate, Block 3 shows
deeper ruts within the wetter DTWEa = 1 ha marked area next to a stream. Block
1 with no significant rut-depth observations was cut following dry weather
conditions during mid-June of 2014, at which the overall soil moisture levels best
conformed to a DTWga - 16 ha flow-channel pattern, and rut depths remained
low. In contrast, deep ruts were encountered across Block 9 due to field

operations in October 2014 following a heavy rain event of 70 mm.

In terms of other soil properties, studies have shown that measured rut depth is
also positively correlated to increased levels of OM in the soil (Sutherland, 2003;
McFero Grace et al., 2006). For example, Block 9 due to its deeply rooting
hardwood composition, positively correlated rut depth with OM as revealed by
the factor analysis in Table 5.6. High sand content also contributes to low CI, NCI
and therefore to increased rut depth, mainly due to low particle-to-particle
cohesion (Balland et al.,, 2008; Brady and Weil, 2008; Kumar ef al., 2012). In
contrast, high coarse fragment content should increase Cl and lower rut depth,
but the overall CF variations within and across the blocks would not register this
effect in a major way by way of MR, and only weakly so by RF Typically, soils with
high soil strength (high ClI and NCI values) minimize soil disturbance (Antille and

Godwin, 2013).
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Significant and influential on the MR and RF results was the significant result (p =
<0.0007) between rut depth and number of passes. This effect, however,
decreases non-linearly due to gradually increasing soil compaction as quantified
above via Eq. 5.6 and as reported by Eliasson (2005), Eliasson and Wdasterlund
(2007), Botta ef al. (2009) and Jones et al. (2018). This is especially so for high
traffic areas such a wood landing sites and tracks subject to hundred passes or

more (Carter et al., 2007; Taghavifar and Mardani, 2014; Jones et al., 2018).

Given the above moderate (MR) to strong (FR) data-to-projection conformances
across Blocks 1, 2, 3, and 9, it should be possible to forecast soil trafficability by
way of the modeling flow chart in Figure 5.3. Fundamental for this effect is
combining preceding and forecasted weather condifions with spatfial soil
property, drainage (DTW) and Cl maps (Figure 5.9) to be informed about daily to
seasonal variations in soil wetness as these may vary from year to year. Figure
5.11 presents an example of how trafficability affecting soil conditions would vary
on average and by month in Block 1, summer through winter for a period of 14
years. Generally, soil trafficability conditions within this block would be best on
solidly frozen ground, but worst during snow melt when soils tend to be equally
wet across the land. In detail, April and November would be the wettest months.
During spring, summer and fall, soil frafficability would vary on account monthly
variations in precipitation and related extent of evapotranspiration as primarily
affected by canopy leaf area. According to Figure 5.11, the driest summer
occurred in 2005, while the wettest summer occurred in 2003. Soil trafficability
would also have been poor during the essentially low snowpack and frost-free

soil conditions in the winter of 2010.

A practical guide to forecast soil trafficability would establish whether the
monthly soil conditions are frozen, partially thawed, wet, moist or dry. For the wet
to dry conditions, it is important to decide likely block-specific upslope flow

inifiation areas as suggested in Table 5.8. To some extent, these suggestions
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would need to be modified by soil texture, coarse fragment content: higher FIA
numbers for well drained and rocky soils, and low FIA numbers for loamy and
clayey soils. Extended droughts would also increase FIA, therefore increasing the
areas available for off-road traffic. However, care needs to be given to not drive
along or across established flow channels, because traffic induced disturbances
in the channels would aggravate subsequent flooding effects by, e.g..
accelerating stream bank erosion, and by partially compacting well aggregated
soils that would reduce soil infiltration and hence increase soil erosion overall. An
example of yearly soil trafficability forecasting by month and related
weather-imposed DTWga assignments following the flowchart in Figure 5.3 is

provided in Figure 5.12, with focus on 2 passes.

Figure 5.11: Historical weather for Block 1 from 2000 to 2015 showing cumulative
precipitation (left-bottom), historical snowpack and modelled frost depth (left-
top). and temperatures (right-top), as well as ForHyM-modelled weekly modelled
average A & B horizon MCpg (right-bottom).
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Table 5.8: Monthly region-specific DTWga choices useful for forecasting soll
trafficability across Blocks 1, 2, 3, and 9 and northwestern New Brunswick in

general.
Month FIA
16 ha 4 ha 1 ha 0.25 ha
January Frozen - - Partial Thaw
February Frozen - - Partial Thaw
March Frozen - - Partial Thaw
April Frozen - - Very Wet
May Very Dry Dry - Very Wet
June Very Dry Dry Moist Wet
July Very Dry Dry Moist Wet
August Very Dry Dry Moist Wet
September  Very Dry Dry Moist Wet
October - Dry Moist Wet
November - Dry Moist Wet
December Frozen Dry Moist Wet

Soil trafficability:  poor when soils are wet, and worst when partially thawed:;
infermediate when moist, and best when dry or very dry.

