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Abstract

Heavy forest operations can lead to extensive soil disturbances in the form of soil

compaction and displacement resulting in deep rut formations, and increased

erosion. To mitigate these effects through forecasting, this Thesis reports on a Soil

Trafficability Model (STRAM) to estimate daily soil moisture, penetrability and

potential machine-specific soil rut depths, using the Forest Hydrology Model

ForHyM in conjunction with digital high-resolution wet-area and soil property

maps. Model development was guided using in-field data for model validation.

The data so acquired refer to (i) biweekly year-round observations of soil moisture

and penetrability conditions at select sites in Fredericton, (ii) reporting on

GPS-tracked wood-forwarding machine clearances in select harvest blocks

across northwestern New Brunswick, and (iii) analyzing soil moisture, soil

penetrability and rut depths inside and outside some of the wood-forwarding

tracks, by harvest block conditions. It was found that, through multivariate

regression analysis (MR), 40 to 60 % of the field-determined soil penetrability

variations by way of the cone penetrability index (CI) could be related to

combined variations in pore space, coarse fragment content and

weather-affected variations in soil moisture. The variations in wood-forwarding

machine clearances and rut depths followed a similar pattern, but the number of

passes over the same track needed to be taken into account as well.

Block-specific variations in elevation, forest cover type and time of operation and

machine specific variations in foot-print pressure also contributed to the rut depth

variations. Using Random Forest (RF) techniques considerably improved the fitting

ii



of the field-determined variations in soil moisture, cone index and

wood-forwarding rut depth to greater than 80 %. From MR to RF, the uncertainty

range narrowed for best-fitted pore-filled soil moisture content from ±15 to ±4.5

%, for best-fitted soil cone penetrability from ±0.7 to ±0.4 MPa, and for best-fitted

rut depth from ±13 to ±5cm.
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Chapter 1

Introduction

The increased use of heavy machinery in forest operations has led to serious

environmental problems such as a decrease in plant development (Prose, 1985;

Ayers, 1994; Grigal, 2000; Blouin et al., 2004), changing soil hydraulic properties

(Startsev and McNabb, 2000; Hamza and Anderson, 2005; Zhang et al., 2006;

Bryant et al., 2007; Bonell et al., 2010), and soil degradation, in the form of rutting

(creating potentially deep tracks, displacing soil), compaction (compression of

the soil), and erosion (structural loss) (Halvorson et al., 2001; McNabb et al., 2001;

Akay et al., 2007; Jamshidi et al., 2008; Labelle, 2008; Labelle and Jaeger, 2011).

Understanding and predicting soil trafficability, or the soils ability to support

machine traffic, has become crucial to help limit the impact of heavy forest

operations on soils. Knowing where to build roads and trails, and when to allow

heavy operating machinery onto those trails can increase productivity and

reduce costs associated with machine downtime, and trail maintenance due to

excessive rutting and increased water pooling.

1.1 Modelling forest soil trafficability

The problem faced when trying to forecast soil trafficability is the ability to

predict, not only where a machine will have issues, but also, what time of the

year it will face them, i.e. seasonal planning and day to day operations. A
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temporal knowledge of hydrothermal soil properties and atmospheric weather

conditions helps to understand how moisture moves through specific soils over

time. Spatially interpolating those soil and moisture properties as well as applying

varying scenarios of forest operational machinery allows for more complex

modelling of soil trafficability. In order to properly predict trafficability, a better

understanding is needed on the variables at play.

1.1.1 Machine variability

The forest industry utilizes a wide variety of machines to maintain forest

operations, from forwarders, grapple-skidders, and harvesters to chippers,

loaders, and transport trucks, all of which have a different impact on the soil.

Each machine has varying tire parameters, load weight and distribution, which

contribute to how they interact with the soil beneath it. The weight and payload

of the machine need to be considered when constructing management plans

for certain soil types. Increased weight load on soil can cause compaction

which can have lasting effects on soil and plant productivity (Nawaz et al., 2013;

Taylor and Burt, 1987). Soil compaction increases the Db (Rab et al., 2005; Brady

and Weil, 2008; Berisso et al., 2012; Bagheri et al., 2012) and lowers porosity and

aeration (Startsev and McNabb, 2001; Parkhurst et al., 2018). Utilizing lighter

machines with smaller loads for forest operations can significantly minimize soil

disturbance (Radford et al., 2000).

Specific tire parameters can be important when considering their effects on

efficiency on various soils. Studies have shown that different machine tires can be

used in different harvesting scenarios, for example, high flotation tires maximize

the soil/tire contact point to lower the load pressure on the ground (Taylor and

Burt, 1987; Jun et al., 2004). Larger tire footprints allow for the axle load weight to

be dispersed over a larger area, minimizing compaction. Similarly, varying levels
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of tire pressure can be use to increase or decrease the overall tire footprint

(Raper et al., 1995; Elwaleed et al., 2006). Elwaleed et al. (2006) found that by

reducing the pressure in agricultural tires from 221 kPa to 193 kPa, the ease of

motion of the tires increased, allowing more fluid movement over the soil. On the

other hand, a study by Eliasson (2005), found that tire pressure had insignificant

effects on soil disturbance when compared to the number of passes. A vehicle

that goes over the same area of land multiple times will do more damage to the

soil, even with a lower tire pressure. Although the biggest changes in soil

mechanical properties happen during the first pass.

Vehicle mobility parameters are forces that affect the tire/soil interaction point,

which include wheel traction and rolling resistance. Wheel slippage, dependent

on traction, can lead to soil disturbance through compression and loss of shear

strength. Multiple studies have tested the mobility of vehicles and their effects on

soil disturbances (Shoop, 1989; Raghavan et al., 1977; Davies et al., 1973; Suvinen,

2006; Fervers, 2004; Prakash, 2014). Shoop (1989) examined the differential

interface velocity (DIV), the speed of the wheel minus the true speed of the

vehicle and observed that traction between the vehicle tires and the soil, was

strongly influenced by soil moisture content (MC), bulk density (Db) and potential

frost depth of the soil. They summarized low soil MC tends to have high cohesion,

caused by the empty pores, but with increasing MC the traction and strength of

the soil decreases and the vehicle has greater wheel slippage. Raghavan et al.

(1977) ascertained that vehicle slippage compacts the soil the most when

slippage of the tires reaches between 15-20 % of the tire rotation velocity.

Increased slippage cause excess soil displacement. Understanding the variables

at play under the tire/soil contact point can improved modelling of any soil

disturbances associated with it.

The evaluation of wheel numerics involves simple models of the tire/soil contact

point. Generally these models utilize tire parameters (tire diameter, width, section
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height, and deflection) to predict the torque, force, and sinkage of the tire on

the soil. A commonly used wheel numeric is represented as nominal cone index

(NCI), a dimensionless factor which looks at non-tracked off road vehicles with

multiple wheels (Turnage, 1984; Saarilahti, 2002c; Vega-Nieva et al., 2009). NCI

utilizes the soils cone index (CI), or its strength of resistance, as well as tire and

machine parameters to predict a numeric representation of the effects of

machine on soil.

1.1.2 Soil physical and hydraulic properties

The strength of a soil, or its ability to withstand shear stress under pressure, is an

increasingly important topic of research, especially as mechanized forest

operations increases in scale, testing the operational limits of the soil. Extensive

study has been done to better understand, measure, and predict soil strength

and how external properties affect it. Advancements in the topic began during

World War II to assess vehicle mobility by the U.S. Army Waterways Experiment

Station (WES). They pioneered the efficient method of testing soil strength with

the use of a cone penetrometer, which measures the cone index (CI), or the soil

resistance to penetration of a right-circular cone (Rohani and Baladi, 1981). The

cone penetrometer uses calibrated size- and angle- specific cones to determine

the pressure to push the probe into the soil.

Soil strength is dependent on many factors including soil texture, moisture

content (MC), and bulk density (Db) (Towner, 1974; Muller and Schindler, 1998;

McNabb et al., 2001). A soil’s moisture level can have a drastic effect on its

capacity to withstand displacement. Studies have shown that increasing soil

moisture content (MC) reduces particle cohesion and allows for easier

displacement (Vaz et al., 2011; Lin et al., 2014). Likewise, soils rich in organic

matter tend to hold onto moisture and therefore reduce soil strength but frozen

soils increase strength by increasing particle tension (Andersland and Ladanyi,
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1994; Shoop, 1995; Bronick and Lal, 2005; Huntington, 2007). Many studies have

examined the relationship between strength and texture: sandier soils tend to

have lower moisture holding capabilities but have less particle cohesion from low

Db and OM levels (Brady and Weil, 2008; Balland et al., 2008; Kumar et al., 2012).

Similarly, clay rich soils can absorb more water and have a range of optimal

strength prior to distortion from heavy machinery (i.e. strong when dry, but very

weak when wet) (Arnup, 1999).

1.1.3 Trafficability models

Three modelling approaches are available for simulating wheel/soil interactions

to better understand the effects of heavy machinery on soil strength: (i)

theoretical/mathematical, (ii) empirical, and (iii) semi-empirical.

The theoretical models are based around terrain-model equations which utilize

ideal terrain and require known stress limits to model vehicle performance. The

finite element method (FEM) is an example of a theoretical/mathematical model

structure. Fervers (2004) utilized FEM to investigate the interaction of tires on soil,

focused on modelling the influence of different tire inflation on different soils in a

2-D mathematically derived tire model.

Empirical trafficability models use a given dataset to generate empirical

equations to predict vehicle performance. The WES method was developed by

the US Army Corps Engineer in conjunction with the cone penetrometer and the

nominal cone penetration index (NCI). The WES method calculates the mobility

index (MI) for a given machine with a given number of passes over the soil

(Saarilahti, 2002a; Eichrodt, 2003).

Semi-empirical models combine theoretical soil mechanics with empirical

formulations to predict soil trafficability across the land by way of global
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information system (GIS) technology. By spatially analyzing soil properties, models

and maps can be created to visually represent areas of high trafficability risk.

Generally these models utilize shapefiles, point or polygon shapes which

represent a given dataset (i.e. water bodies, soil polygons, etc), rasters, scalable

graphics made up of individual pixel cells which store single data values (i.e.

digital elevation model (DEM), terrain slope, etc), and GIS integrated tools to

create trafficability maps or cost-efficient trail models. A study by Suvinen (2006)

created a terrain tractability model and optimal off-road routing which

produced a cost surface based on vehicle parameters, terrain, vegetation, and

weather inputs. It generates different route alternatives based on different

conditions, for example getting from point A to point B using different routes,

based on the time of the year, the machine traveling, and the under laying

substrate. A similar study by Campbell et al. (2013) used empirically derived rut

relationships to create trafficability maps for trail damage severity. They used

depth-to-water (DTW), a predicted depth to measurable water raster input,

combined with field derived soil properties (soil texture, Db, and MC) to create a

rut depth calculation which classified trail damage.

1.2 Research question (Basic Hypotheses)

The research in this thesis is based on these questions:

1. Can field measured cone index and soil moisture content be used to predict

soil trafficability?

H1 - Field measured cone index and moisture content correlate to published

modelled equations via spatial wet-areas-mapping and temporal rut

modelling, predict and validate soil trafficability.

H0 - There is no significant correlation between field measured cone index and

moisture content to modelled indices, which then produces poor soil

trafficability predictions.
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2. Can soil trafficability be predicted spatially and temporally?

H1 - Soil trafficability can be predicted temporally via the Forest Hydrology

Model, and spatially using digital soil maps (DSL), and other digital elevation

map (DEM) derivatives.

H0 - Trafficability can not be predicted both temporally and spatially.

The purpose of this thesis is to report and to examine the effects of heavy forestry

machinery on soil rutting by building upon previous research (Vega-Nieva et al.,

2009; Campbell, 2012; Campbell et al., 2013) through comparing model outputs

to field measurements (results from machine mounted rut sensors and cone

penetrometers vs. spatial trafficability maps) and creating a tool which will help

increase forecast areas of potential high-risk rutting, specifically integrating

forecasting by season. This will be accomplished by:

(i) understanding the temporal relationship between soil moisture and soil

strength using weekly field measurements of both,

(ii) analyzing the effects of heavy equipment using clearance and GPS tracked

sensors,

(iii) creating pedotransfer functions of temporal and spatially modelled soil

moisture and soil strength,

(iv) verifying trafficability model outputs with field measured rut data using

Random Forest statistical analysis,

(v) creating a user-friendly trafficability ArcGIS model to generate spatial

trafficability predictions, connecting STELLA-based ForHyM and

ArcGIS-based model,

(vi) generating trafficability maps generated for site specific cut-blocks in Black

Brook, Deersdale, and Dorn Ridge.
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The previous studies specific to this research focused on (i) spatial assessment of

trail-soil rutting based on wet-areas mapping (Vega-Nieva et al., 2009; Campbell,

2012; Campbell et al., 2013). This project builds on this research to produce a

usable tool in reference to when (via temporal ForHyM) and where (via spatial

modelling) to minimize off-road soil trafficability impacts. The formulation and

subsequent application of the tool is primarily intended for forest operations

planning, but generalizations should also be possible to assess, e.g.,

weather-affected soil disturbances due to snowmobiles, all-terrain vehicles,

mountain-bikes, and hiking trails.

A flowchart in Figure 1.1 shows the soil trafficability modelling (STRAM)

development, essentially involving the field validation of hydrological modelling

at the daily level, and spatial interpretation of the same involving digital

elevation modelling at 1 to 10 m resolution.

Figure 1.1: Simple flowchart of model connections between ForHyM and spatial
trafficability maps.

1.3 Thesis Outline

The Chapters in the main body of this Thesis (Chapters 2, 3, 4, and 5) refer to

individual publications. This Chapter serves the general introduction purpose.
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Chapter 2 (Jones and Arp, 2017) titled ”Relating the cone penetration and

rutting resistance to variations in forest soil properties and daily moisture

fluctuations” focuses on presenting the relationship between soil strength (i.e.

cone penetration) with soil properties and measured soil moisture, as these vary

on 3 sites in Fredericton, NB over a 32 week spring-to-fall period.

Chapter 3 Jones et al. (2018) titles ”Track-monitoring and analyzing machine

clearances during wood forwarding” examines machine-specific

wood-forwarding clearance data across 11 harvest blocks in northwestern New

Brunswick. This examination was done using soil moisture, machine speed, and

number of passes as machine clearance predictor variables.

Chapter 4 Jones and Arp (2019a) titled ”Soil moisture and cone penetrability

conditions in forest soils” focuses on forecasting soil moisture (MC) and soil

strength (CI) variations across the harvest blocks in Chapter 3, with validations.

Chapter 5 (Jones and Arp (2019b); submitted for publication) titled ”Soil

Trafficability Forecasting” uses the results from Chapters 2, 3 and 4 to evaluate the

Soil Trafficability Model (STRAM) by way of multivariate and Random Forest

regression techniques.

Chapter 6 concludes with a summary of main research developments and

findings, a list of original contributions, and recommendations for future work.
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Abstract
Soil resistance to penetration and rutting depends on variations in soil texture,

density, and weather-affected changes in moisture content. It is therefore difficult

to know when and where off-road traffic could lead to rutting-induced soil

disturbances. To establish some of the empirical means to enable the ”when”

and ”where” determinations, an effort was made to model the soil resistance to

penetration over time for three contrasting forest locations in Fredericton, New

Brunswick: a loam and a clay loam on ablation / basal till, and a sandy loam on

alluvium. Measurements were taken manually with a soil moisture probe and a

cone penetrometer from spring to fall at weekly intervals. Soil moisture was

measured at 7.5 cm soil depth, and modelled at 15, 30, 45 and 60 cm depth

using the Forest Hydrology Model (ForHyM). Cone penetration in the form of the

cone index (CI) was determined at the same depths. These determinations were

not only correlated with measured soil moisture but were also affected by the

variations in soil density (or pore space), texture, and coarse fragment and

organic matter content (R2 = 0.54; all locations and soil depths). The resulting

regression-derived CI model was used to emulate how CI would generally

change at each of the three locations based on daily weather records for rain,

snow, and air temperature. This was done through location-initialized and

calibrated hydrological and geospatial modelling. For practical interpretation

purposes, the resulting CI projections were transformed into rut depth estimates

regarding multi-pass off-road all-terrain vehicle traffic.

Keywords

Soil resistance to penetration, cone index, soil moisture, texture, coarse

fragments, organic matter, weather records, hydrological modelling, soil

trafficability, rutting depth, recreational vehicles
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2.1 Introduction

The soil cone index (CI), a measure of a soils resistance to penetration (MPa), is a

commonly used soil mechanical property to determine soil strength (Lowery and

Morrison, 2002; Eid and Stark, 1998). This strength generally increases with

increasing clay, coarse fragment (CF, %) and soil density (Db, g/cm2), or reduced

pore space (PS), but decreases with increasing soil moisture (MC, %) and organic

matter content (OM, %) (Balland et al., 2008; Vega-Nieva et al., 2009; Vaz et al.,

2011; Lin et al., 2014). Hence, non-cohesive soils such as sands and sandy loams

are more easily penetrated than clay soils (Balland et al., 2008; Brady and Weil,

2008; Kumar et al., 2012), wet soils have low penetration resistances and the

resistance to penetration is low for organically enriched soils but high for stony

and frozen soils (Andersland and Ladanyi, 1994; Bronick and Lal, 2005;

Huntington, 2007).

In practice, off-road traffic may increase soil compaction and CI, which

negatively affects crop growth by way of reduced root development (Culley

et al., 1981; Soane and van Ouwerkerk, 1994; Chen and Weil, 2010, 2011; Kumar

et al., 2012). In urban developments, increased CI due to soil compaction

decreases soil infiltration of water and tree root growth (Gregory et al., 2006;

Kozlowski, 2008). However, sufficient CI-index soil strength is needed to allow on-

and off-road traffic in agriculture and forestry operations (Moehring and Rawls,

1970; Carter et al., 2007), while off-road recreational traffic needs to be

controlled to avoid soil rutting. In this, the resistance of soils to rutting is directly

proportional to the ratio between tire footprint pressure and CI (Saarilahti, 2002c;

Affleck, 2005). The former increases with increasing loading and decreasing

footprint area, which in turn, decreases with increasing tire width, wheel

diameter, and with decreasing tire pressure. In the field, rut depths further

increase from single to multiple passes, and with slope-induced tire spinning (Han

et al., 2006).
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Efforts to minimize soil rutting requires reliable forecasting of off-road soil

trafficability. Doing this, however, is challenging because soil and machine-use

conditions may vary daily from location to location. By location, low CI

conditions do not last as long for sandy soils than for loams and clays. In addition,

soil trafficability varies by the extent of soil freezing and thawing, especially when

traffic turns frozen soils into mud (Shoop, 1995).

The objective of this chapter is determining how manually derived soil CI

determinations change in response to weekly spring-to-winter changes in MC

and temperature for three contrasting soil conditions. The data so generated

allowed for (i) quantifying the relationship between CI and soil MC, (ii) emulating

and interpreting the changes in soil moisture, CI, and rutting depth, and (iii) daily

year-round modelling of soil trafficability by soil texture and soil depth. While

machine-based cone penetration testing methods (CPT: Robertson (2016))

would be more accurate and precise, manual CI determinations have the

greater portability and affordability advantage for assessing how soil trafficability

conditions vary from location to location across landscapes and seasons.

2.2 Materials and Methods

2.2.1 Location Description

Three forest sites in Fredericton, New Brunswick, were chosen for this study (Figure

2.1, Table 2.1):

i. a mixed-wood stand on sandy clay loam in a wooded section on the

University of New Brunswick campus (UNB);

ii. a hemlock (Tsuga canadensis) stand on a rich loam in Odell Park (OP);
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iii. a silver maple site (Acer saccharinum) on an alluvial sandy loam next to a

fresh-water marsh within the floodplain of the Nashwaaksis stream (SM).

The two non-alluvial soils developed on grey sandstone ablation / basal till.

Elevation for the three sites ranges from 6 to 70 m (Stobbe, 1940). The topography

varies from undulating to hilly. The upland forest vegetation is representative of

the Acadian forest species, i.e., sugar maple (Acer saccharum), red maple (Acre

rubrum), white birch (Betula papyrifera), balsam fir (Abies balsamea), black

spruce (Picea mariana), and hemlock (Tsuga canadensis). The 1950-2017

Fredericton weather record has a mean annual temperature of 6.6 °C, with

monthly means of -1.8 and 14.9 °C for January and July, respectively. Mean

annual precipitation amounts to 1100 mm, including 250 mm of snow

(Department of Environment and Climate Change Canada, 2016a).

SM

OP

UNB

SM

OP

UNB

Figure 2.1: Overview depicting of the three Fredericton (New Brunswick) locations
(left), and site-specific plot locations for SM (top), OP (middle), UNB (bottom)
(Imagery Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus
DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User
Community).
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Table 2.1: Location descriptions used for initializing ForHyM.

Site Parameters UNB Silver Maple Odell Park

Latitude (N) 45°56’40 45°57’28 45°58’46

Longitude (W) 66°38’34 66°40’17 66°39’44

Elevation (m) 70 8 29

Slope (%) 4.5 2.5 2.7

Aspect (°) 30 132 24

Canopy Coverage
Deciduous:
Coniferous

20:40 70:0 30:30

Rooting habit Shallow Deep Shallow

Forest floor depth
(cm)

8 2 5

Soil Series Sunbury / Till
Riverbank /
Glaciofluvial

Deposits
Sunbury / Till

Soil Classification
Gleyed
Sombric
Brunisol

Gleyed
Humic

Regosol

Orthic
Humo-Ferric

Podzol

Mineral soil texture Sandy loam
Loamy sand -
Sandy loam

Silty loam -
Sandy loam

Subsoil texture Sandy loam Loamy sand Silty loam
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2.2.2 Field Experiment

Soil layers were described and samples were taken from freshly dug soil pits at

each of the three locations. Five soil volumetric moisture content (MCV) and CI

readings were taken manually each week from May 29, 2015 to November 2,

2015 within two circular plots (1.5 m radius) near the soil pits at each location. This

was done using a Delta T HH2 moisture meter and a Humboldt digital cone

penetrometer (cone area at base = 1.5 cm2; cone angle 60°). The MCV reading

were taken at 7.5 cm mineral soil depth. The CI readings were obtained at 15, 30,

45, and 60 cm depths, but were not recorded where obstructed by logs, coarse

roots, and surface-accumulated rocks.

The soil samples were placed into labeled freezer bags for storage. Prior to

analysis, the samples were dried in a forced-air oven 75°C for 24 hours, crushed

with a mortar and pestle and passed through a 2 mm sieve to remove and

determine the CF. The fine-earth fraction was used to determine its sand, silt, and

clay content using the hydrometer method (Shelrick and Wang, 1993). The soil

carbon content (C, %) of this fraction was determined using the LECO CNS-2000

analyzer. Soil OM content by weight (OMg) was determined by setting OMg =

1.72 x C %. The pore-space filled moisture content (MCPS) was inferred by

assuming that the soil gravimetric moisture content (MCg), Db and the PS would

be affected by depth and OM content as follows (Balland et al., 2008):

Db =
(1.23 + (Dp − 1.23) × (1 − exp(0.0106 ×Depth)))

1 + 6.83 ×OMw
(2.1)

MCg = MCV ×Db (2.2)

MCPS =
MCV
PS

(2.3)

where DP is particle density (2.65 g/cm3), and PS is cm3 of pore space.
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2.2.3 Hydrological Modelling

The forest hydrology model (ForHyM) (Arp and Yin, 1992; Yin and Arp, 1994;

Jutras, 2012) was used to emulate the changes in daily soil moisture, soil

temperature and snowpack conditions for each of the three locations from 2006

to 2017. Doing this involved compiling the daily Fredericton weather records for

air temperature, precipitation (rain, snow), stream discharge and snow depth on

open ground (Department of Environment and Climate Change Canada,

2016a,b). Also specified were elevation, slope, aspect, and extent of forest cover

(Table 2.1). The model-internal water and head flow parameters pertaining to soil

permeability, thermal conductivity, and heat capacity were plot-adjusted by

texture, OM, and CF content (Table 2.2), and by comparing actual with modeled

soil moisture content. This was done through manually resetting the default values

for: (i) the air-to-snow-pack heat-transfer coefficient; (ii) the initial snowpack

density of freshly fallen snow to reflect the open-ground conditions at the

weather station (Balland et al., 2006), and (iii) the lateral soil permeability to

account for lateral flow tortuosity (Jutras and Arp, 2010, 2013). These adjustment

ensured that the model output conformed to actual snowpack depth and

stream discharge records.

2.2.4 Data Analysis and Model Projections (MCV, CI, rut depth)

The data and ForHyM estimates for MCV, CI, texture, CF, OM, Db, and PS were

entered into a spreadsheet by location, date, and soil depth. This compilation

served (i) to generate basic statistical summaries, (ii) to analyze the measured

and modelled time-series plots for MCV and CI, and (iii) to determinate the best

fitted linear and multiple regression models with CI as dependent variable, and

with MCV (measured, modelled), soil texture, OM, CF, PS, and soil depth as

independent variables. A linear regression model served to relate CI at 15, 30, 45

and 60 cm soil depth to measured and ForHyM modelled MCV. A multiple
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Table 2.2: ForHyM initialization requirements by soil layer per plot and location.

Site Plot Layers Depth
(cm)

Sand
(%)

Clay
(%)

Silt
(%)

OM
(%)

CF
(%) Rooting

UNB 1 LF -8 Organic 100 0 Plentiful fine

Ah 0-15 43 14 43 25 1 Plentiful fine

Bmg 15-40 66 10 24 5 10 Abundant fine-med

Cxg1 40-70 66 10 24 1 20 Few coarse

Cxg2 70+ 66 10 24 0 70

2 LF -8 Organic 1 0 Plentiful fine

Ah 0-15 43 17 40 7 1 Plentiful fine

Bmg 15-40 66 10 24 2 10 Abundant fine-med

Cxg1 40-70 66 10 24 1 20 Few coarse

Cxg2 70+ 66 10 24 0 50

SM 1 L -2 Organic 100 0

Ah 0-15 48 17 35 10 0 Abundant fine

Cg1 15-65 44 17 39 5 10 Few coarse

Cg2 65-105 35 18 47 0 15 Few coarse

Cg3 105+ 35 18 47 0 15

2 L -2 Organic 100 0

Ah 0-15 48 17 35 20 0 Abundant fine

Cg1 15-45 44 17 39 10 5 Few coarse

Cg2 45-95 35 18 47 0 10 Few coarse

Cg3 95+ 35 18 47 0 15

OP 1 LFH -5 Organic 1 0 Plentiful fine

Ahe 0-15 58 18 24 10 1 Plentiful fine-med

Bf 15-40 54 20 26 5 5 Abundant med

BC 40-90 54 20 26 1 10 Few coarse

C 90+ 56 12 32 0 10

2 LFH -5 Organic 1 0 Plentiful fine

Ahe 0-15 58 18 24 10 1 Plentiful fine-med

Bf 15-35 54 20 26 5 15 Abundant med

BC 35-70 54 20 26 1 15 Few coarse

C 70+ 56 12 32 0 15
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regression model served to relate CI to MCV (%), PS (%), and CF (%) as follows:

log10CI = a+ b× PS + c×MC + d× CF (2.4)

where MCPS is the water-filled portion of the pore space, in percent. The best-fitted

model so generated was incorporated into the ForHyM model to determine how

MCV, CI, and rutting depths pertaining to all-terrain vehicles (ATV) traffic would

vary over time at each of the three locations. The equations adopted for rut

modelling were as follows (Saarilahti, 2002d; Vega-Nieva et al., 2009):

Potential rut depths for n passes:

Zn =
1627

NCI
× n

1

2 (2.5)

with nominal cone index (NCI) given by:

NCI =
(1000 × CI × b× d)

W
×

√
(δ/h) × 1

(1 + 2d)
(2.6)

where b is tire width (m), d is tire diameter (m), h is section height (m), δ is tire

deflection (m) given by 0.008 + 0.001 (0.365 + 170/p ), p is tire inflation pressure

(kPa), W is vehicle weight + load (kN) per number of wheels, and n is number of

vehicle passes along the same track. Potential rutting depths for an all-terrain

recreational vehicle (ATVs) were determined, using the following specifications:

W = 3.1 kN; b = 0.254 m; d = 0.62 m; h = 0.3 m; p = 34.4 kPa; n = 10 passes.

To visually represent the temporal changes in MC topographically and over

seasons, the MCPS was spatially related to the depth-to-water index (DTW). This

index was generated from a 1-m resolution bare-earth digital elevation model

(DEM, vertical and horizontal error ± 15 cm) for the Fredericton area (GeoNB,

2015a). This index determines the elevational rise along the least slope-path from

each cell across the landscape to its nearest open-water cells corresponding to

streams, lakes, rivers and open shores (Murphy et al., 2009b; White et al., 2012).
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Changing the upslope flow accumulation area by channel flow initiation (FI), i.e.,

changing the amount of upstream area needed to initiate streamflow, allows for

indexing DTW by season. For example, FI = 4 ha generally represents permanent

streamflow at the end of summer, FI = 0.25 ha represents the extent of ephemeral

stream segments that flow during and after snowmelt, and FI = 1 ha represents

channel flow during transitional periods from fall to winter. The resulting DTW

rasters with FI = 4, 1, and 0.25 ha were used to determine how the soil moisture

conditions and rutting depths would vary across the terrain associated for the

three sampling locations by season. FI was determined through prior field

validation and studies Murphy et al. (2007). This was done by applying Eq. 2.7

and Eq. 2.8, i.e. (Murphy et al., 2009b; Balland et al., 2008):

MCPS = 1 − [1 −MCPS(DTWridge)]×[
(1 − exp(−k ×DTW )

(1 − exp(−k ×DTWridge)
)

]P (2.7)

RDn = RDn,ridge − [RDn,ridge −RDn,DTW=0]×[
(1 − exp(−k ×DTW )

(1 − exp(−k ×DTWridge)
)

]P (2.8)

with p=2, p and k as soil-specific parameters ranging from 0.2-2, and DTWridge

(m), RDn,ridge and RDn,DTW=0 (mm) as rut depth determined from the driest and

wettest parts of each.

2.3 Results

2.3.1 Soil Moisture and CI Measurements

Each of the three sites showed distinct variations in soil properties, strength, and

moisture readings over the course of 23 weeks. Given the plot-by-plot soil

property differences, and tracking the changes in soil moisture over time,
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revealed that the OP plots drained quickly. In contrast, the UNB plots varied the

most from wet to dry and back again to wet from spring to fall (Figure 2.2). In

direct correspondence, resistance to cone penetration varied the least for the

two SM plots, and the most for the UNB plots. These differences arose from the

compacted and poorly drained sandy loam for the UNB plots, the well-drained

loamy sand with low CF content for the OP plots, and the seasonally recurring

flooding of the SM plots (Tables 2.1 & 2.2). The high springtime levels for MCV

within the top 15 cm of the soil at the UNB and SM are due to the high Ah-layer

OM contents, which according to Eq. 2.1 - lowers the Db and enhances the

soil-filled PS between the CF.

Figure 2.2: Left: Measured MCV for the top 15 cm of soil. Right: Measured CI at 15,
30, 45, and 60 cm depth (right) for Plots 1 and 2 at the OP, UNB, and SM locations.

Plotting the CI measurements at 15 cm depth to the MCV measurements revealed

that the log-transformed CI and MCV values are linearly related to one another as
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shown in Figure 2.3 (left), as follows:

log10CI15cm = .62 − 0.52 × log10MCV + 0.20 × UNB

R2 = 0.60, RSME = 0.13,MAE = 0.10

(2.9)

with the UNB location coded 1 when applicable and 0 otherwise. Similarly strong

correlations between MC and CI have been reported elsewhere (Young and

Berlyn, 1968; Busscher et al., 1997; Vaz et al., 2011). With respect to increasing soil

depth, CI tends to increase, as shown in Figure 2.3 (right) - CI increases, by

plotting the ratio of the weekly averages of CI over CImax per plot by location. A

similar trend has been reported (Carter et al., 2000; Campbell et al., 2013;

Porsinsky et al., 2006).

Figure 2.3: Scatterplots of measured log10CI versus measured log10MCV (left) and
of the weekly averages of CI / CImax for the OP, UNB, and SM locations (right).

2.3.2 Estimating Soil Moisture and CI through Hydrological Modelling

The modelling of the year-round MC conditions required Fredericton-specific

ForHyM initialization and calibrations. These included Fredericton-specific

calibrations for snowpack depth and stream discharge required using daily

Fredericton Airport weather records for rain, snow and air temperature, and
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adjusting the ForHyM-default settings for lateral and downward water flow, as

listed in Table 2.3. The plot-specific ForHyM initializations for are listed in Table 2.1

and Table 2.2 refer to entering the plot- and/or layer-specific values for slope,

aspect, vegetation type and cover, forest floor depth, percentages for sand, silt,

clay, CF, OM, and layer depth. Shown in Figure 2.4 are resulting time-series plots

for air temperature and precipitation (input), snow pack depth, stream

discharge, MCV (top 15 cm, actual and modelled), and frost depth (modelled).

The resulting scatter plots in Figure 2.5 for actual and best-fitted ForHyM

snowpack depth and top 15 cm MCV demonstrate a reasonable good fit, with

R2 = 0.81 for the snowpack, 0.62 for stream discharge, and 0.76 for the MCV (Table

2.4).

Table 2.3: ForHyM calibration for the Fredericton area: default multipliers.

Parameters Multipliers

Snowpack Multipliers
Snow-to-air temperature
gradient multiplier

0.16

Density of fresh snow 0.2

Ksat Multipliers Surface runoff 1

Forest floor infiltration 1

Forest floor interflow 0.01

A&B horizon infiltration 1

A&B horizon interflow 0.02

C horizon infiltration 1

C horizon interflow 0.01

Deep water percolation 1

For the purpose of predicting how CI would vary across time by soil texture, Db and

CF content (Table 2.2), it was necessary to use the ForHyM-generated depth- and

time-dependent MCV output for the 0 - 15, 15 - 30, 30 - 45 and 45 - 60 cm soil layers

as predictor variables. Doing this involved estimating how much of the infiltrating
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Figure 2.4: ForHyM time-series plots for daily air temperature and precipitation
(ForHyM input), actual as well as modelled output for stream discharge and
snowpack depth for Fredericton, NB, as well as location-specific modelled frost
depth.
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Figure 2.5: Actual versus ForHyM best-fitted scatterplots for MCV (top 15 cm) (left),
monthly stream discharge (middle), and snowpack depth (right).

Table 2.4: Best-fitted regression model for measured (actual) versus modelled top
15-cm soil MCV by location (UNB, SM, OP) and overall.

Parameter n Intercept
(SE)

Coefficient
(SE)

t-
value

p-
value Adj.R2 RSME MAE

UNB 37 13.88 (1.69) 0.68 (0.04) 17.31 <0.001 0.90 5.47 4.50

SM 41 20.54 (1.82) 0.38 (0.04) 9.17 <0.001 0.67 4.77 3.91

Odell Park 41 11.69 (1.75) 0.41 (0.07) 5.72 <0.001 0.44 4.01 3.06

All Sites 118 11.53 (1.19) 0.61 (0.03) 19.36 <0.001 0.76 6.57 5.48
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and percolating water would be retained at any time within the fine-earth fraction

of each layer. For example, the available for water retention would decrease with

increasing CF content. Consequently, there would be less PS to fill between the

CF during wet weather conditions, and there is also less water available for root

uptake during warm summer weather (Baetens et al., 2009). This being so, the

ForHyM-generated projections in 2.6 by location and soil layer show greater MCV

and MCPS variations for the stony UNB location, followed by the less stony SM and

the more sandy OP locations. In combination, the ForHyM projections in Figure 2.6

capture the plot-by-plot MCPS variations such that OPmc >SMmc >UNBmc.

Figure 2.7 and the correlation coefficients in Table 2.5 show how CI varies with

varying soil texture (sand), CF, OM, PS, and MCPS. In general, CI decreases with

increasing PS and sand content due to decreasing particle-to-particle contacts.

Increasing OM content decreases CI by way of soil aggregation, i.e. by further

loosening the point of contact among the aggregated soil particles. The

CF-induced increase in CI refers to the increasing strength needed to displace

the coarser particles away from cone penetration path (Rücknagel et al., 2013).

Together, sand, OM CF and PS affect the daily variations in CI and MC retention

through their combined effect on soil pore space, texture, and drainage

(Alexander and Skaggs, 1987; Balland et al., 2006; Wesseling et al., 2009).

Subjecting the correlation matrix in Table 2.6 to factor analysis reveals that the CI

variations can be grouped into three CI determining factors. Factor 1 is a Location

Factor, which relates a component of the CI variations to location- and layer-

specific CF and PS determinations. Factor 2 is a MC Factor, which relates some of

the CI variations to MCPS. Factor 3 is strongly related to Sand, but has a non-salient

effects on CI.