Figure 5.12: Yearround RF-generated soil trafficability projections by month for
Block 1, with focus on 2 passes and 2014 weather-affected DTWg4 assignments.
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5.5 Concluding Remarks

While this research has shown how soil trafficability can be assessed and
forecasted based on coupling block-based soil surveys with femporal and spatial
modelling tfechniques, there are ways by which this research can be improved.
Traditional in-field data collection as done above is limited by high sampling
costs.  Area-systematic rut surveys can now be conducted by, e.g., equipping
off-road vehicles with GPS-tracking LIDAR-based rut depth sensors (Salmivaara
et al., 2018). Similarly, Giannetti et al. (2017) proposed terrestrial portable laser
scanners and Haas et al. (2016), Pierzchata ef al. (2016) and Launiainen ef al.
(2017) used unmanned airborne vehicles (UAVs) for stereo imaging and
evaluating rut depth and length based on the underlying terrain conditions. In
combination, advances in weather-affected digital soil property mapping will
further assist soil trafficability forecasting, and the validity of these forecast can
then be checked using systematically retrieved block post-operational rut depth
data. In addition, the MR and RF techniques can be used to enable the overall
soil trafficability forecasting from theoretical considerations and for numerical
model validation. In this regard, MR-generated forecast would allow generalizing
beyond the immediate survey areas, whereas the RF forecast, although more

precise and accurate, would - for the most part - be restricted to the survey areq.
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Chapter 6

Conclusion

6.1

Thesis Summary

This chapter summarizes the main developments of this dissertation and creates

a fluid connection between the published articles. Key findings are correlated to

the STRAM model.

Chapter 2: A 23 week field analysis was conducted, focusing on measuring
the relationship between soil moisture (MC) and soil strength (cone index,
Cl). Site location, species composition and soil property variability were
analyzed to model weather- and soil-dependent changes in soil moisture
and penetrability conditions. The study focused on three locations across
Fredericton, NB. The study results validated the use of ForHyM to predict MC
and Cl over time. By validating the predicted MC over time, ForHyM can be
used to model temporal changes and then applied spatially through the
use of the STRAM model introduced in Chapter 5. Without the ForHyM
model, STRAM would only be a spatial trafficability model. Validated
temporal soil MC (R? = 0.76) and Cl (R? = 0.76), are the corner stone in

modelling tfemporal effects of trafficability.

. Chapter 3: Three heavy forest operation machines equipped with ultrasonic

distance sensors and GPS trackers provided 4.2 million data points (at 10
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second infervals across 54 harvest blocks) in an effort to understand how
and where machines cause soil disturbances. It was found that the
clearance data needed to be processed by block in order to isolate where
single - to multiple-pass rutting occurred due to terrain and weather
conditions. Machine clearance was primarily found to be an issue within the
first pass and machine speed increased on drier sites over wet areas. The
sensor data was used to help enumerate machine passes and overall
effects on the blocks used in chapters 4 and 5. Number of passes was a
significant factor in the STRAM model, given that understanding how many
fimes a machine passes over a single area of land can signify greater soil
disturbance. Given the issues (brushmat and general obstruction) with the

clearance sensors, machine pass was the main output used for modelling.

Chapter 4: Inside and outside track measurements pertaining to soil
moisture and penetrability were related to the terrain, soil and weather
condifions at the time of wood forwarding operations by way of multivariate
analyses. For continuity, the 11 harvest blocks monitored were from harvest
blocks sampled in Chapter 3 for the machine sensor data. The multivariate
analysis for soil MC was applied to field determined soil parameters
(R2=0.51-0.61) as well as digitally derived DMS-based soil parameters
(R?2=0.46-0.48). Soil ClI was similarly modelled with field-determined
regression (R?=0.39) and DSM-based soil parameters (R?=0.41). It was found
that the resulting expression would predict soil moisture and soil penetrability

with an uncertainty range of 15 % and 1.5 % eight fimes out of 10.