Using PS, MCPS, and CF as independent variables produced the following best-
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Figure 2.6: ForHyM-generated MCV and MCPS% projection for the 0-15, 25-30, 30-
45 and 45-60 cm soil layers by location and plot.
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Figure 2.7: Plotting plot-by-plot measured CI vs. OM, Sand, PS, MCPS, and CF,
showing PS, MCPS, and CF as stronger CI predictor variables than OM and Sand.
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Table 2.5: Correlation matrix for plot- and layer-determined CI, OM, Sand, CF and
ForHyM-estimated Db, MCV, MCPS.

Variables CI MCPS MCV SP CF Sand Db OM

CI 1

MCPS -0.26 1

MCV -0.52 0.72 1

SP -0.39 -0.37 0.32 1

CF 0.55 0.35 -0.18 -0.74 1

Sand -0.16 -0.30 -0.20 0.21 -0.42 1

Db 0.39 0.36 -0.32 -1 0.73 -0.20 1

OM -0.31 -0.31 0.35 0.96 -0.59 0.07 -0.97 1

Table 2.6: Factor analysis of Table 2.5

Parameters Factor 1 Factor 2 Factor 3

CI 0.72 0.75 -0.02

MCPS 0.18 -0.88 -0.26

SP -0.92 0.11 -0.09

CF 0.86 0.03 -0.23

Sand 0 0.15 1.00
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fitted multiple regression result for all soil layers and locations combined:

log10CI = 0.26 − 0.29 × PS − 0.41 ×MCPS + 1.04 × CF

R2 = 0.54, RMSE = 0.36,MAE = 0.29

(2.10)

This result is illustrated in Figure 2.8 by way of the 3D plots, which reveal moderate

CI increase with decreasing MCPS and a rapid CI increase with increasing CF. In

reality, CI and soil strength should decrease again as MCPS drop towards zero as

the soil becomes more brittle due to reduce particle-to-particle

hydrogen-bonding at low MC (Manuwa, 2012).

Figure 2.8: Modelled CI (Eq. 2.10) in relation (a) to MCPS and PS at CF = 20%, and
(b) to CF and MCPS at SP = 20%.

While Sand and OM are important water retention and porosity predictor

variables (Hausenbuilder, 1978; Krzic et al., 2004), including them as part of the

multiple regression process did not significantly improve the best-fitted results,

likely due to the significant correlations between OM and PS and between Sand

and CF in Table 2.5. However, adding the sampling locations to the predictor

variables (each location within the data set coded 1 and 0 where applicable,
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else 0) improved the best-fitted result as follows:

log10CI = 0.44 − 0.50 × PS − 0.39 ×MCPS + 0.69 × CF − 0.09 × SM

R2 = 0.60;RMSE = 0.33,MAE = 0.27

(2.11)

This means that the CI values at the SM plots are, on average, slightly lower than

at the other locations. This difference may be related to unaccounted difference

pertaining to, e.g., CF size (generally smaller than at the other two locations),

and differences in rooting pattern.

Repeating this analysis by location and by soil depth produced the best-fitted

results listed in Table 2.7. From this, it can be noted that R2 remained about the

same by location, varying only from 0.41 (SM) to 0.66 (UNB), but decreased with

increasing soil depth from 0.6 at the top to 0.1 at 60 cm soil depth. This decrease

would mostly be due to the location-by-location Db, MC and CF differences. This

is because (i) the ForHyM-generated MC estimates already take the effect of CF

on MCPS into account, and (ii) the CI readings become increasingly erratic when

pushed through soils with increasing CF content.

Table 2.7: Linear regression results for measured vs. modelled CI by depth and
location.

Parameter n Intercept
(SE)

Coefficient
(SE)

t-
value

p-
value

Adj.
R2 RMSE MAE

All depths 380 0.01 (±0.05) 1.04 (±0.04) 23.13 <0.001 0.58 0.34 0.27

15 cm 119 0.04 (±0.08) 1.05 (±0.09) 11.36 <0.001 0.52 0.29 0.24

30 cm 114 -0.06 (±0.09) 1.05 (±0.08) 13.92 <0.001 0.63 0.34 0.28

45 cm 90 -0.21 (±0.12) 1.25 (±0.10) 12.75 <0.001 0.64 0.35 0.28

60 cm 58 0.53 (±0.19) 0.56 (±0.16) 3.45 0.001 0.16 0.32 0.27

SM 167 0.23 (±0.07) 0.77 (±0.07) 10.72 <0.001 0.41 0.27 0.23

Odell Park 145 -0.47 (±0.13) 1.51 (±0.12) 12.76 <0.001 0.53 0.35 0.27

UNB 69 0.01 (±0.01) 1.02 (±0.09) 11.59 <0.001 0.66 0.38 0.31
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The dependency of CI data on soil PS, MC, and CF content was further

evaluated through multiple regression analysis based on literature-generated CI

formulations (Table 2.8). The results of so doing indicated that (i) Eq. 2.10 provides

the best data representation overall, (ii) the linear formulations for CI are

somewhat weaker than the logarithmic formulations. Also, (iii) soil porosity (or

density) and MC are the more persistent and significant CI predictor variables

than either sand or CF content alone.

Table 2.8: Review of functional relationship between CI and soil properties.

# Eq.
Coefficient Parameters Adj.

RMSE MAE
a b c d e f R2

1 log10CI = a + bPS
+ cMCPS + cCF

0.26
(±0.05)

-0.29
(±0.07)

-0.40
(±0.03)

1.04
(±0.10) 0.52 0.36 0.29

2 log10CI = a + bPS
+ cMCPS + dS

0.74
(±0.05)

-0.78
(±0.06)

-0.40
(±0.03)

-0.31
(±0.09) 0.36 0.42 0.34

3 log10CI = a + bPS
+ cMCPS

0.62
(±0.04)

-0.80
(±0.06)

-0.37
(±0.03) 0.33 0.43 0.34

4 CI = a+b MCV +
cS + dDb

2.26
(±0.13)

-2.21
(±0.17)

-1.50
(±0.24)

-0.001
(±0.01) 0.33 0.42 0.34

5 log10CI = a +
bMCV + cDb

0.04
(±0.04)

-0.73
(±0.07)

0.12
(±0.02) 0.35 0.21 0.16

6
CI = a + bMC +
cDb + dMCG

2 +
eDb

2 + fMCgDb

0.92
(±0.43)

-3.44
(±1.62)

1.20
(±0.46)

3.89
(±1.47)

-0.26
(±0.14)

-0.85
(±0.64) 0.39 0.42 0.33

1: this study; 2: (Vega-Nieva et al., 2009); 3: (Campbell et al., 2013) ; 4: (Kumar et al., 2012)
5: (Meek, 1996) 6: (Busscher and Sojka, 1987)

2.3.3 Predicting potential ATV-caused soil rutting depth

ForHyM was used to transform the MCPS and CI projections over time into likely

ATV-generated rut depths April 2013 to April 2017, using the average top 15 cm

PS and CF values and Eqs. 2.5, 2.6, and 2.10, for the two plots at the three

sampling locations. The results are represented by the time-series plot in Figure
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2.9. As to be expected, deepest ruts would be incurred during the spring and fall,

with minor blips during summer. Ruts could also be incurred during winter when

some of the frozen soils would thaw due to interim warm weather and upward

geothermal heat flow underneath the heat-insulating snow accumulation

(Šušnjar et al., 2006). While trafficability advisories due to wet soil conditions exist

from fall to spring, such advisories are generally aimed at climate regional levels

and therefore fall short in terms of being precise regarding the when and where.

The extent to which soil rutting would be seasonally affected across the general

neighbourhood of each of the three location was ascertained through digitally

generating the elevation-derived cartographic depth-to-water index (DTW)

associated with 4, 1 and 0.25 ha upslope areas for streamflow initiation (Murphy

et al., 2009b) (Figure 2.10). Using these patterns in combination with Eqs. 2.5 and

2.6 produced the spatial MCPS and potential ATV-related rut depth maps in

Figure 2.11, intended to be representative of the off-road soil trafficability

conditions during spring, end of summer and the fall to winter transition. As

shown, the UNB location has the potential to be the most trafficable among the

three locations in the summer, but would be least during spring and fall. In

contrast, the OP location would have the least traffic impact across the area and

seasons based on texture-facilitated soil drainage. However, moderate soil

rutting would occur within the 4-ha DTW<1 m zone at OP. Overall, the soil rutting

conditions follow the sequences: dry weather: UNB <OP <SM; wet weather: OP

<SM <UNB (Figure 2.9).

2.4 Discussion

This chapter describes ways and means by which the resistance of soils to cone

penetration can be analyzed and modeled at the daily level year-round, over

many years, and for the varying soil conditions by select locations. The results so

obtained are - apart from study specific biases - generally consistent with what
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Figure 2.9: ForHyM-generated unfrozen MCPS, CI, and rutting from April 2013 to
April 2017 for the topsoil (top 15 cm of soil) for plot 1 (top) and plot 2 (bottom) at
UNB, OP, and SM.
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Figure 2.10: Cartographic depth-to-water index (DTW 1 m), overlain on the hill-
shaded LiDAR-derived bare-earth digital elevation model for the UNB, OP, and
SM locations for the end-of-summer (top), the spring-to-summer as well as fall-to-
winter transitions (middle), and early-spring conditions, as emulated using upslope
stream-flow initiation areas amounting to 4, 1 and 0.25 ha, respectively.
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Figure 2.11: Soil MCPS and rut depth interpretations of the season representative
DTW patterns in Figure 2.10. Top: end-of summer. Middle: spring-to-summer and
fall-to-winter transitions. Bottom: after the snowmelt season.
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has been reported in the literature. These biases would inter alia refer to

differences in CI methodology by, i.e., cone dimensions, speed of cone

penetration, and field versus laboratory testing (Vega-Nieva et al., 2009).

While the plot-by-plot determinations of this study are limited to three contrasting

forest locations, they are at least representative of how MC, CI, and rutting depth

can vary by soil properties, season and topographic position for the Fredericton

region, as demonstrated through daily and spatial modeling. The extent to which

this approach can be generalized requires additional research. For example, the

spatial and DTW-dependent soil trafficability formulation for CI and rut depth

should be tested across a wider range of glaciated landforms. Similarly, the

meteorological data used in ForHyM is limited to the Fredericton airport weather

station which is applied across all sites. For a better general understanding of

weather impacts different meteorological parameters would be needed. For this

study the data was limited to the single airport dataset which limits the extend of

meteorological data on the model. Doing so would involve extending the above

regression analyses across a wider range of independently varying soil types and

properties. For example, where soils are cemented because of pedogenic Fe

and Ca accumulations, the approach would need a cementation predictor

variable. In some cases, the mix of the best-fitting regression variable and

regression coefficients may also differ, as demonstrated above in, e.g., Table 2.8.

Key to applying the approach across time and landscapes is the ability to

estimate how soil trafficability changes in direct response to spatially and

temporally varying topo-pedo-hydrological conditions, meter-by-meter.

Traditional soil survey maps can be helpful in this regard by only if the individual

map units and borders conform to actual soil drainage contours. To this extent,

further progress can be made by:

i. refining and adjusting each map unit to its landform- and DEM- defining
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drainage position;

ii. exploring how the trafficability affecting soil properties (MC, texture, CF, OM,

Db, depth) vary across the landscape of interest from the highest to the

lowest elevation points, and

iii. determining the point of streamflow initiation inside each flow channel either

through field observations or through DEM-based flow-initiation algorithms.
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Together, these refinements would add further precision to the MC and rut depth

maps in Figure 2.11. For example, there would be a noticeable difference

between DTW, MCPS and ATV rut depth projections within and outside the

floodplain associated with the SM location.

Some progress towards these refinements has already been made in terms of

checking existing trail conditions in terms of ATV-induced rutting extent, and by

correlating this extent to the ridge-to-valley of the cartographic depth-to-water

index [DTW; Murphy et al. (2009b)]. The multi-pass implications on

wood-forwarding rutting depth have been reported by Meek (1996) and were

further evaluated by Vega-Nieva et al. (2009) by way of Eqs. 2.5 & 2.6. However,

much more work needs to be done by not only addressing the DTW-emulated

variations in soil wetness but also by addressing the changes in Db, texture, CF

and OM content as these would vary from ridge tops to valleys in a systematic

manner. For example, upslope soils would generally be thinner and coarser with

less OM than downslope soils. The reverse could occur in severely eroded

medium-textured soils, with the more cohesive soil remains upslope and the more

easily eroding sand and silt fractions accumulating downslope.

Since the above analysis is restricted to bare ground conditions and mineral soil

layers, rut-reducing surface accumulations of snow, ice, forest litter, peat, and

roots are not addressed. Bare-ground conditions, however, exist forested

landscapes along non-paved roads, after ground-exposing operations such as

root extractions, mounding and plowing, and underneath forest cover where

litter accumulations are low or absent due to fast litter decomposition rates. The

latter condition is more prevalent under hardwood and pine forests than under fir

and spruce forests. Repeated recreational traffic in such areas under moist to

wet weather conditions would induce significant rut-induced damage through

trail braiding, soil erosion, gulley formation, and stream and lake sedimentation

(Campbell et al., 2013).
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Also not addressed are the effects of snow and ice build-up on top of the soil

during winter, which would increase the resistance to soil penetration,

compaction, and rutting by increasing the soil bearing capacities. Since not all

the water is frozen in sub-zero clay and OM-enriches soils, there could be

problems associated winter-based soil rutting followed by instantaneous flash

freezing. In summary, the above soil rutting assessment is only applicable for bare

ground conditions. Soils covered by forest litter, slash, snow, and ice would

obviously reduce rutting.

2.5 Concluding Remark

In summary, the above soil rutting assessment via manual testing of the temporal

changes in the soil resistance to penetration is limited to the immediate area at

and around the three sampling locations of this study. More research is needed

to extend and test this research regarding general applicability. As shown, the

approach taken would allow this by way of hydrological and digital elevation

modeling, and further procurement of CI-relevant soil information.
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Abstract
This chapter reports on track-monitoring and analyzing machine clearances

during wood forwarding across seasons and weather, using ultrasonic distance

sensors in combination with time-stamped GPS xy locations, at 10 sec intervals.

The resulting data, obtained from 54 harvesting blocks, were analyzed by

machine type (two wood forwarders and one grapple skidder), stand type

(softwood plantation versus natural hardwood stands), month, slope,

cartographic depth-to-water (DTW) classes, number of passes along track, and

machine speed. For the most part, clearances were highly variable, due to

passing over stumps, rocks, harvest slash, brush mats, ruts, and snow cover when

present. This variability was on average greater for the lighter-weight wood

forwarders than for the heavier-weight skidder, with the former mostly moving

along equally spaced lines on brush mats, while the paths of the latter spread

away from central wood-landing sites. In terms of trends, machines moved (i)

more slowly on wet ground, (ii) faster during returning than forwarding, and (iii)

fastest along wood-landing roads, as to be expected. Low clearances were most

notable during winter on snow-covered ground, and on non-frozen shallow DTW

and wet multiple-pass ground. During dry weather conditions, clearances also

increased from low-pass tracks to multi-pass tracks due to repeat soil compaction

of broadened tracks. These results are presented block-by-block and by

machine type. Each block-based clearance frequency pattern was quantified

through regression analysis and using a gamma probability distribution function.

Keywords

Wood forwarding, GPS tracks, clearance frequencies, number of passes, speed,

ground conditions, depth-to-water (DTW)
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3.1 Introduction

Modern wood forwarding operations require heavy machines to move across

sensitive terrain and soil conditions. In this regard, improper timing by season and

weather can lead to substantive soil compression and rutting across and along

flow channels, across ridge tops, through depressions, and moist to wet soils. As

soils become compacted and/or displaced, studies have shown that:

i. soil porosity is reduced affecting the oxygen levels and gas distributions within

the soil (Czyz, 2004; Berisso et al., 2012);

ii. increasing soil bulk density affects plant root distribution and decrease

hydraulic conductivity thereby reducing plant available water while

enhancing runoff and soil erosion (Horn et al., 1995; Startsev and McNabb,

2000; Jamshidi et al., 2008);

iii. roots are damaged, facilitating root rot (Grigal, 2000; Kozlowski, 2008);

iv. soil compaction has lasting effects on soil, with natural soil-structure recovery

varying from a few years to decades (Prose, 1985; Brady and Weil, 2008; Ezzati

et al., 2012).

This chapter focuses on monitoring and examining machine-to-ground

clearances in relation to number of passes, wood forwarding machine speed,

and dry to wet ground conditions involving 54 harvest blocks in New Brunswick,

Canada. For this purpose, two forwarders (JD 1110E and 1510E) and one grapple

skidder (TC 635D) were equipped with ultrasonic distance sensors, and GPS data

loggers. The wood-forwarding operations involved retrieving logs from clear cuts,

shelter-wood cuts, and commercially thinned forest plantations. The thinning

operations involved laying out brush mats used to reduce soil compression

impacts (Labelle and Jaeger, 2012). The dry to wet variations in ground

conditions were related to changing seasons and weather in time, and to

topography across each harvest block by way of the cartographic

43



depth-to-water index (Murphy et al., 2011; White et al., 2012).

3.2 Methods

3.2.1 Site Description

This harvest-block study was spread across four ecoregions in New Brunswick,

focusing on a North-western area near Saint-Quentin, and a mid-western area

centralized near Juniper and Dorn Ridge, as described below (Figure 3.1). For this

study, the areas were split into three groups - Northwestern uplands (NWU),

Midwestern uplands (MWU), and lowlands (LL).

The NWU study area (elevation range 230 to 450 m) is located on the Chaleur

uplands in northwest New Brunswick, north of Grand Falls and encompasses both

the highlands and the northern part of the Southern Uplands ecoregion. The

forest cover includes tolerant hardwoods, mixed woods and forest plantations

(spruce species). Dominant tree species refer to sugar maple (Acer saccharum

Marsh.), balsam fir (Abies balsamea L.), yellow birch (Betula alleghaniensis Britt.),

red spruce (Picea rubens Sarg.), black spruce (Picea mariana Mill.) and white

spruce (Picea glauca (Moench) Voss). Mean annual air temperature from

1990-2016 amounted to 3.6°C, with mean annual January and July air

temperatures at -5.3°C and 12.5°C. Mean annual precipitation was 1140 mm,

with 310 mm as snow Department of Environment and Climate Change Canada

(2016a). Black Brook is underlain by Ordovician-Silurian carbonates and

Ordovician-Silurian-Devonian deep-water clastics. The terrain varies from rolling

to hummocky, interspersed by steeply incised valleys. Surficial deposits vary from

residuals to stony ablation and loamy lodgement tills, glaciofluvial deposits

(moraines, kames, eskers), and alluvium.
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Figure 3.1: Map of New Brunswick showing elevations, ecoregions (GeoNB, 2018)
and harvestblock locations with GPS-tracked clearances by wood-forwarding
machine type (JD11, JD15, TC).
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The MWU study range (elevations 250 to 580 m) is located in mid-western New

Brunswick, near Juniper and encompasses the lower part of the Southern

Uplands ecoregion. The forest cover consists of tolerant hardwoods with sugar

maple and white birch (Betula papyrifera Marsh), mixed with balsam fir and

black spruce, and interspersed by black and white spruce forest plantations.

Mean annual air temperature from 1990-2016 amounted to 5.2°C, with mean

annual January and July air temperatures at -3.5°C and 13.9°C. Mean annual

precipitation was 1180 mm, with 280 mm as snow Department of Environment

and Climate Change Canada (2016a).

The LL study range (elevations 120 to 290 m) is located around 50 km northwest of

Fredericton and covers both the Continental Lowlands and Eastern Lowlands

ecoregions. This area is predominantly covered by tolerant hardwoods consisting

of yellow birch, beech (Fagus grandifolia Ehrh.), and sugar maple, mixed with

balsam fir, Eastern white cedar (Thuja occidentalis L.) and black spruce. The

mean annual air temperature from 1990-2016 amounted to 5.5°C, with mean

annual January and July air temperatures at -2.8 and 13.8°C. Mean annual

precipitation amounted to 1100 mm, with 250 mm as snow Department of

Environment and Climate Change Canada (2016a). Both MWU and LL are

located on the Miramichi Caledonia highlands at the northeast stretch of the

Appalachian Mountain range. Surficial deposits on rolling to moderate terrain

vary from bouldery loamy lodgement till to moraines, eskers, kames and sandy

glaciofluvial outwash plains. Bedrock formations on LL mainly refer to

Cambrian-Ordovician-Silurian deep-water clastics, and on MWU mainly

Carboniferous to Silurian felsic to mafic extrusions.

3.2.2 Machinery and Sensory Installations

In NWU, two John Deere (JD) forwarders, i.e., model JD 1110E equipped with tire

chains (referred to as JD11 below), and model JD 1510E with front and back tire
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tracks (referred to as JD15 below) were used for tracking wood-forwarding

machine clearances (Table 3.1, Figure 3.2). In MWU and LL, Tigercat model TC

635D grapple skidder (referred to as TC below) was used, with chained tires in

front and tracked tires in the rear. Machine clearances were tracked using

custom-built data loggers (c/o FPInnovations Ltd., Montreal, Canada, Figure 3.3)

to record time-stamped GPS locations and machine-to-ground clearances

during back and forth machine travel within up to 54 harvesting blocks from

February 2012 through November 2014, all at time-stamped 10-second intervals.

The dataloggers were installed within the operator cabs, with polycarbonate

GPS antennas firmly attached to the cab roofs. Clearance tracking involved two

ultrasonic sensors, each vertically placed in an open steel pipe welded or bolted

to the least vulnerable position on the outside chassis of each machine, with

sensor wires safely guided to the dataloggers. On the two forwarders, the

ultrasonic sensors were mounted on the right and left of the chassis (145 cm for

JD11 and 140 cm for JD15 from the ground up to sensor). On the TC, the sensors

were mounted on the front and back of the chassis (170 cm and 152 cm from the

ground to sensor, respectively). The sensors signalled machine clearances to

ground, stumps, protruding rocks and brush piles directly below the sensors,

adjacent to the tracks (Figure 3.4). Each sensor was calibrated to ensure sensor

accuracy by testing distance to ground. No recalibration was done under the

different seasons to account for variations in temperature which may introduce

potential error to the sensor data.

Operations involved JD11 and JD15 wood forwarding from commercially thinned

forest plantations in northwest NB, mostly centred on NWU, and TC wood

forwarding from shelter-wood and clear-cutting operations in central west NB,

mostly centered on MWU and LL. The commercial thinning operations involved

laying out brush mats (Labelle, 2012). The shelter-wood and clearcutting

operations proceeded on bare ground covered by organic forest floor

accumulations about 5 to 10 cm thick. JD15 operations were clearance
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monitored year-round, including operations on snow accumulations. The JD11

and TC operations were monitored spring to fall.

Figure 3.2: Sensors installed on the John Deere 1110E (top), John Deere 1510E
(middle), and Tigercat 635D (bottom).
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Figure 3.3: Ultrasonic distance sensor (left), datalogger box and inclinometer
(right) installed in the Tigercat 635D.

Figure 3.4: Various sensor distance measurements and error potential from the
ultrasonic distance sensor. Left to right: rutting due to soil compaction, protruding
rock, stump, branches and slash, soil displacement.
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Table 3.1: Machine specifications.

Machine Specs
JD11 JD15 TC

Front Rear Front Rear Front Rear

Vehicle Weight (ton) 16.5 17.3 21.4

Full Load Weight (ton) 11.0 12.0 15

Chassis Clearance, M0
(cm)

60 60.5 63.5

Sensor-to solid-ground
clearance, S0 (cm)

145 139.7 170.2 152.4

Wheel Rim (cm) 67.3 67.3 81.3

Number of Wheels 4 4 4 4 2 4

Tire Type 710/45-26.5 710/45-26.5 35.5Lx32 30.5Lx32

Accessories Chains Tracks Tracks Tracks Chains Tracks

Diameter (cm) 134.1 134.1 201.2 184.4

Section Height (cm) 33.4 33.4 59.9 51.6

Width (cm) 71.1 71.1 90.2 77.5

Pressure (max, psi) 32 32 32

Foot print area (m2) 2.1 4.2 8.3 1.7 6.1

Foot print pressure
(atm)a

0.63 0.32 0.34 1.2 0.24

Soil compression (cm)a: well-drained soil; 50% sand; dry to moist at field
capacity (≈ plastic limit); not frozen; bulk density = 1.25 g cm3; all assumed
to remain the same with increasing depth.
1 pass 4-7 2-5 3-6 5-9 2-4

10 passes 8-19 5-11 7-16 10-22 4-7

100 passes 20-50 8-20 16-45 20-62 7-16

Sensor Installation 26-Oct-12 25-Oct-12 14-May-12

Number of Data Points

2012 258,578 232,974 382,652

2013 589,146 188,631 789,204

2014 - 72,065 778,562

a Derived from the above machine specifications, and using the methods
described in Balland et al. (2008); Vega-Nieva et al. (2009); Jones and Arp
(2017). b Fully loaded.
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3.2.3 Data Production

The logged data generated over 4.1 million data points across 54 harvesting

blocks (Table 3.2). Data due to sensor malfunction, fixed distance-to-ground

obstructions, machine idling, or traveling on paved and unpaved roads were

removed. The remaining data were entered to determine point-for-point

machine elevation (M), direction, slope (m/m), and speed (m/sec) along each

track. Data were catalogued for each forwarding (loaded) and returning

(unloaded) pass towards the loading zones. The number of passes per same

forwarding and returning track was also determined. All data were processed

through ArcGIS, which also included determining track densities and number of

passes per same track using point buffering (2.5 to equal 5 m width of machine)

and overlapping tools (Buja, 2012). The data was averaged to the 90th

percentile which helped to reduce the observations and increase processing

time for the data analysis. The sensor-to-ground distance data (S) were

normalized relative to the sensor-to-ground distance on solid ground measured

at installation (S0), referred to below as normalized sensor clearances (S/S0), or

normalized clearances for short. These numbers can be converted into actual

machine clearances (M) by setting M = S (S0 - M0), where M0 is the

machine-to-solid-ground (chassis) clearance (Table 3.1, Figure 3.4). Hence, at

zero machine clearance (M = 0), S/S0 = 1- M0/S0. For tracks with S < S0 - M0 ,

machines bottoms would have sunk below the signal reflecting surface, as would

be the case when the machines grind into wet soil or move across deep snow

accumulations.

Table 3.2: Block description by machine, forest, operation and soil type, operation
date, and ocular DTW % area coverage.

Machine Block
ID

Forest
Type Operation Operation

Date DTW %

JD 1110E 1 SW-BS CT Jan-14 0.95

2 SW-WS CT Apr-May/14 0.5

Continued on next page
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Table 3.2 – Continued from previous page

Machine Block
ID

Forest
Type Operation Operation

Date DTW %

3 SW-WS CT Aug-14 0.4

4 SW-WS CT Aug-14 0.3

5 SW-WS CT Nov-12 0.25

6 SW-WS CT Mar-May/14 0.2

7 SW-WS CT Aug-Sep/12 0.15

8 SW-WS CT May-Jun/14 0.1

9 SW-BS CT Jun-14 0.05

10 SW-WS CT Jul-Aug/14 0.05

11 SW-WS CT Jul-14 0.05

12 SW-WS CT Dec-12 0.01

JD 1510E 13 SW-BF CC Nov-Dec/12 0.95

14 SW-BS CT Jan-Feb/13 0.7

15 MW-BF SHW Dec-12 0.6

16 SW-SPBF CC May-14 0.5

17 Unk CT Jan-Feb/13 0.4

18 SW-BF CC Nov-Dec/12 0.4

19 SW-BF CC Dec-12 0.4

20 HW-WB CC Jun-14 0.25

21 MX CC Jan-13 0.2

22 SW-RP CT Oct-Nov/12 0.1

23 HW-WB SHW Jun-14 0.1

24 SW-BF CT May-June/14 0.1

25 SW-BF CT May-June/14 0.1

26 SW-BF CT Jun-14 0.1

27 Unk CT Nov-12 0.05

28 HW-SM SHW Jan-13 0.05

29 HW-BI SHW Dec/12-
Jan/13 0.05

30 SW-BF CC Nov-Dec/13 0.05

31 HW-BI SHW Nov-12 0.05

TC 635D 32 MX-PO CC Sep-14 0.75

33 MX-PO CC Sep-14 0.75

34 Unk CC Jul-Aug/13 0.7

35 HW-MA SHW Jul-12 0.35

36 HW-MA SHW Jul-12 0.35

Continued on next page
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Table 3.2 – Continued from previous page

Machine Block
ID

Forest
Type Operation Operation

Date DTW %

37 HW-SM SHW Oct-14 0.25

38 SW-NS CC Jul-13 0.2

39 HW-MA SHW Jul-12 0.2

40 Unk CC Jul-14 0.15

41 HW-SM SHW Sep-Oct/14 0.15

42 Unk CC Aug-13 0.15

43 HW-BI CC Sep-14 0.1

44 SW-NS CC Jun-13 0.1

45 HW-MA SHW Aug-Sept/12 0.1

46 HW-MA SHW Oct-Nov/13 0.1

47 SW-RS CT Aug-13 0.1

48 Unk CC Jun-Jul/14 0.05

49 MX-PO CC Aug-Sep/14 0.05

50 HW-MA SHW Sep-Oct/12 0.05

51 SW-NS CC Aug-12 0.05

52 Unk SHW Jun-14 0.05

53 HW-BE SHW Jun-Aug/13 0.05

54 HW-BE SHW Jun-13 0.05

3.2.4 DTW Delineation

Each data point was placed into its geospatial elevation context using digital

elevation models (DEMs) and associated depth-to-water maps (DTW, Figure 3.5;

Murphy et al. (2009a)). The DTW map delineates the extent of the least elevation

rise next the nearest water bodies such as streams, rivers, and lakes (Murphy

et al., 2009a; White et al., 2012). The DTW map, when derived for the

end-of-summer water level for water bodies emulates soil drainage across the

mapped areas from very poor (DTW < 10 cm), to poor (10 < DTW < 25 cm),

imperfect (25 < DTW < 50 cm), moderate (50 < DTW < 100 cm), well (1 < DTW <

20 m) and excessive (DTW > 20m) (Murphy et al., 2009a). The end-of-summer
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DTW condition was emulated using 4 ha of upslope flow accumulation area for

permanent stream flow initiation. For visualizing the varying DTW extent away

from local flow channels by weather and season, ephemeral stream flow was

initiated using 1 and 0.25 ha of upslope flow accumulation areas.

Figure 3.5: Cartographic depth-to-water index (DTW) diagram (Ogilvie, 2017).

3.2.5 Hydrological Modelling

For contextual evaluation purposes, daily temporal variations in upland soil

moisture, snowpack depth and frost depth were simulated for the NWU and for

the combined MWU and LL areas using weather records for daily precipitation

(rain, snow) and air temperature (daily means) from September 2011 to end of

2014 from Edmundston and Fredericton weather stations (Department of

Environment and Climate Change Canada, 2016a) (Appendix B.7 and B.8). Soil

properties were set as follows: NWU = soil depth 1.5 m, loam to sandy loam,

organic matter content 5-1%, coarse fragment content 20-30%; forest floor depth

10 cm; MWU = soil depth 1.20 m, sandy loam, organic matter content 1-10%,

coarse fragment 25%, forest floor depth 5 cm. LL = soil depth 1.0 m, loamy sand,

organic matter content 1-5%, coarse fragment 30%, forest floor depth 10 cm.
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3.2.6 Data Processing

For geospatial visualization purposes, the individual data points per harvest block

were mapped on top of the hill-shaded bare-earth DEM, with DTW drainage

classes overlaid. The normalized clearance data were compiled into a single

spreadsheet to enable the machine clearance analysis in relation to (i) month of

harvesting, (ii) weather-induced soil wetness, (iii) machine speed, (iv) machine

load, (v) back and forth track direction, (vi) number of passes, (vi) machine type,

(vii) harvesting type (clearcutting, commercial thinning, shelter-wood cutting),

(viii) slope, and (ix) DTW. This was done for each harvest block to allow for

detailed per block analyses in terms of (i) histogram and frequency distribution

assessment, and (ii) to determine how the clearance data were affected by pass

number, machine speed, and by DTW classes.

3.2.7 Histogram and Frequency Distribution Assessment

The histograms for the normalized clearance data were clustered about 1, with

values >1 trailing off sharply, while values <1 trailed off slowly towards 0, following

a probability distribution function (pdf) given by (Devore, 1999):

pdf =
1

Γ(k)0k
xk−1e−x/0 (3.1)

where x = (cmax - c)/f, for which cmax is the maximum normalized clearance value

(range of 0.2-0.6), Γ(k) is the gamma function, k is its shape parameter, and and f

are scale parameters for x and c, respectively. For the pdf non-linear

least-squares fitting process, cmax, k, and f were used as adjustable parameters,

with f kept in common across all blocks. Using Eq. 3.1 implies the following

properties for (cmax - c)/f: mean = k , variance = k 2, skewness = 2/k0.5, mode (for k

≥ 1) = (k-1) (Devore, 1999). Hence, increasing k and implies widening the

distribution function.
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3.2.8 Multiple Regression Analysis

The normalized clearance data were summarized by way of a pivot table using

the following class specifications:

i. speed (m/sec);

ii. number of passes (10, 20, 30, etc.);

iii. DTW (1 = 0-0.5 m, 2 = 0.5-1 m, 3 = 1-2 m, 4 = 2-4 m, 5 = 4-8 m, 6 = 8-16 m, 7 =

16-32 m, 8 32 m) ;

iv. forwarding (1) versus returning (0).

The data so assembled were examined using multivariate regression analysis,

using the 1 normalized clearance data as dependent variables, and number of

passes, speed, and DTW classes as independent variables, by harvest block.

Other topographic derivatives were analyzed (elevation, slope, aspect), but

were found to be insignificant in comparison to the machine parameters.

3.3 Results and Discussion

3.3.1 Wood-Forwarding Track Patterns

Figures 3.6-3.8 show the wood forwarding and end-of-summer drainage (DTW)

patterns per harvest block, by machine type. As mapped, drainage varied in

area by block from poor to imperfect (DTW < 0.5 m), and moderate (0.5 < DTW <

1 m) to well drained (DTW > 1 m). Within the DTW < 0.5 m zone, soils were

generally wet to moist. Within the 0.5 < DTW < 2 m zone, soil wetness tends to be

transitional from wet to dry depending on extent and weather-dependent

upslope water seepage. Some of the main multiple-pass TC wood-forwarding
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tracks straddled across these transitions, and were rutted extensively.

The average number of passes, as well as speed, and normalized clearance are

listed in Table 3.3. Typically, machine clearance increased towards 1 with

increasing pass numbers along the same track regardless of loading, however

the lowest clearances are produced during the initial unloaded passes (Figure

3.9). Conversely, machine speeds were significantly faster when empty than

when loaded. By machine type, wood forwarding speed was significantly lower

for JD11 and JD15 than for TC while clearances increased with increasing

machine speed, and especially so for JD11 (Figure 3.9).

Figure 3.6: Composite of JD 1110E stands, including the point locations of the
machines underlain by the 4 ha DTW map.

57



Figure 3.7: Composite of JD 1510E stands, including the point locations of the
machines underlain by the 4 ha DTW map.
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Figure 3.8: Composite of TC 635D stands, including the point locations of the
machines underlain by the 4 ha DTW map.

59



Figure 3.9: Mean machine specific normalized clearance versus number of passes
(first 10 and all passes), empty vs. full loads, and machine speed versus empty or
full loads.
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Table 3.3: Variability in normalized clearance, number of passes, and speed by
machine and operation type.

JD11 JD15 TC
CT CC CT SHW CC CT SHW

Normalized
Clearance

Mean 0.84 0.88 0.89 0.89 0.91 0.92 0.91
SD 0.11 0.10 0.10 0.10 0.08 0.08 0.09

Min 0.39 0.37 0.37 0.37 0.52 0.52 0.52
Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Number of
Passes (n)

Mean 7 11 12 8 28 10 29
SD 12 19 18 14 39 10 40

Min 1 1 1 1 1 1 1
Max 252 186 198 154 548 58 568

Speed
(m/s)

Mean 1.7 2.14 2.17 1.92 3.96 4.03 4.7
SD 2.73 2.8 2.68 2.56 3.63 4.24 4.11

Min 0 0 0 0 0 0 0
Max 24 24 23.17 23.17 24 23.65 23.98

CT: commercial thinning, CT: clearcut, SHW: shelterwood cut

3.3.2 Normalized Clearance Distribution Patterns

The histograms of the standardized clearances per block follow a left-skewed

pattern, as shown in the Appendix (Figures B.1, B.2, and B.3). The corresponding

Eq. 3.1 generated probability distributions are overlaid on these histograms, with

corresponding best-fitted k, cmax and values listed in Table 3.4, by harvest block.