Chapter 5. Due to the less than ideal performance of the regression results
from Chapter 4, a new analysis was conducted in the form of machine
learning algorithm Random Forest. This new model was applied to the soil
MC and CI measurements across 11 harvest blocks, as well as the rut depth
measurements from 4 blocks (2 hardwood and 2 softwood blocks). The MC

RF model R? improved from 0.47 to 0.91, while Cl improved from 0.44 to 0.88.
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The soil moisture and penefrability results led to reasonable
wood-forwarding rut depth projections by weather, block and machine
specific Soil Trafficability Model (STRAM) projections. These projections
captured 40 % and 80 % of the rut-depth variations when based on

mulfivariate and Random Forest regression analysis, respectively.

Overall, the chapters outline a procedure created to validate temporal moisture
and soil strength predictions, and extrapolate the temporal predictions spatially

with rut depth through the use of machine learning algorithm Random Forest.

6.2 Original Contribution

6.2.1 Temporal Cone Index

This project developed an in-depth analysis of the importance of daily to
seasonal soil moisture variation on soil strength. Using the results of a 23 week field
analysis, relationships were solidified between soil strength (Cl) and soil moisture,
porosity, and coarse fragments. This analysis is a contribution to the
understanding of temporal changes in soil moisture and strength over time,
comparing results across the three research sites within Fredericton, NB. The
validated model was then applied to operational blocks to help model rutting

over time which can be used to better manage harvest operations in the future.

6.2.2 Sensor Analysis

GPS units and ultrasonic distant sensors were installed on 3 machines and their
sensor readings helped support the connection between heavy forest machinery
and soil displacement. The project provided valuable outputs to connect spatial
terrain changes and tfemporal machine movement, especially in connection with
high-resolution wet-areas mapping using the cartographic depth-to-water index,

and how this would vary by antecedent to current weather conditions.
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6.2.3 STRAM Model

The STRAM model is entirely original in its development and its function as soll
frafficability projection tool. Through its multivariate formulation, this tool allows for
areo-wide generalizations based on generating a daftabase of the model
identified predictor variables. Its Random Forest formulation would use the same
data base but would require further testing and training to achieve similar actual

to prediction conformance as reported here.

6.3 Suggestions for Future Work

6.3.1 Machine Compressed Showpack Module

The mitigating snowpack effect on machine-caused soil disturbance is not yet
part of the STRAM formulation. With regard to snow pack accumulations, ForHyM
quantifies (i) the progressive effects of changing winter weather conditions effect
on snow density and snowmelt (Balland, 2002; Balland et al., 2006) and (i) the
depth and thawing extent of soil frost based on variable snowpack depth. In
general, snowpack-induced mitigation of soil disturbance impact is related to
snowpack compaction and subsequent ice formation (Brun and Rey, 1986;
Jellinek, 1957). Consequences of this formation refer reducing thawing delay and
snowmelt infiltration into the soil (Singh et al., 2000). Currently, STRAM projects zero

soil penetrability when the top soil is parfially o completely frozen.

6.3.2 Machine Mounted Sensors 2.0

Mounting an ultrasonic distance sensor and an inclinometer provided a useful
insight on the effects of machinery on the terrain (Chapter 3). This research effort
should be expanded by routinely tracking machine rutting through e.g., laser light
scanning or stereo-scanning using optical or infra-red cameras to allow a clear
digital ground conditions quantification and separation between ruts, displaced

soil, rocks, stumps, and other woody debris. This scanning should be coupled with
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machine location, speed, tire pressure, wheel rounds per minute, etc. The latter
would inform about slippage-induced extent of soil displacement in wet areas

and along slopes.

6.3.3 Integrating Real-Time Weather Forecasts

The STRAM formulations needs to be adapted to practical real-time application
purposes by automatically incorporating antecedent weather reports and current
forecasts, to allow for weather-informed soil trafficability update Glahn and Lowry
(1972). In the absence thereof, STIRAM can be used to assess overall changes in-
soil trafficability based on monthly weather assessments, as detailed in Chapter

5.

6.3.4 Model Adaptability: External Validation

The STRAM model has been calibrated for use within Northern and Central New
Brunswick, Canada. [t would be instructive fo determine whether the model
projections so generated are also applicable elsewhere, either directly, or

through further calibrations.