Examining these values revealed that log10k correlates with such that

log10k = (1.16 ± 0.05) − (0.76 ± 0.09) × θ

R2 = 0.602

(3.2)

The combination of k and as in log10k correlates with cmax and machine type, i.e.:

log10kθ = − (1.7 ± 0.2) − (1.7 ± 0.2) × cmax + (0.22 ± 0.02) × JD11

R2 = 0.755

(3.3)

(JD11, JD15 and TC coded 1 when present, otherwise 0).
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In general, increasing kθ values reflect a broadening of the clearance frequency

distributions, and Eq. 3.3 implies that this broadening increases with increasing

cmax, with further increases to be noted for the JD11 operations. This can be

attributed to differences in machine operation, as follows:

i. JD11 was mainly used for commercial thinning, which involved generating

brush mats from tree delimbing and topping by single-grip harvesters along

wood forwarding trails; the broadening of the clearance distributions would

be due to the ultrasonic signals bouncing off machine-induced brush-mat

sagging and lifting.

ii. By machine type, the k product varied as flows: JD11 = 3.9 ± 0.4, JD15 =

2.8 ± 0.1; TC = 2.5 ± 0.1; JD11 significantly higher than JD15 and TC, p-value

<0.001, and JD15 significantly higher than TC, p-value = 0.14.

iii. Using the <10% tail of the standardized clearance marker produced the

following sequence: JD11 = 0.67 ± 0.02; JD15 = 0.80 ± 0.02, TC = 0.84 ± 0.01

(p-value <0.05). Hence, forwarding wood on brush mats produced longer

standardized clearance trails towards zero-clearance than forwarding on

bare ground. By Eq. 3.4, the 10th percentile clearances per block are

directly relatable to the best-fitted Gamma distribution parameters as

follows:

10th percentile clearances = − (0.35 ± 0.10) − (0.73 ± 0.4) × log10kθ

+ (1.23 ± 0.09) × cmax

R2 = 0.892

(3.4)

iv. Trails for the shelterwood and clear-cut operations without brush mats had

standardized clearance peaks at or near 1. Clearances greater than 1 are

due to machine movements over stumps, rocks and uneven ground. The

cmax ranges were similar by machine type, as follows: 1.04 < JD11 < 1.22;
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1.14 < JD15 < 1.30; 1.13 <TC <1.29.

Table 3.4: Best-fitted Eq. 3.1 and Eq. 3.5 regression results for the clearance
frequency distributions and the normalized clearances ≤1, by machine and block;
speed, passes, and DTW coefficients x10-2; f = 0.122±0.002.

Gamma Dist. Function (Eq. 3.1) Normalized Clearances ≤1 (Eq. 3.5)

ID n
10th
Percen-
tile

Parameters (±SE) Adj.
R2

Inter-
cept
(SE)

Coefficients (±SE) Adj.
R2

γ (BS) µ (Bx) β (k) Speed Passes DTW

2 284 0.64 0.47
(0.08)

1.22
(0.05)

10.01
(2.94) 0.99 0.69

(0.02)
1.09

(0.21)
10.95
(1.72)

0.51
(0.22) 0.33

3 200 0.72 0.56
(0.08)

1.04
(0.02)

3.45
(0.75) 0.99 0.81

(0.07)
2.34

(0.15)
0.69

(0.15) 0.59

4 1750 0.66 0.53
(0.01)

1.13
(0.03)

6.58
(1.99) 0.99 0.72

(0.01)
1.68

(0.07)
10.35
(0.07) 0.40

7 1680 0.65 0.65
(0.05)

1.21
(0.03)

6.63
(0.91) 0.99 0.69

(0.01)
1.69

(0.11)
12.00
(0.81)

-0.53
(0.14) 0.21

8 1047 0.65 0.50
(0.13)

1.19
(0.60)

8.57
(3.54) 0.99 0.70

(0.01)
1.61

(0.12)
13.90
(0.66)

-0.91
(0.12) 0.40

9 366 0.63 0.50
(0.01)

1.19
(0.05)

9.06
(3.13) 0.99 0.71

(0.02)
1.04

(0.17)
19.77
(1.17)

-1.31
(0.32) 0.48

10 996 0.65 0.44
(0.14)

1.22
(0.05)

10.82
(5.09) 0.99 0.69

(0.01)
1.65

(0.09)
12.94
(0.58)

-0.20
(0.09) 0.52

11 1038 0.64 0.64
(0.12)

1.15
(0.03)

6.00
(1.46) 0.98 0.72

(0.01)
1.84

(0.10)
8.74

(0.45) 0.42

12 124 0.77 0.23
(0.01)

1.20
(0.01)

12.44
(0.79) 0.81 0.85

(0.02)
1.33

(0.51) 0.04

13 242 0.78 0.60
(0.04)

1.30
(0.02)

6.73
(0.68) 0.99 0.77

(0.02)
7.23

(1.04)
1.07

(0.27) 0.19

14 989 0.84 0.43
(0.01)

1.30
(0.01)

8.01
(0.01) 0.98 0.87

(0.01)
4.45

(0.62) 0.05

15 210 0.78 0.77
(0.12)

1.17
(0.02)

3.14
(0.62) 0.94 0.79

(0.02)
1.23

(0.20)
5.62

(0.96) 0.25

16 326 0.77 0.54
(0.04)

1.17
(0.01)

5.04
(0.60) 0.91 0.83

(0.02)
0.60

(0.19)
3.57

(1.32) 0.04

17 2550 0.81 0.57
(0.08)

1.25
(0.03)

5.36
(1.15) 0.99 0.83

(0.01)
5.61

(0.36)
0.18

(0.08) 0.09

18 96 0.78 0.71
(0.04)

1.25
(0.01)

4.44
(0.22) 0.94 0.94

(0.04)
-6.52
(2.96) 0.04

19 134 0.82 0.56
(0.02)

1.26
(0.01)

5.45
(0.21) 0.93 0.82

(0.01)
0.61

(0.21)
4.10

(1.22)
0.42

(0.19) 0.18

20 78 0.87 0.16
(0.01)

1.18
(0.01)

13.64
(0.41) 0.98 0.79

(0.03)
0.01

(0.01)
2.18

(0.49) 0.27

21 674 0.8 0.94
(0.09)

1.16
(0.01)

2.36
(0.25) 0.89 0.78

(0.01)
0.60

(0.12)
8.53

(0.75) 0.17

23 219 0.84 0.30
(0.05)

1.21
(0.02)

9.06
(2.08) 0.97 0.79

(0.02)
12.15
(1.65) 0.20

24 2146 0.77 0.49
(0.07)

1.14
(0.01)

4.81
(0.84) 0.98 0.92

(0.01)
0.30

(0.01)
-0.79
(0.11) 0.03

25 357 0.82 0.37
(0.06)

1.16
(0.02)

6.71
(1.41) 0.99 0.97

(0.02)
0.57

(0.17)
-2.87
(1.00)

-0.91
(0.34) 0.08

26 807 0.79 0.35
(0.04)

1.22
(0.01)

9.46
(0.38) 0.99 0.84

(0.01)
0.50

(0.13)
1.51

(0.61)
0.47

(0.12) 0.05

28 382 0.85 0.76
(0.04)

1.26
(0.01)

3.85
(0.33) 0.86 0.80

(0.01)
7.26

(0.86) 0.16

Continued on next page
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Table 3.4 – Continued from previous page

Gamma Dist. Function (Eq. 3.1) Normalized Clearances ≤1 (Eq. 3.5)

ID n
10th
Percen-
tile

Parameters (±SE)
Adj.
R2

Inter-
cept
(SE)

Coefficients (±SE) Adj.
R2

γ (BS) µ (Bx) β (k) Speed Passes DTW

29 275 0.82 0.66
(0.11)

1.22
(0.01)

4.24
(0.45) 0.99 0.82

(0.01)
4.88

(0.70)
0.39

(0.18) 0.19

30 56 0.76 0.98
(0.01)

1.16
(0.01)

2.51
(0.29) 0.97 0.60

(0.04)
1.10

(0.38)
13.10
(3.40)

2.12
(0.48) 0.53

31 32 0.89 0.30
(0.01)

1.20
(0.01)

7.05
(0.27) 0.97 0.71

(0.03)
7.83

(3.20)
2.02

(0.36) 0.66

32 496 0.71 0.97
(0.05)

1.17
(0.01)

3.30
(0.01) 0.95 0.87

(0.01)
-0.36
(0.15)

-6.86
(0.71)

2.31
(0.19) 0.40

33 282 0.74 0.58
(0.04)

1.26
(0.01)

6.56
(0.43) 0.94 0.77

(0.02)
0.43

(0.21)
-3.70
(0.87)

3.64
(0.35) 0.30

34 306 0.87 0.40
(0.03)

1.19
(0.01)

5.25
(0.73) 0.98 0.96

(0.01)
-1.41
(0.21) 0.13

35 1300 0.7 0.51
(0.06)

1.16
(0.01)

4.33
(0.76) 0.94 0.80

(0.01)
0.60

(0.07)
6.78

(0.36) 0.25

36 1880 0.85 0.28
(0.04)

1.23
(0.02)

9.95
(2.08) 0.94 0.87

(0.01)
0.30

(0.07)
3.16

(0.27) 0.08

37 2264 0.79 0.47
(0.03)

1.20
(0.01)

6.05
(0.63) 0.99 0.94

(0.01)
-5.06
(0.34)

0.40
(0.11) 0.09

38 2881 0.85 0.38
(0.05)

1.27
(0.02)

8.18
(1.65) 0.98 0.83

(0.01)
0.17

(0.06)
1.51

(0.24)
1.21

(0.05) 0.17

39 586 0.92 0.21
(0.03)

1.21
(0.01)

10.64
(2.16) 0.99 0.88

(0.02)
0.23

(0.15)
0.81

(0.30) 0.01

40 734 0.88 0.31
(0.05)

1.24
(0.02)

8.76
(2.15) 0.99 0.91

(0.01)
0.24

(0.08)
0.30

(0.07) 0.04

41 2619 0.85 0.42
(0.12)

1.15
(0.03)

4.52
(1.90) 0.99 0.88

(0.01)
0.01

(0.01)
2.13

(0.23) 0.04

42 1362 0.87 0.40
(0.03)

1.20
(0.01)

5.83
(0.62) 0.98 0.86

(0.01)
0.13

(0.07)
2.24

(0.28)
0.42

(0.05) 0.08

43 246 0.78 0.35
(0.01)

1.28
(0.02)

10.83
(4.25) 0.98 0.83

(0.02)
-6.64
(1.13)

3.65
(0.23) 0.57

44 5867 0.84 0.44
(0.04)

1.19
(0.01)

5.45
(0.74) 0.99 0.85

(0.01)
0.08

(0.04)
2.90

(0.14)
0.55

(0.03) 0.11

45 4081 0.91 0.26
(0.01)

1.20
(0.01)

8.22
(0.58) 0.98 0.89

(0.01)
0.28

(0.04)
2.10

(0.17)
0.10

(0.04) 0.05

46 1205 0.85 0.27
(0.04)

1.29
(0.02)

12.42
(2.53) 0.97 0.87

(0.01)
2.47

(0.26)
0.19

(0.06) 0.07

47 87 0.91 0.36
(0.04)

1.20
(0.01)

5.59
(0.77) 0.97 0.88

(0.01)
4.41

(1.31) 0.11

48 274 0.82 0.40
(0.02)

1.24
(0.01)

7.64
(0.81) 0.98 1.00

(0.01)
0.72

(0.11)
1.65

(0.55)
-1.91
(0.14) 0.49

49 95 0.86 0.36
(0.01)

1.16
(0.01)

5.65
(0.42) 0.99 0.82

(0.02)
6.20

(1.47)
0.90

(0.40) 0.19

50 4028 0.89 0.31
(0.01)

1.17
(0.01)

6.18
(0.43) 0.99 0.90

(0.03)
0.42

(0.03)
1.22

(0.18) 0.04

51 3685 0.89 0.39
(0.05)

1.15
(0.01)

4.43
(0.65) 0.98 0.88

(0.01)
0.31

(0.03)
2.91

(0.17)
0.07

(0.03) 0.09

52 772 0.83 0.54
(0.09)

1.13
(0.01)

2.84
(0.61) 0.99 0.82

(0.01)
1.89

(0.43)
1.06

(0.10) 0.18

53 293 0.88 0.30
(0.05)

1.23
(0.02)

7.97
(1.76) 0.99 0.87

(0.01)
5.61

(0.78)
-0.36
(0.13) 0.15

54 597 0.79 0.47
(0.06)

1.20
(0.01)

5.68
(0.92) 0.99 0.89

(0.01)
0.29

(0.13)
-4.07
(0.58)

1.32
(0.14) 0.24

Continued on next page
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Table 3.4 – Continued from previous page

Gamma Dist. Function (Eq. 3.1) Normalized Clearances ≤1 (Eq. 3.5)

ID n
10th
Percen-
tile

Parameters (±SE)
Adj.
R2

Inter-
cept
(SE)

Coefficients (±SE) Adj.
R2

γ (BS) µ (Bx) β (k) Speed Passes DTW

3.3.3 Box Plots

The normalized data with clearances <1 are presented in Appendix B by way of

box plots showing 10th, 25th, 50th, 75th and 90th normalized clearance

percentiles and associated outliers per block and machine type by number of

passes, speed and DTW classes (Figures B.4, B.5, and B.6 (Appendix B)). These

plots show that machine clearances varied from block to block in relation by

machine operations. For TC, these variations were in part attributable to the

biweekly and June to November cumulative precipitation pattern from 2012 to

2014 (Figure 3.10), with lower clearances less prominent in the fall of 2012

following dry summer conditions, but more prominent in summer blocks where

DTW < 1 m (Blocks 32, 35, 36; Figure B.6 (Appendix B)).

3.3.4 Normalized Clearance

Regressing the normalized clearances ≤ 1 values against number of passes, speed

and DTW classes by way of

normalized clearance ≤ 1 = intercept+ kpass × passes+

kspeed × speed+ kDTW ×DTW

(3.5)

produced the best-fitted interception and regression coefficient results also listed

in Table 3.4, with R2 values ranging from near 0 to 0.67. These results are

summarized as follows:

i. Normalized clearances increased with increasing machine speed, with only
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Figure 3.10: Weekly cumulative rainfall, overall cumulative rainfall, and normalized
sensor clearance trends for the TC 635D during 2012-2014.
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one reduction registered on a wet TC trail (block # 32).

ii. Increasing the number of wood-forwarding passes per track had mostly

positive to no clearance effects, with two exceptions: on blocks #18 and

#25. For the TC wood-skidding operations, increasing the pass numbers per

track varied from mainly positive during dry conditions to negative during

wet conditions, respectively.

iii. The influence of DTW on TC clearances also varied from positive to negative.

The positive trend occurred when the ground was dry due to increased soil

resistance to compaction. The negative trend occurred when operating on

wet ground during and after soil-saturating rain events, due to decreased

soil resistance to compaction and tire slippage.

Analyzing the normalized clearance intercepts in Table 3.4 in terms of their

associated speed, number of passes and DTW regression coefficients generated

the following multiple regression result:

clearance intercept = (0.910 ± 0.04) − (1.23 ± 0.06) × kpass

− (0.041 ± 0.005) × kspeed − (0.052 ± 0.003) × kDTW

R2 = 0.946;RMSE = 0.020

(3.6)

This equation implies that the normalized clearance intercept:

i. is equal to 0.910 ± 0.04 , or 75 to 78% actual machine-to-ground clearances

on average, when machine speed, number of passes and DTW have no

clearance influence; in terms of actual depth, this number amounts to about

12 cm; a considerable part of this would be due to the compression of the

organic forest floor accumulations;

ii. decreases below 0.910 on dry to moist and wet soils with increasing number

of passes and/or machine speed, this would be due to repeating soil

compaction along the same track and increased shearing stress with

increased tire rotation;
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iii. decreases below 0.910 as the DTW-projected influence on soil resistance to

compaction becomes stronger from very poor (where DTW is near 0) to well

and excessive (where DTW is >1 m); i.e., a positive DTW influence causes

the regression intercept to be lowest at DTW = 0; a negative DTW influence

would do the opposite and may occur where DTW > 0 due to increased

slope-induced wheel slippage.

Eq. 3.6 suggests that the lowest normalized intercept for class-averaged normal

clearances ≤1 would amount to 0.910 -1.23 x (kpass = 0.19) - 0.041 x (kspeed = 2.34)

0.052 x (kDTW = 3.65) = 0.39. The lowest average normalized clearance intercept

per number of pass, speed and DTW classes registered in Table 3.4 was 0.60, for

block #30 (JD15, Nov. 2012), i.e., approximately equal to chassis clearance, and

this occurred on a well-drained soil (DTW > 2 m) following a rain event. The lowest

non-averaged normalized signal-to-ground surface distance was 0.43, i.e.,

equivalent 60.1 cm, thereby amounting to 19.5 cm below the reflecting ground

surface. This occurred on block #15 in January 2013 when the ground was

covered with snow.

The correlation matrix in Table 3.5 pertaining to the four Eq. 3.6 variables indicates

that the influence of number of passes and machine speed on the clearance

intercepts are positively correlated with one another, while both are negatively

correlated to DTW clearance influence. Hence, DTW-influenced softening of the

ground tends to decrease machine speed and reduces repeat traffic along the

same track.

3.3.5 Block-Specific Examples

An example of low to extensive rutting is shown in Figure 3.11 for TC block # 41

(Sept.-Oct. 2014), where soil conditions varied from dry to moist to wet due to

season- and weather-induced variations in the local DTW pattern. Moderate soil
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Table 3.5: Correlation matrix for the Eq. 3.6 variables and associated per block
entries in Table 3.4

Speed Number of passes DTW Intercept

Speed 1
Number of passes 0.495 1
DTW -0.262 -0.369 1
Intercept -0.547 -0.744 -0.26 1

n = 49

compression occurred along trails where soils remained dry at DTW > 1 m, with

compression decreasing towards zero with increasing number of passes. On the

landing site where DTW was < 0.5 m, soil ruts were deeper and number of passes

per track increased up to 270. For the trail through transitional and somewhat

sloped DTW zones, normalized clearances decreased with increasing number of

passes per track. In general, the extent of soil compaction is highest at or near

the plastic soil moisture limits, while soil displacement is highest at and above the

liquid soil moisture limits.

The data for machine clearance, number of passes per track and speed are

illustrated in Figure 3.12 for harvest blocks 10, 32, 33, 43. The mapped dots so

shown demonstrate the following effects:

i. Normalised clearances along the central wood forwarding road in block 10

approach 1 at high track numbers and speed.

ii. Rutting as indicated by persistently low clearances occur along the most

frequently used TC skidding passes as shown for blocks 43, 32, and 33;

elsewhere, TC clearances tend to be near 1. In contrast, the JD11

clearances along brush-matted wood forwarding tracks are lower due to

brush-mat flexing.

iii. TC machine track speeds vary more than JD11 track speeds, with TC being

faster on higher DTW ground. JD11 speeds are consistently slower along the
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commercial wood forwarding tracks.

Figure 3.11: Top left panel: TC block #41 showing weather-affected DEM-derived
DTW patterns based on assuming 4 ha (top-left), 1 ha (top-right) and 0.25 ha
(bottom-left) of upslope flow accumulation area for flow initiation. The high-
resolution surface image (bottom-right) shows ruts with low machine clearances
along high multiple-pass connector trails. Top right panel: block 41 normalized
clearance versus increasing number of passes along dry and wet forwarding trails
and on landing site. Bottom: dry trail (no rutting), wet trail (deep rutting), and
landing site (braided rutting) images. Normalized clearance in terms of chassis- to
sensor-to solid-ground distances (front): M0/S0 = 0.63.
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(a) Normalized Machine Clearance (b) Number of Passes per Track

(c) Machine Speed (d) Ortho Images

Figure 3.12: Visual correlation between DTW and normalized clearance (top left),
number of passes per track (top right), and machine speed (bottom left), for
blocks 47, 32, 34, and 10. Ortho imagery of blocks (bottom right) showcasing
harvest type and soil disturbance (Imagery Source: Esri, DigitalGlobe, GeoEye,
Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid,
IGN, IGP, swisstopo, and the GIS User Community).
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3.4 Further Observations

3.4.1 Clearances by Machine Type and Number of Passes

Some of the normalized clearance differences would be caused by differences

in machine weight, loads, tire pressure, number of tires, and whether the tires are

chained or tracked (Table 3.1). For example, TC has higher front footprint

pressure about 2 to 3 times higher than the JD11 and JD15 forwarders, hence -

according to the Table 3.1 entries - soil compression should be deeper with TC

than with JD11 and JD15 operations. This was indeed the case along repeated

TC forwarding tracks on moist to wet ground (Figure 3.12). Under dry conditions,

however, normalized clearance patterns peaked around one, except for the

lower JD11 brush-mat clearances. Compared to JD15, JD11-exerted footprint

pressure is about double (Table 3.1). Consequently, and consistent with the

experimental machineload and brush-mat observations by Labelle and Jaeger

(2012), JD11 brush-mat clearances were not only lower than for JD15 brush-mat

clearances, but JD11 clearance were also significantly lower during forwarding

than returning (Figure 3.9). In terms of increasing number of passes, brush-mat

clearances flattened through repeated crushing and consolidating.

3.4.2 Machine Speed

Machine speeds are affected by soil-tire interactions, including soil compaction

and soil displacement (Shmulevich et al., 1998). In this regard, Liu et al. (2009)

reported increasing soil displacement with increased tire rotation on dry ground.

On soft ground, however, slow traffic increased soil compression and soil

displacement (Grahn, 1991; Taghavifar and Mardani, 2014). For the JD11, JD15,

and TC operations, machine speed was definitely affected by machine load,

being lower when fully loaded than when empty, with TC speeds significantly

greater than JD11 and JD15 speeds (Figure 3.9). This effect was likely due to

operating under more open than dense stand conditions, i.e., forwarding logs
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following clear-cutting and shelter-wood cutting versus logs following forest

plantation thinning.

3.4.3 Bare-Ground Operations

When operating on bare ground during clear-cutting and shelter-wood

harvesting, off-road clearances can also be expected to decrease with

increasing footprint pressure and increasing number of passes due to increasing

soil compression (Jamshidi et al., 2008; Vega-Nieva et al., 2009; Taghavifar and

Mardani, 2014) (Table 3.1). This, however, did not happen because of the lateral

sensor restrictions, and track broadening as the soil continue to be compressed

with increasing number of passes (Figures 3.2, 3.9). In contrast, clearances were

low on wet ground and repeatedly so with increasing number of passes due to

deep and recurring soil displacements as exemplified in Figure 3.11. In addition,

soil rutting would become even deeper on wet slopes through load- and

slope-induced tire and track slippage.

3.4.4 Season and Weather Details

With varying soil wetness by weather and across seasons, there is a general

correspondence between TC clearances and ground conditions (Figure 3.13).

For TC, lower clearances and deeper soil rutting were incurred within or across

the harvest blocks on account of: (i) low DTW locations, (ii) snow accumulations,

(iii) snow melt and prolonged rain events, and (iv) low evapotranspiration (Raven

et al., 1999; Ács et al., 2011; Jones and Arp, 2017) before leaf-out (May - June)

and after leaf-fall (October - November). In contrast, JD11 and JD15 clearances

were less relatable to the varying ground conditions due to low footprint pressure

(Table 3.1) and brush-mat operations.

An example of weather-induced soil rutting on dry ground (4 < DTW < 32 m) is

shown in the form of normalized clearances <0.8 in Figure 3.13. This occurred
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during TC operations in block #48 two days after a 110 mm rain event in July 2014

(Hurricane Arthur). Similarly, Block #41 operations immediately after a 30 mm rain

event on wet October soils led to extensive soil rutting (Figure 3.11). To avoid such

occurrences, wood forwarding operations were generally deferred to occur on

dry ground spring, summer and fall, and on frozen ground during winter. During

the JD11 and JD15 winter operations (block #1, 12-15, 17-19, and 28-30), the

normalized clearances were mostly affected by ultrasonic reflections from snow

surfaces. Hence, clearances on snow-covered ground also decreased with

increasing number of passes due to snow compaction and track widening. This

would be of greater concern for NWU due to the snowpack present on site for

the winter blocks of the JD11 and JD15 being almost twice as large as in the

more southern blocks (Appendix B.7 and B.8). While this compaction has no

effect on frozen soil rutting, it has been shown to cause soils along the tracks to

freeze deeper and longer, thereby delaying soil thawing along the established

tracks (Grady, 1982; Garcia et al., 2015).

3.5 Conclusion and Concluding Remarks

The assessment of the machine clearance data provided the following insights:

i. The normalized clearances were affected by brush mat versus bare ground

operations, with the former producing lower but still broader clearance

distributions than the latter.

ii. All of the block-based clearance histograms followed asymmetric Gamma

frequency distributions.

iii. Clearances increased systematically with increasing passes towards 1 on

dry ground due to successive soil compression and track widening. On wet

ground, clearances would decrease because of successive soil

re-displacements.
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Figure 3.13: Normalized clearances across block 2, showing low TC clearances on
DTW >4 m ground following a 110 mm per day storm event in July 2014, with two
close-ups (bottom panels; A, B red boxes in top panel), with DTW background.
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iv. The TC centralizing wood-forwarding pattern following clear-cutting and

shelter-wood operations included long tracks with number of passes

exceeding 100 per track, which would lead to rutting along wet and along

wet-to-dry transitional ground conditions.

v. Number of passes, machine speed and low to high DTW classes all affected

the normalized clearance results in terms of block and weather-specific

conditions, with least effects registered along brush mat and dry-ground

tracks, all based on fairly low machine footprint pressures in the order JD15

< JD11 < TC.

vi. Clearances along the same bare-ground tracks do not necessarily reflect

rut depths due to track broadening and using machine-fixed positions for

machine-to-ground distance monitoring. On brush mats, the clearance

data reflect brush mat re-conditioning due to repeated track traffic.

vii. Actual machine clearance can be obstructed due to ultrasonic sensor

blockage by way of debris, and by the presence of snowpack

accumulations.

viii. The extent of soil rutting versus machine clearance needs to be evaluated

separately by way of ,e.g., high-resolution block surveys following completion

of block operations (Salmivaara et al., 2018), or through machine-mounted

LiDAR-based ground scanning (Giannetti et al., 2017).

ix. GPS tracking of tire rotation in connection with machine speed would assist

in determining actual to potential soil displacement in terms of tire slippage

and tread design.

76



3.6 Acknowledgments

This research was supported by J.D. Irving Limited (JDI) as a part of the

NSERC-sponsored Cooperative Research Development (CRD) Project on Forest

Soil Trafficability. Special thanks go Greg Adams at JDI for facilitating this project,

and to FP Innovations personnel for the development and installations of the

ultrasonic sensor dataloggers. Also many thanks to the Shane Furze, Doug Hiltz,

and John Paul Arp for help with data retrieval and GIS processing.

77



Chapter 4

Soil moisture and cone penetrability conditions in forest soils

Marie-France Jones, and Paul Arp

Faculty of Forestry and Environmental Management,

University of New Brunswick, Fredericton NB, Canada E3B 6C2

Email: arp2@unb.ca

Foreword:

The following chapter is a published article within the Open Journal of Forestry. It

was submitted on January 22, 2019 and accepted for publication on March 21,

2019. Publication permission can be found in Appendix C.1.

Citation:

Jones, M.-F., Arp, P.A. (2019) Soil moisture and cone penetrability conditions in

forest soils. Open Journal of Forestry. 9, 109-142.

78



Abstract

This chapter details how forest soil moisture content (MC) and subsequent

resistances to cone penetration (referred below as Cone Index, CI) vary by daily

weather, season, topography, site and soil properties across eleven harvest

blocks in northwestern New Brunswick. The MC and CI affecting soil variables

refer to density, texture, organic matter content, coarse fragment content, and

topographic position (i.e., elevation, and the seasonally affected cartographic

depth-to-water (DTW) pattern). The harvest blocks were transect-sampled inside

and outside their wood-forwarding tracks at varying times throughout the year. In

detail, 61 % of the pore-filled moisture content (MCPS) determinations inside and

outside the tracks could be related to topographic position, coarse fragments,

bulk density, and forest cover type specifications. In detail, 40 % of the CI

variations could be related to soil depth, MCPS, and block-specific cover type.

Actual versus model-projected uncertainties amounted to ∆MCPS ± 15% and

∆CI ± 0.5 MPa, 8 times out of 10. Block-specific MC and CI projections were

obtained through (i) daily hydrological modelling using daily precipitation and air

temperature weather-station records nearest each block, and (ii) digitally

modifying these results based on the upslope to downslope variations in soil

property, elevation, and DTW variations in each block, at 10 m resolution.

Keywords

Forest Soils, Soil Moisture, Cone Penetration, Digital Elevation Modelling,

Cartographic Depth-to-Water, Multilinear Regression, Confusion Matrix
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4.1 Introduction

Estimating soil moisture and subsequent resistance to cone penetration is at the

base of forecasting potential soil disturbance effects due to off-road machine

traffic. For example, modern forest harvesting operations including wood

forwarding can lead to substantial soil compaction, rutting and displacements,

rut-induced water logging and re-direction of flow patterns leading to soil

erosion, operation inefficiencies, and increased wear of machinery component,

especially when these operations are not properly timed. Machine-induced soil

compaction and associated rut-induced soil displacements commonly occur on

moist to wet ground, are long-lasting, and affect the growth of remaining or

planted vegetation (Cambi et al., 2015; Solgi et al., 2018). The impacts are

strongest along trails with multiple wood-forwarding passes, and on wood landing

sites (Jones et al., 2018). To remain productive, post-harvest soils need to remain

well drained with soil bulk densities at <1.5 g cm-3 (Soane and van Ouwerkerk,

1994; Sutherland, 2003; Bassett et al., 2005; Brady and Weil, 2008; Chen and Weil,

2011).

Forecasting soil compaction and penetrability across time and terrain is,

however, difficult due to changing weather-affected soil moisture conditions, and

meter-by-meter changes in soil substrates and properties (Elbanna and Witney,

1987; Smith et al., 1997; Vaz et al., 2001). Soil penetrability is further modified by

soil texture, coarse fragment content, and organic matter content. The presence

of soil organic matter modifies this effect due to organically-supported soil

aggregation and related pore-space stabilization. The presence of coarse

fragments generally reduces soil compaction and penetrability by increasing the

force needed to displace these fragments downward and laterally (Baetens

et al., 2009; Rücknagel et al., 2013). Soil penetrability leads to deep rutting on

wet soils mainly due to soil displacement and on moist soils mainly due to soil

compaction. Dry and dense soils are mostly resistant to penetration, compaction
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and rutting. Across terrains, soil penetrability changes due to:

i. changes in soil moisture content, which generally varies from well to

excessively well drained on ridge tops to moist to water saturated soils along

streams, shorelines, wetlands, in low-lying depressions, and in toe-slope

seepage zones;

ii. changes in soil type, depth, texture, coarse fragment and organic matter

content, and bedrock exposure;

iii. changes in tracked versus non-tracked ground, which - in turn - depends on

extent of machine foot print, load, number of passes, and surface

conditions as affected by the presence of stumps, roots, logging slash,

rocks, depth of forest litter, and brushmats.

This chapter focuses on presenting a framework to model temporal and spatial

weather-, forest-, terrain-, and machine-induced plot-by-plot changes in

volumetric soil moisture (MCV) and soil penetrability cone index (CI) for a case

study in northwestern New Brunswick, Canada. This study involved

transect-sampling eleven forest blocks that were subject to clear cuts, selection

cuts, shelterwood cuts, and pre-commercial thinning at different times of the

year. The plot-generated MCV data were expressed in terms of pore-space filled

(MCPS) soil moisture content to serve as a useful CI predictor (Vega-Nieva et al.,

2009). The data so obtained were used to model MCV, MCPS and CI in spatially

and temporally. The spatial modelling component addressed emulating the data

variations across the terrain from ridge tops to valleys as proposed by Vega-Nieva

et al. (2009). The temporal component addressed emulating the data variations

by weather and season using the Forest Hydrology Model (ForHyM) Jones and

Arp (2017).

The goodness-of-fit of the resulting best-fitted MC and CI models were evaluated

in terms of, level of uncertainty, and non-randomness indicators. This was done
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in two ways: (i) focusing on the field-determined data only, and (ii) determining

the extent to which province-wide elevation, cartographic depth to water (DTW),

and soil property data layers (Furze, 2018) could also be used for local MC and CI

projections, and hence soil trafficability prediction purposes. Knowing where and

when locations are subject to rutting has become a vital component of planning

best forest management practices. To that effect, rut-avoidance regulations are

already in place across many federal and provincial jurisdictions. For example,

ruts >15 cm deep are deemed to represent hazardous soil disturbances (Alberta

Forest Products Association, 1994; Page-Dumroese et al., 2000; Van Rees, 2002).

4.2 Methods

4.2.1 Block Descriptions

The harvest blocks for this study were selected across the mid-western to

northwestern sections of New Brunswick (Figure 4.1). Table 4.1 informs about

block-specific attributes pertaining to species composition, harvesting type with

and without brushmats laid down along tracks, soil type, elevation, slope and

aspect. Information about soil association, landform, and lithology for each

block can be found in Table C.1 (Appendix C).

Northwestern Uplands (NWU)

Blocks 1-5 are located within the Southern Uplands Ecoregion of New Brunswick.

Mean annual air temperature is 3.6°C. Mean monthly temperatures vary from

-5.3°C (January) to 12.5°C (July). The area has a mean precipitation of 1140 mm

with 310 mm of snow, inclusively (Department of Environment and Climate

Change Canada, 2016a). The forested vegetation mainly consists of sugar

maple (Acer Saccharum Marsh.), balsam fir (Abies balsamea L.), yellow birch

(Betula alleghaniensis Britt.), and black spruce (Picea mariana Mill.). Blocks 1, 2,
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Figure 4.1: Digital elevation model for New Brunswick (10 m resolution) with
regional upland and lowland delineations, block locations, and weather station
locations.
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4, 5 involved white and black spruce plantations, whereas Block 3 involved

naturally grown birch and maple trees. The bedrock formations of the area

consist of late Ordovician deep water marine clastics. The topography comprises

gently rolling till-covered plateaus with steeply incised valleys.

Midwestern Uplands (MWU)

Blocks 8, 10, and 11 are located on the Miramichi Caledonia Highlands, which

are also part of the Southern Uplands Ecoregion of New Brunswick. Mean annual

air temperature is 5.2C. Mean monthly temperatures vary from -3.5°C (January)

to 13.9°C (July). The area has mean precipitation of 1180 mm with 280 mm of

snow (Department of Environment and Climate Change Canada, 2016a). Block

8 consisted of a naturally regenerated tolerant hardwood stand, with mostly

sugar maples and yellow birch trees. The bedrock formations of the area consist

of early Devonian felsic plutons, generally overlain by loamy lodgment tills and

sandy glaciofluvial outwash sediments.

Lowlands (LL)

Blocks 6, 7, and 9 are located in the midwestern portion of the Continent

Lowlands Ecoregion of New Brunswick. Mean annual air temperature is 5.5°C.

Mean monthly temperatures vary from -2.8°C (January) to 13.8°C (July). Annual

precipitation amounts to 1100 mm, of which 250 mm is snow (Department of

Environment and Climate Change Canada, 2016a). Blocks 6, 7, and 9 supported

natural mixedwood and tolerant hardwood stands, comprised of Eastern

hemlock (Tsuga canadensis L. Carrire), yellow birch, sugar maples, beech (Fagus

grandifolia Ehrh), and some balsam fir, Eastern white cedar (Thuja occidentalis

L.), and black spruce. The bedrock formations of the area consist of early

Devonian mafic volcanic and late Ordovician deep-water marine-clastics,

generally overlain by ablation and boulder tills), glaciofluvial sediments and
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eskers.

4.2.2 Data sources and processing

Data layers needed for the spatial and temporal evaluation and modelling the

plot-by-plot data involved:

i. Producing region-wide digital elevation models (DEMs, 1 m resolution) from

GeoNBs LiDAR elevation point cloud data using LAS tools.

ii. Producing the cartographic depth-to-water layer (DTW), for the purpose of

emulating plot-by-plot changes on soil moisture content as affected by

weather conditions at the time of field sampling (see below).

iii. Using the province-wide 10 m resolution soil property data layers for soil bulk

density (Db), coarse fragments (CF), organic matter (OM), and texture

developed by (Furze, 2018). This development used topographic, climatic

and geological data layers to emulate soil drainage, horizon depth, depth,

texture, coarse fragment content, organic matter content, and bulk density

data as specified for 12,058 geo-referenced soil pedon locations.

iv. Obtaining daily weather records for daily rain and snow amounts and

snowpack depth from weather station, within or near the NWU, MWU and LL

regions (Department of Environment and Climate Change Canada, 2016a)

for block specific soil moisture emulations.

v. Obtaining daily stream discharge records from hydrometric monitoring

stations representative of stream water flow within or near the NWU, MWU

and LL regions for hydrological model calibration (Department of

Environment and Climate Change Canada, 2016b) to ensure that the soil

moisture emulations were consistent with regional weather and stream

discharge events.
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vi. Acquiring forest inventory and road layers, to navigate to and access harvest

blocks.