6.3.5 Model Adaptability: Agriculture

Apart from the wood-forwarding application, STRAM can, in principle, be
adapted to other off-road applications, whether this related to, e.g., forestry,
gardening, or recreation, including trail building and maintenance. For example,
agriculture machinery can cause similar domage to soil, with the added
disadvantage of reduced root structures, coarse fragments, or brush piles
(Hamza and Anderson, 2005; Chan et al., 2006). Agriculture practices tend to
create homogeneous soil profiles that are prone to erosion and susceptible to
compaction (Gill, 1971). In detail, STRAM generated data layers for soil moisture,
cone penetrability and potential rut depths could be useful to optimize crop

placement and related yield expectations by way of in-field zonations.
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B.3 Normalized Clearance by Block

Figure B.4: Normalized Clearance by block for pass number, speed class, and DTW
class for the JD 1110E.
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Figure B.5: Normalized Clearance by block for pass number, speed class, and DTW
class for the JD 1510E.
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Figure B.6: Normalized Clearance by block for pass number, speed class, and DTW
class for the TC 635D.
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B.4 ForHyM Site Results

Figure B.7: Daily variations in air temperature and precipitation, with modelled
stream discharge, volumetric soil moisture content including field capacities and
snowpack depth, frost depth, and volumetric soil moisture content for the wider

NWU areas.
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Figure B.8: Daily variations in air temperature and precipitation, with modelled
stream discharge, volumetric soil moisture content including field capacities and
snowpack depth, frost depth, and volumetric soil moisture content for the wider

MWU+LL areas.
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C.2 Chapter 4 Appendices

Table C.1: Soil association, landform and lithology for blocks 1-11.

. Soil Block #
Landform Lithology Association Associated
Colluvium and Non-to weakly cc:lcorequs Victoria 12
water sandstone, shale, quartzite
re-worked fill Metamorphosed non- to
weakly- calcareous slate, McGee 4
quartzite, argillite, sandstone
Granite, quartzite, gneiss,
. . argillite, volcanics and some Juniper 8
Ablation fill sandstones
Metamorphosed rhyolite, Jacquet 6.7
andesite, schist, slate, granite River ’
Mafic volcanics, gabbro, diorite Kingston 11
Basal til Metamorphosed rhyolite, Popple 10
andesite, schist, slate, granite Depot
S’rrong!y me’romgrphosed slate, Long Lake 0
quartzite, volcanics
Metamorphosed non- to
Ablation/Basal  weakly- calcareous slate, Glassville 3,5
till quartzite, argillite, sandstone
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Table C.2: Soil physical and moisture properties by block.

Block (n) Sand St Clay OM CF Do PS MCy MC, MC, CI'
B () (%) k) (k) (@/cmd) (%) (%) (%) (%)  (MPa)