All raster and shapefile data layers were assembled with ArcMap software, using

the same projection system (NAD 1983 CSRS New Brunswick Stereographic).

Transect plots within blocks were georeferenced to align with data layers. The

resulting coordinates were used to extract plot-specific data values from the

elevation, DTW, Db, CF, OM, and soil texture data layers. The DEM layer was also

used to determine mean elevation, slope, and aspect for each block (Table 4.1),

needed as additional input for the block-specific soil moisture modelling purpose.

4.2.3 Field Measurements

Soil property evaluations were done along 696 geo-referenced transect plots

inside and outside wood-forwarding tracks (i) for Blocks 1 to 9 intermittently from

May 27, 2014 through November 21, 2014, and (ii) for Blocks 10 and 11 in June

2013 (Table 4.1). The plots within blocks were established pairwise, each pair 100

m apart containing one plot within and one plot adjacent to the track on

undisturbed soil, 10 m apart (Figure 4.2).

Soil samples were retrieved from the top 15 cm of mineral soil. Each sample was

placed into labeled freezer bags for storage. Samples were dried in a forced-air

oven at 75 °C for 24 hours, then crushed and passed through a 2 mm sieve to

separate the fine earth from the CF. The latter was used to determine CF %. The

former was used to determine (i) sand, silt, and clay % for each sample (sand % +

silt % + clay % = 100 %), using the hydrometer method (Shelrick and Wang, 1993),

and (ii) soil carbon % by oven-dry weight using a LECO CNS-2000 analyzer. The

resulting soil carbon numbers were converted into soil OM via Eq. 4.1.

OMg% = 1.72 × C% (4.1)
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Figure 4.2: Penetrometer being used inside and outside forwarder tracks without
brushmats.

Soil density samples were also collected from each plot by tapping and

extracting a metal ring of known volume (85 cm3) into the mineral soil. Following

frozen storage, these samples were weighed and dried in a forced-air oven at 75

°C for 24 hours. From this, soil bulk density (Db) was determined as per Eq. 4.2.

Db =
Weight of dried soil (g) +Weight of coarse fragments (g)

V olume of soil (cm3)
(4.2)

The fine-earth bulk density of the soil between rocks and roots was estimated using

the oven-dry weight fractions of sand (SandW), OMW and mineral soil depth (cm)

as predictor variables as per Eq. 4.3 (Balland et al., 2008).

Db =
(1.23 + (Db − 1.23 − (0.75 × Sandwt) × (1 − exp(−0.0106 ×Depth))))

1 + 6.83 ×OMwt
(4.3)

A Humboldt digital cone penetrometer (cone base = 1.5 cm2; cone angle 60°)

was used to determine soil penetrability through recording CI in MPa at 15, 30, 45,

and 60 cm depths within each sampling plot. Similarly, a Delta T HH2 moisture

meter (TDR: a time-domain reflectometer) was used to determine volumetric soil

moisture content of the fine-earth fraction between coarse fragments for each

plot at 15 cm mineral soil depth. Five CI and MCV readings were obtained for

each plot: one at the center point (location of GPS coordinates), and four
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arranged at each cardinal direction (north, south, east, and west), 1 m apart

from centre. For blocks 10 and 11, the CI measurements were taken once per

subplot to the deepest depth reached with the penetrometer. Measurements

were not recorded if obstructed by surface rocks, roots or logs. The subplots were

then averaged to provide single numbers per plot for further analysis.

Since CI tends to be related to pore-space soil moisture content (MCps, see Vega-

Nieva et al., 2009), it was important to derive PS and MCPS from inferred soil (Db)

and particle (Dp), as follows:

1

Dp
=
Db

Dp
− 1 −OMg

Dmin
(4.4)

PS % = 1 − Db

Dp
(4.5)

MCps % =
MCv %

PS %
(4.6)

where MCV is the volumetric moisture content of the fine earth, and Dom and

Dmin were set to 1.3 and 2.6 g/cm3, respectively.

4.2.4 Temporal MC Variations

Soil moisture was modelled block-by-block over time using the temporal aspatial

Forest Hydrology Model (ForHyM) (Arp and Yin, 1992; Yin and Arp, 1994; Jutras,

2012). This model uses (i) daily weather records for temperature, and

precipitation for input (Table 4.2), (ii) block-specific specifications for topography

(elevation, slope, and aspect), (iii) soil-surveyed properties (horizon depth,

texture, depth, OM, CF) as per mapped soil type (Table 4.3), and (vi) vegetation

type and % canopy closure. These specifications were needed to emulate daily

soil moisture, temperature, snowpack conditions and stream discharge. In this

model, soil permeability at saturation was empirically related to Dp, Db, and soil
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sand fraction by weight (SandW) by setting:

log10Ksat = − 0.98 + 7.94 × log10(Dp −Db) + 1.96 × SandW

R2 = 0.80

(4.7)

In ForHyM, Ksat and snowpack are further calibration-adjusted to quantify the

extent of inflow (lateral flow) along layers versus downward percolation (vertical

flow) into layers (Table 4.2, Figure C.1 (Appendix C)). In soils where soil density

increases with depth, downward Ksat is general less than the Eq. 4.7

specifications. Also of note is the ForHyM formulation for water retention at field

saturation (FCw), given by:

FCW = SPW

(
1 − exp

[
−0.588(1 − SandW ) − 1.73 ×OM

SPW

])
R2 = 0.96

(4.8)

where FCW, SPW, and SandW all refer to total weight fractions per dried and

gently crushed fine soil that passes through a 2 mm sieve. In combination, any

ForHyM generated block-by-block soil moisture output by soil layer is a function of

soil bulk density sand, organic matter, and coarse fragment content. Specifically,

Eq. 4.8 implies that soil moisture retention at field capacity increases with

increasing organic matter content and decreasing bulk density, sand, and

coarse fragment content (Balland et al., 2008).
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Table 4.2: ForHyM calibration variables for snowpack and saturated soil
permeability by block, including weather and hydrometric station locations for
primary ForHyM input data.

A - NWU B - MWU C - LL
Blocks 1-5 8, 10, 11 6, 7, 9

Weather Station1
Leonard Station

Airport &
Edmundston

Woodstock &
Juniper

Fredericton
CDA

Hydrometric Station1 Black Brook
Watershed Data2

Narrows
Mountain Brook

Nashwaaksis
Stream

Model Run Years 1990-2016 1990-2016 1940-2016

Snowpack
parameter
adjustments

Snow-to-air
temperature gradient 0.16 0.2 0.2

Density of fresh snow 0.16 0.15 0.2

Saturated
Soil
Permeability
parameter
adjustments

Surface runoff 1 1 1
Forest floor infiltration 1 1 1
Forest floor interflow 0.01 1 0.01

A&B horizon infiltration 1 1 1
A&B horizon interflow 0.05 0.1 0.01
C horizon infiltration 1 1 1
C horizon interflow 0.1 0.8 0.1

Deep water
percolation 1 1 1

1 (Department of Environment and Climate Change Canada, 2016a)
2 (Black Brook Watershed Research site, 2014)
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Table 4.3: ForHyM soil profile information used to initialize each blocks.

Region Block Vegetation Layer Depth Texture OMW % CF %

NWU 1, 2, 4, 5 SW,
shallow
rooted

LFH 5 Organic 100 0
A 10 SL 1 20
B 75 SL 8 24
C 100 S 1 35

NWU 3 IntHW,
deep
rooted

LFH 5 Organic 100 0
A 10 SL 20 20
B 75 SL 5 24
C 100 S 1 35

MWU 8 MW,
medium
rooted

LFH 7 Organic 100 0
A 5 SL 1 20
B 40 SCL 5 20
C 100 L 2 30

MWU 10, 11 TolHW,
deep
rooted

LFH 7 Organic 100 0
A 10 SL 5 20
B 40 SCL 2 20
C 100 L 1 30

LL 6, 7 TolHW,
deep
rooted

LFH 7 Organic 100 0
A 5 SL 5 20
B 40 L 5 20
C 150 L 1 30

LL 9 TolHW,
deep
rooted

LFH 7 Organic 100 0
A 5 SL 5 20
B 40 L 5 20
C 150 L 1 30
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4.2.5 MC and CI Variations, plot-by-plot

In general, soil moisture increases from ridges and steep slopes to

water-saturated wetlands, depressions and hyporheic zones adjacent to streams,

rivers, lakes and shores. To some extent, this tendency is quantitatively related to

the cartographic depth-to-water index (DTW) which is a metric that represents

the least elevation rise to any point on the land way from the nearest open water

locations, where DTW = 0. Conceptually, soil moisture levels should therefore

decrease at DTW increases. For the changes in volumetric and pore-filled soil

moisture content over time, this can be expressed as follows (Vega-Nieva et al.,

2009):

MCPS,DTW =
MCV,DTW

PS
= 100 − [100 −MCPS0]×[

1 − exp(−kmc ×DTW )

1 − exp(−kmc ×DTWmax)

]pmc (4.9)

where MCPS,DWT MCV,DWT the pore-filled and volumetric soil moisture content at

any point in the landscape in relation to DTW, with DTW = 0 referenced to local

flow channel network and other connected open-water features when bankfull.

The local flow-channel network was generated by applying the D8

flow-accumulation algorithm to the 1 m resolution LiDAR-generated digital

elevation model for New Brunswick, as described in Figure 4.3, The seasonality

extent of the resulting flow network was emulated by varying the minimum

upslope flow-accumulation area for flow initiation (termed flow initiation area, or

FIA for short) by season and weather, as illustrated in Figure 4.4.

In Eq. 4.9, parameters kMC and pMC (0.5 and 1.5, respectively) quantify how

MCPS,DTW varies with DTW across areas of interest as MCPS0 varies from, for

example, 20 % on ridges to 100 % at and near water-filled flow channels. When

soils become uniformly saturated, MCPS,DTW = 100 % everywhere. At other times,

MCPS0 ≤ MCPS,DTW <1.
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Figure 4.3: Cartographic depth-to-water index (DTW) diagram (Murphy et al.,
2009b).

Figure 4.4: Cartographic DTW <1m pattern by minimum upslope open-channel
flow initiation area (FIA), i.e., DTWFIA, to emulate changes in soil moisture content
by weather and season. For most of New Brunswick and the forested areas across
Canada, the DTW 1m pattern for FIA = 4 ha reflects end of the summer soil
moisture and drainage conditions from very poor to moderate.
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Since soil moisture at any point in the landscape are also affected by block-by-

block and plot-by-plot variations in soil properties and wood-forwarding tracks,

MCPS also needed to be evaluated as function forest cover and soil properties

inside and outside wood-forwarding tracks. This was done by setting:

MCPS = f(DTW, elevation, forest cover, soil properties,

block, track, brushmat)

(4.10)

with Forest Cover (SW, HW, MW), Block, Track and Brushmat coded 1 when

applicable and 0 when not. The elevation variable accounted for additional

topographic variations as they exist block-to-block across the NWU, MWU, and LL

regions. The soil properties refer to plot-by plot variations in soil texture (sand, silt,

clay content), soil density (Db, inferred from sand and clay content), CF, OM, and

layer depth. The block-by-block and plot-by-plot CI variations were evaluated

similarly by setting:

CI = f(DTW, elevation, forest cover, soil properties,

block, track, brushmat)

(4.11)

4.2.6 Statistical analyses, followed by generalized block-generated MCPS

and CI projections

The block- and plot-descriptive, field, laboratory, ForHyM-generated and

raster-extracted data were compiled into a single datasheet, were summarized

and were subjected to correlation, factor, multivariate regression analyses in R (R

Core Team, 2015), using MCV, MCPS and CI as dependent variables. The resulting

regression models for Eqs. 4.9, 4.10, and 4.11 were assessed in terms of

scatterplots for the actual versus modelled values, the best-fitted regression

coefficients for each independent variable of non-zero significance values

(p-values <0.01), and R2 and RMSE goodness-of-fit indicators. In addition, the

conformance levels between actual and model projected 0-10, 10-20, 20-30,...%

MCPS classes and 0-0.5, 0.5-1, 1-1.5,... MPa CI classes were evaluated in terms of
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confusion matrices, non-randomness, and cumulative conformance probabilities

to determine the uncertainty range of best-fitted model projections.

Subsequently, the MCV, MCPS and CI regression evaluations were repeated using

variables amenable for area-wide projection purposes. These variables referred

to (i) DTW, elevation, digitally-generated province-wide soil property rasters for

Sand, CF, OM and Db (Figure 4.5; Furze, 2008), (ii) block- and season- or

month-specific assignments for FIA, (iii) soil depth, and (iv) forest cover type for

non-tracked soil conditions. The process of doing so by soil depth and season

(month) is illustrated in Figure 4.6.

Figure 4.5: Spatial raster examples for DTW (1), DEM (2), Db (3), CF (4) for block-
specific MCPS projections (Block 3).
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Figure 4.6: Digital soil mapping process combining topographic and soil features
(A) with temporal features (B) to generate best-fitted weather-affected MCPS (B)
and CI (C) projections for each block (e.g., Block 3) by way of best-fitted Eqs. 4.9,
4.10, and 4.11 models.

4.3 Results & Discussions

4.3.1 General observations and trends

The plot-based determinations for sand, silt, and clay, OM, CF, MCPS, and CI are

summarized per block in Figure 4.7 by box plot in in terms of number of plots, and

minimum, maximum, average and standard deviation values in Table C.2

(Appendix C). These plots reveal that the MCPS, CI and Db were not always

higher inside than outside the wood-forwarding tracks, as one would expect

(Allen, 1997; Han et al., 2009; Labelle and Jaeger, 2011; Cambi et al., 2015; Solgi

et al., 2018). Possible reasons for the lack of systematic MCPS, Db, and CI
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increases refer to (i) the wide range of operational multi-track observations

across ground conditions comprised of rocks, stumps, and variable forest litter

depths including brushmats, and (ii) differences in MCPS, Db, and CI survey-ing

methodologies, e.g., using Db and MC sensors that required no soil displacement

(Labelle and Jaeger, 2011) and hydraulic cone penetrators (Cambi et al., 2015;

Solgi et al., 2018). The results reported below were obtained through manual soil

extraction and probe insertions.

In terms of tracks with and without brushmats, it was found that measured values

for Db, CI, and MCPS for the top mineral soil 15 cm were somewhat lower and less

variable under matted than non-matted tracks (Figure 4.8). Systematic increases

for Db and CI from the matted and non-matted tracks as reported by Han et al.

(2009) and Labelle et al. (2015) were therefore not found, likely due to the

strongly varying substrate conditions along the tracks.

In terms of the higher trending MC levels on matted versus non-matted plots,

Roberts et al. (2005) and Moroni et al. (2009) reported lower cumulative soil

moisture losses under matted than non-matted tracks likely through

mulch-related shading, insulation, and lowered evaporation benefits.

The overall trends between MCPS and CI versus CF, sand, OM and Db are

presented in Figure 4.9. As shown, increasing CF generally lowered MCPS

presumably due to (i) increasing porosities between the fragments, (ii)

subsequent increases in soil moisture loss due to increased soil permeability, and

(ii) enhanced evaporation due to fact that CF conduct heat faster than soil

(Poesen and Lavee, 1994; Chow et al., 2007).

The increasing MCPS trend with increasing Db relates to decreasing pore space.

Similarly, decreasing MCPS with increasing OM % relates to increased pore space

due to OM-facilitated soil granulation (Han et al., 2006). There is also the
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Figure 4.7: Boxplots of MCPS, CI, CF, sand and Db within the top 15 cm soil layer
inside and outside the wood-forwarding tracks.

Figure 4.8: Scatterplots pertaining to CI, Db, and MCPS inside and outside
brushmatted and non-brushmatted tracks.

possibility of decreasing MCPS due to increasing hydrophobicity as

OM-containing soils dry out (Vogelmann et al., 2013). In contrast, the increasing

MCPS trend with increasing sand % may be due to preferential pore space

saturation in sandier topsoil portions.
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In terms of CI, increasing levels of CF contributes to increasing soil resistance to

penetration because of skeletal soil stabilization (Manuwa, 2012) and the need

to push some of the fragments to the side to gain greater penetration depths.

Increasing sand % generally decreases the strength of the soil, due to lower

particle-to-particle cohesion. The opposite occurs with increasing clay % (Raven

et al., 1999). The trend between increasing CI and increasing soil depth (Figure

4.10) because of depth-related increases in Db (Carter et al., 2007).

Analyzing the trends among the MCPS and CI affecting variables more closely

produced the correlation matrix and its factor analysis results in Table 4.4. The

bolded Factor 1-3 loadings indicate that:

i. Factor 1 is positively associated with increasing CI, CF, Db, elevation and

tracks, but negatively associated with increasing soil organic matter

content.

ii. Factor 2 is positively associated with higher elevations where tolerant

hardwood forests dominate, where brushmats were rarely used, and where

soils are somewhat sandier.

iii. Factor 3 is positively associated with increasing MCPS but negatively

associated with increasing CF, sand, and decreasing DTW, as to be

expected. Also, soil pores tend to be drier at higher elevations but fill more

easily and remain wet or moist longer inside than outside the tracks.
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Figure 4.9: Scatterplots for top 15 cm MCPS (top) and CI (bottom) versus top 15
cm CF, sand, OM and Db.
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Figure 4.10: Boxplots of field-determined CI versus soil depth for Blocks 1 to 9,
including significance value of implied trend. Also shown (bottom): summary
boxplots of all CI determinations off-track and inside tracks.
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4.3.2 Temporal Soil Moisture Derivations

The ForHyM-generated results for daily soil moisture, stream discharge, snowpack

depth and depth of soil frost are illustrated in Figure 4.11, which also displays the

reported weather station records for rain, snow snowpack depth, and air

temperature for Blocks 1 and 9 from 2011 to end of 2014. The daily MCPS0 output

so produced block-by-block (Table 4.5) was obtained through calibrating the

ForHyM output with reported snowpack depth and cumulative stream discharge

values for each of the three regions (Figure C.1 (Appendix)). These calibrations

involved adjusting the ForHyM parameters for snowpack depth and lateral versus

vertical layer-by-layer soil permeability, as detailed in Table 4.5.