1 Min 22 1.1 07 36 1.0 0.34 47 173 199 309 08

(56) Max 440 269 241 439 730 1.42 86 231.1 952 1000 44

Mean 27.1 124 65 116 424 092 65 493 410 621 24

Sb 90 60 37 72 139 019 7 327 1563 186 09

2 Min 4.6 1.7 1.7 51 270 061 50 264 328 453 06

(28) Mox 344 321 123 188 790 1.30 76 1059 709 1000 3.2

Mean 167 127 68 114 523 0.91 65 500 442 682 19

sb 74 69 29 37 129 015 5 149 9.1 13.7 07

3 Min 96 37 24 43 260 056 51 233 271 415 10

(80) Mox 437 171 127 21,6 730 1.37 77 858 684 1000 35

Mean 255 106 54 103 482 0.96 64 438 401 628 20

sb 78 37 24 5] 9.9 0.19 7 138 83 125 06

4 Min 118 52 14 40 340 061 52 179 167 222 05

(46) Max 383 147 69 185 690 1.39 75 603 462 726 36

Mean 255 92 34 94 525 098 6 324 311 495 18

sb 85 3.1 14 33 106 016 5 8.7 68 113 08

5 Mn 00 00 00 57 110 057 52 95 97 123 17

(33) Max 425 286 129 217 910 1.23 78 498 393 607 35

Mean 86 55 22 125 725 091 67 200 178 269 25

SO 137 94 38 49 249 016 6 8.1 68 106 05

6 Min 122 56 32 32 190 042 8 245 283 452 07

(26) Mox 37.1 222 148 334 610 1.44 82 986 602 1000 36

Mean 225 110 7.1 146 4438 0.90 65 560 445 693 1.7

sb 101 58 39 113 134 033 11 227 103 218 08

7 Min 133 3.7 14 40 190 059 50 255 238 329 04

(43) Max 495 164 102 197 680 1.34 76 865 877 1000 3.7

Mean 30.1 115 47 90 447 0.99 62 424 421 657 15

sb 80 32 23 37 106 017 6 122 142 190 07

8 Min 3.1 13 05 07 190 064 40 111 121 182 038

(54) Mox 51.8 180 121 165 900 1.67 73 1306 1000 1000 35

Mean 325 100 53 73 449 1.09 50 431 439 693 19

SO 116 44 23 43 164 023 8 242 195 215 07

9 Min 89 18 07 1563 00 0.18 48 203 195 280 05

(24) Mox 572 175 7.1 329 550 1.48 87 4475 1000 1000 29

Mean 33.6 103 44 241 289 079 68 1182 598 749 15

SD 129 48 17 88 170 036 11 1255 268 236 06

10 Min 00 00 00 42 220 044 47 196 143 180 1.8

(147) Max 261 245 142 325 860 1.42 83 876 61,6 1000 47

Mean 108 9.1 55 144 605 085 68 349 288 435 29

sb 79 66 40 63 164 019 7 124 96 167 07

11 Mn 00 00 00 105 140 027 61 323 249 310 04

(159) Max 375 177 184 367 1000  1.33 84 1017 519 1000 46

Mean 94 55 49 212 619 085 74 511 334 455 2.1

sb 117 67 60 62 229 026 5 135 7.1 1.3 1.0

! Blocks 10 and 11 measured max Cl per plot.
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C.3 ForHyM Calibration Site Results

Figure C.1: Modelled vs measured ForHyM generated calibration outputs for
snowpack and stream discharge for Northwestern Uplands (top), Midwestern
Uplands (middle) and Lowlands (bottom).
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D.2 Rut Depth Severity Classes

Table D.1: Rut depth severity classes.

Photo Example Description

Minimal ruts (0-5 cm):
Minor surface abrasions,
slight forest floor
disturbance, little visible
soil damage / rooft scuffing

Shallow ruts (6-10 cm):
Visible ruts, potential water
retention, minimal effects
on root and soil
productivity

Moderate ruts (10-20 cm):
Visible soil disturbance,
potential water retention,
mineral soil exposed

Deep ruts (20-40 cm ruts):
Damage to roofs,
generally thick organic
layers, exposed mineral
SOil

Extreme ruts (40+ cm):
Generally found in wet
areas, high organic
matter, machine loading
zones
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D.3 Temporal Soil Moisture Modelling

The Forest Hydrology Model (ForHyM) uses daily temperature and precipitation
(rain and snow) data as well as block-specific area, vegetation, soil horizon
texture, depth, OM, and CF (Table D.2) to predict soil moisture and temperature
fluctuations through the soil (Arp and Yin, 1992; Yin and Arp, 1994; Jutras, 2012).
Calibrating ForHyM consists of comparing actual snowpack and hydraulic flow to

modelled outputs and adjusting the output parameters (Table D.3, Figure D.1).

Table D.2: ForHyM soil profile information used to initialize each stands.

OoM CF

Stand Vegetation Layer Depth  Texture %) (%)

1 INHW, LFH 5 Organic 100 0
deep A 25 sL 15 20

rooted B 50 sL 5 20

100 sL 1 35

2 SW, LFH 10 Organic 100 0
shallow A 10 LS 2 20

rooted B 75 LS 10 24

100 sL 1 35

3 SW, LFH 10 Organic 100 0
shallow A 10 LS 2 20

rooted B 75 LS 10 24

100 sL 1 35

% TOHW, LFH 5 Organic 100 0
deep A 55 LS 8 20

rooted B 55 LS 5 20

150 s 1 25
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Figure D.1: Modelled vs measured ForHyM generated calibration outputs for
snowpack and stream discharge for stands 1-3 (top), stand 4 (bottom).
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Table D.3: ForHyM calibration variables for snowpack and saturated soil
permeability.

Blocks 1-3 9
now-to-air
Snowpack Temperofufe (g)grodoie?ﬁ 0.16 0.2
Density of fresh snow 0.16 0.2
Saturated Surface runoff 1 1
Soil Forest floor infiltration 1 1
Permeability Forest floor interflow 0.0 0.01
A&B horizon infiltration 1 1
A&B horizon interflow 0.05 0.01
C horizon infiltration 1 1
C horizon interflow 0.1 0.1
Deep water percolation 1 1
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