Fitting the actual plot-specific MCPS determinations for the top 15 cm of mineral

soil versus the corresponding log10DTW values with FIA = 1 ha across all the plots

by way of Eq. 4.9 produced the following equation once FIA and MCPS0 was

specified for each block:

MCPS,DTW = 100 − [100 −MCPS0] ×
[

1 − exp(−0.5 ×DTW )

1 − exp(−0.5 ×DTWmax)

]1.5
R2 = 0.29

(4.12)

This result improved considerably by using log10DTW1ha as an additional MCPS

predictor variable:

MCPS = 48.16 − 5.80 × log10DTW1ha+ 0.19 ×MCPS,DTW

R2 = 0.38

(4.13)

In detail, the inclusion of log10DTW1ha spread the MCPS prediction range from

about 30 to 75 % (Eq. 4.12) to about 20 to 90 % (Eq. 4.13). Even further

improvements were obtained by including the plot determinations for Db,

Elevation, HW and Track as independent variables. This led to the best-fitted
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Figure 4.11: Daily variations in Block 1 (left) and Block 9 (right) for air temperature
and precipitation (ForHyM input) and stream discharge, MCPS for top 15 cm of
mineral soil, estimated field capacity, snowpack depth, and frost depth (ForHyM
output; (Jones et al., 2018)).

Table 4.5: Mean block-specific soil property values including soil moisture content
at ridge top (MCPS0) and minimum upslope open-channel flow initiation area FIA.

Block
Db Sand Clay OM CF MCPS0 FIA

g cm-3 % % % % % ha

1 0.92 27.1 6.5 11.6 42.4 31.9 1
2 0.91 16.7 6.8 11.4 52.3 34.1 8
3 0.96 25.5 5.4 10.3 48.2 31.5 1
4 0.98 25.5 3.4 9.4 52.5 28.9 8
5 0.91 8.6 2.2 12.5 72.5 29.6 8
6 0.90 22.5 7.1 14.6 44.8 42.0 1
7 0.99 30.1 4.7 9.0 44.7 42.0 1
8 1.09 32.5 5.3 7.3 44.9 36.2 4
9 0.79 33.6 4.4 24.1 28.9 44.9 0.25

10 0.85 10.8 5.5 14.4 60.5 47.4 8
11 0.85 9.4 4.9 21.2 61.9 40.0 16
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MCPS regression results listed in Table 4.6, and to Eq. 4.14:

MCPS = 32.18 − 1.49 × log10DTWFIA,1ha + 0.27 ×MCPS,DTW + 42.56 ×Db

− 0.10 × Elevation+ 13.09 ×HW + 3.93 × Track

R2 = 0.61

(4.14)

The corresponding best-fitted MCV results, also listed in Table 4.6, led to Eq. 4.15:

MCV = 35.25 − 1.33 × log10DTWFIA,1ha + 0.19 ×MCPS,DTW + 13.37 ×Db

− 0.07 × Elevation+ 9.38 ×HW + 2.43 × Track

R2 = 0.51

(4.15)

Based on the t-value entries in Table 4.6, one determines that the significance

contributions of all the MCPS and MCV predictor variables follow these

sequences:

for MCPS: Db ≈ MCPS,DWT ≈ Elevation ≈ HW >log10DTWFIA,1ha >Tracks >Sand >CF;

for MCV: MCPS,DWT ≈ Elevation ≈ HW >log10DTWFIA,1ha >Sand >Tracks >Db ≈ CF.

As to be noted, there is a high to low Db regression coefficient and significance

change from MCPS (Eq. 4.14) to MCV (Eq. 4.15) due to the greater dependence

of MCPS on Db via Eqs.4.5 and 4.6 while the significance levels for the predictor

variables remain about the same. Also note that the best-fitted R2 and RMSE

drop from MCPS to MCV due to the narrower MCV data range.

The + and - signs for the regression coefficients in Eqs. 4.14 and 4.15 follow

expected trends for MC, namely:

i. MC decreases with increasing DTW but increases as MCPS0 % (and therefore

MCPS,DWT %) increase, as to be expected,

ii. MC decreases towards higher and generally steeper elevations,
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Table 4.6: Best-fitted MCPS % and MCV % models based on using plot-generated
(Eqs. 4.14, 4.15; top) versus plot-projected (Eqs. 4.16, 4.17; bottom), listing
significant regression variables and their coefficients, standard error estimates, and
t- and p-values, together with R2, RMSE values and sample size (n).

Regression
optimization

Dependent
variables

Intercept &
predictor
variables

Regr.
coeff. ±SE t-value p-value R2 RMSE n

Using
plot-specific
determinations
for each
block

MCPS % Intercept 48.396 6.131 7.894 <0.0001 0.61 10.11 394
Eq. 4.14 MCPS,DTW 0.212 0.063 3.357 0.0009

log10DTW1ha -2.178 0.813 -2.680 0.0077
Sand -0.144 0.046 -3.014 0.0018

CF -0.075 0.287 -2.624 0.0090
Db 41.537 3.407 12.189 <0.0001

Elevation -0.107 0.010 -10.499 <0.0001
HW Blocks 12.190 1.541 7.909 <0.0001

Tracks 3.899 1.026 3.800 0.0001

MCV % Intercept 42.748 4.309 9.921 <0.0001 0.51 7.49 394
Eq. 4.15 MCPS,DTW 0.155 0.047 3.304 0.0010

log10DTW1ha -1.854 0.606 -3.057 0.0024
Db 14.437 2.438 5.920 <0.0001

Elevation -0.077 0.008 -10.308 <0.0001
HW Blocks 9.012 1.146 7.862 <0.0001

Tracks 2.378 0.766 3.104 0.0021

Using
regionally
available
DEM, DSM,
DTW layers
together
with forest
cover and
plot/weather-
specific FIA
assignments

MCPS % Intercept 70.883 6.326 11.205 <0.0001 0.46 9.45 394
Eq. 4.16 MCPS,DTW 0.264 0.073 3.589 0.0003

log10DTW1ha -2.764 0.926 -2.986 0.0003
OMDSM -0.981 0.278 -3.529 0.0005

Elevation -0.091 0.013 -6.937 <0.0001
HW Blocks 10.224 2.136 4.788 <0.0001

Tracks 4.090 1.233 3.316 0.0010

MCV % Intercept 49.018 4.096 11.968 <0.0001 0.48 7.72 394
Eq. 4.17 MCPS,DTW 0.186 0.047 3.932 <0.0001

log10DTW1ha -1.665 0.599 -2.927 0.0057
OMDSM -0.421 0.180 -2.338 0.0199

Elevation -0.073 0.008 -8.650 <0.0001
HW Blocks 9.000 1.383 6.509 <0.0001

Tracks 2.449 0.798 3.067 0.0023
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iii. MC is higher inside than outside soil tracks,

iv. Soils under hardwood cover tend to be moisture than elsewhere, in part due

to deeper rooting and higher top-soil OM accumulation.

v. Contributions of sand and CF (both negative) to MC were also found to be

significant, but only marginally s0: excluding these from the analysis

changed R2 for MCV from 0.51 to 0.50, and for MCPS from 0.63 to 0.60

(details not shown).

The best-fitted MCPS and MCV equations - obtained from substituting the plot-

generated values for MCPS,DTW % with the block-assessed FIA values and with plot-

level Eq. 4.3 estimates for OM generated from the digital soil layers for OM %

(labelled OMDSM) - are as follows (Table 4.6):

MCPS = 60.80 + 0.26 ×MCPS,DTW − 1.84 × log10DTW1ha − 0.74 × FIA

+ 0.14 × SandDSM − 0.10 × Elevation+ 9.96 ×HW + 4.32 × Tracks

R2 = 0.46

(4.16)

MCV = 45.22 + 0.18 ×MCPS,DTW − 1.75 × log10DTW1ha + 0.13 × SandDSM

− 0.54 ×OMDSM − 0.07 × Elevation+ 8.48 ×HW + 2.53 × Track

R2 = 0.46

(4.17)

The corresponding actual versus best-fitted scatterplots associated with MCPS via

Eqs. 4.12, 4.13, 4.14 and 4.16 are shown in Figure 4.12.

Using Eq. 4.14 produced the block-by- block presentation in Figure 4.7, which

also shows the field-determined MCPS plot values for the top 15 cm of soil outside

and inside the tracks. Visually, there is a general agreement between the

off-track field determinations and the corresponding projection, with off-track

MCPS generally higher than inside track.
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Figure 4.12: Scatterplots of actual versus best-fitted MCPS scatterplots. Eq. 4.12
demonstrates the influence of block-generated DTW mapping on MCPS alone. Eq.
4.13 demonstrates the improvements generated by way of block- and weather-
influenced DTW mapping. Eq. 4.14 demonstrates the additional improvements
obtained by adding variables describing forest cover type, elevation, soil density
and track versus non-tracked specifications to the MCPS regression analysis. Eq.
4.15 demonstrates that MCPS can also be emulated using block-specific estimates
for upslope soil- and weather-dependent flow-channel initiation (FIA) and organic
matter estimates (OMDSM) based of digital soil mapping (DSM).
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Grouping the off- and in-track projections and corresponding field

determinations into 10 % MCPS classes produced the MCPS confusion matrix and

associated MCPS cumulative conformance plots in Figure 4.13. In summary, the ±

5 % MCPS conformance level so found amounts to 34 % across the 20 <MCPS

<100 % range, but increases to 81 and 96 % as the conformance uncertainty

increases to ∆ MCPS increases to ± 15 and ± 25 %, respectively. The possibility of

randomly achieving these conformance levels have kappa values of 0.26, 0.73

and 0.92, respectively. The kappa value for random chance agreements equals

zero, by definition.

Figure 4.13: Confusion matrix for actual versus Eq. 4.14 projected MCPS (left) and
cumulative conformance probability for Eqs. 4.12, 4.13, 4.14, and 4.16 (right). Blue
squares align 1 on 1 for the actual versus projected MC% classes, while the shades
from dark to light red represent increasing projection differences.
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Figure 4.14: Overlay of field- and track- determined MCPS on the Equation
4.16 generated MCPS projections for Blocks 1 to 11 (blocks 9-11 have only field
measured MCPS)
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4.3.3 CI Derivation

The best-fitted CI results using plot-determined and plot-projected data are listed

in Table 4.7 and led to the following equations:

CI(plot− determined) = 1.60 − 0.01 ×MCPS + 0.03 ×Depth+

0.76 × Tracks+ 0.40 × SW

R2 = 0.41

(4.18)

CI(plot− projected) = 1.60 − 0.03 × log10DTW1ha − 0.02 ×MCPS0+

0.02 ×Depth+ 0.64 × Tracks+ 0.32 × SW

R2 = 0.39

(4.19)

where 0.03 log10DTW1ha - 0.02 MCPS0 in Eq. 4.19 replaced -0.01 MCPS in Eq. 4.18.

These results affirm that the plot-determined CI values, as to be expected,

increase with decreasing soil depth, are higher inside that than outside the

tracks, are higher under softwood forest cover, decrease with increasing soil

moisture content, and increase with increasing soil density. The associated

significance levels vary as follows:

for Eq. 4.18: Track >Depth >MCPS >SW >Db

for Eq. 4.19: Track >Depth >SW ≈ DTW1ha >MCPS0

Other variables such as Sand, Clay, CF and OM would also affect CI, but these

variables were not found to make additionally significant CI contributions to the

plot-determined or projected values. Quantitatively, Eq. 4.17 indicates that a

change in MCPS from 0 to 100 % would lead to a change in CI by 3.1 MPa (all

other conditions remaining the same). In comparison, CI would on average

increase by 2.6 MPa from 0 to 1m soil depth. In comparison, CI values are about

0.7 MPa higher inside than outside tracks.
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Table 4.7: Best-fitted CI models based on using plot-generated (Eq. 4.18) versus
plot-projected (Eq. 4.19) and log10 plot-generated CI (Eq. 4.20), listing significant
regression variables and their coefficients, standard error estimates, and t- and
p-values, together with R2, RMSE values and sample size (n).

Dependent
variables

Intercept &
Predictor
variables

Regr.
coeff. ±SE t-

value p-value R2 RMSE n

CI MPa Intercept 1.599 0.159 10.06 <0.0001 0.41 0.59 372
Eq. 4.18 MCPS -0.011 0.002 -5.98 <0.0001

Depth 0.025 0.002 9.90 0.0583
Tracks 0.760 0.064 11.91 <0.0001

SW Blocks 0.397 0.064 6.20 <0.0001

CI MPa Intercept 1.604 0.367 4.37 <0.0001 0.39 0.60 376
Eq. 4.19 MCPS0 -0.023 0.009 -2.53 0.0119

DTW1ha 0.034 0.009 3.85 <0.0001
Depth 0.022 0.002 8.87 <0.0001
Tracks 0.644 0.067 9.62 <0.0001

SW Blocks 0.319 0.087 3.66 0.0003

log10 CI MPa Intercept 0.152 0.039 3.90 <0.0001 0.41 0.14 372
Eq. 4.20 MCPS 0.002 0.001 -5.58 <0.0001

Depth 0.006 0.001 10.03 <0.0001
HW Blocks 0.091 0.016 5.84 <0.0001

Tracks 0.189 0.015 12.11 <0.0001
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The scatterplots associated with Eqs. 4.18 and 4.19 are presented in Figure 4.15.

The scatterplot for the former is more heteroscedastic than the latter.

Log-transforming CI the best-fitted results so obtained as listed in Table 4.7

produces an even scatterplot in Figure 4.15, and the following equation:

log10CI = 0.152 − 0.002 ×MCPS + 0.006 ×Depth

+ 0.189 × Tracks+ 0.091 × SW

R2 = 0.41

(4.20)

The overlays of the field-determined on the Eq. 4.18 projected CI values for the

top 15 cm of soil are shown by Block in Figure 4.15, which also shows the

corresponding values at 30, 45, and 60 cm depth for Block 3.

Grouping the field-determined and projected CI values into 0.25 MPa classes

produced the CI confusion matrix and associated cumulative conformance plots

in Figure 4.16. As shown, the CI confusion matrix has an actual with projected ∆

CI ≤ 0.25 MPa class conformance of 32 % across the 0.5 <CI <4.5 MPa range. This

conformance increases to 78 and 95 % as the uncertainty range for CI increases

from ±0.5 and ± 0.75 MPa, respectively. Achieving these agreements have

kappa values equal to 0.23, 0.67 and 0.88, respectively. In comparison with the

MCPS kappa values, this suggests that the CI projections are slightly more random

than the MCPS projections.
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Figure 4.15: Scatterplots of actual versus best-fitted CI scatterplots. Eq.
4.18 demonstrates the additional improvements obtained by adding variables
describing forest cover type, soil depth and track versus non-tracked
specifications to the CI regression analysis. Eq. 4.19 demonstrates that CI can
also be emulated using block-specific estimates for upslope soil- and weather-
dependent ForHyM MCPS0 and depth-to-water. Eq. 4.20 demonstrates the log10
of CI.

Figure 4.16: Confusion matrix for modelled vs Eq. 4.18 projected CI (left) and
cumulative conformance probability for Eqs. 4.18 and 4.19 (right). Blue squares
align 1 on 1 for the actual versus projected MC% classes, while the shades from
dark to light red represent increasing projection differences.
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Figure 4.17: Eq. 4.18 generated CI projections at 15 cm depth for Blocks 1-9 outside
wood-forwarding (top), and for 15, 30, 45 and 60 cm soil depths outside (left) and
inside (right) the wood forwarding tracks for Block 3 (bottom).
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4.3.4 Forecasting Block-specific Soil Moisture and Penetrability Conditions

The above results show that the combination of emulating layered soil properties

and daily soil moisture simulations produces non-random soil moisture and cone

penetrability projections across harvest blocks of varying topography, forest cover,

geological substrates and weather conditions. To this effect, the extent of pore-

filled moisture content can be predicted with a tolerance of 15 %, 8 times out

of 10 within the 20 to 100 % soil moisture range. Similarly, the cone penetrability

index can be predicted with a tolerance of ±0.5 MPa, 8 times out of 10 within the

0.2 to 4.5 MPa range. In summary, generalizing similar results for the purpose of

forecasting soil trafficability block-by-block requires:

i. A 10 m resolution DEM layer with a tolerance of at least 2 m, 8 times of out

10 (Furze et al., 2017);

ii. A digital soil mapping process that emulates the required soil property layers

at a general conformance level of 80 % (Furze, 2018);

iii. An assessment of the season and weather dependent minimum upslope

open-channel flow initiation area (FIA) as this could vary from 0.25 to 8 ha

(Figure 4.4).

iv. A forest hydrology model that can be used to estimate weather- and season-

affected soil moisture content (MCPS0) for ridge-top soils, to initiate, e.g., the

Eq. 4.14 and 4.16 calculations (Jones and Arp, 2017), based on block-by-

block elevation, slope, aspect, texture, Db, OM, CF, vegetation type and %

canopy closure.

The MC and CI results so produce are projected in Figure 4.18 for hardwood and

softwood areas somewhat larger than Block 3 and Block 4. This was done for

weather conditions that varied from essentially frozen in February to wet in May,

dry in July, and moist in October. The blue shading in these plots suggests where

rutting would occur on account of elevated MC and lowered CI values once

wood-forwarding operations cross the areas so marked. For the most part, areas
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prone to rutting would be aligned with the DEM-based flow-channel and

associated DTW delineations as these vary by weather and season. Least rutting

would have occurred in February (ground mostly frozen) and July (ground mostly

dry), but would have been most extensive in May and later fall (ground mostly

moist to wet).

4.3.5 Additional comments

While the above study provides a useful framework for delineating and

evaluating soil trafficability restrictions on account of changes in soil moisture and

soil penetrability, there is a need to validate the generality of this framework by:

i. testing across all dominant and minor soil types within the same region;

ii. application across other regions;

iii. conducting sequential MC and CI determinations as ground conditions

transit from wet to dry and from frozen to non-frozen.

iv. advancing the digital soil property mapping process from coarse textured

DEMs (Furze, 2018) to 1 m LiDAR-generated terrain elevation resolution. Doing

so will likely increase the significance by which projected sand, clay, organic

matter, coarse fragments and bulk density gain significance as MC and CI

predictors.

Repeated topsoil moisture and density testing should ideally be done without

probe insertions, i.e. via nuclear moisture-density gauge (Corns, 1988; Brown

et al., 1998; Labelle and Jaeger, 2011). CI testing would benefit from hydraulic

rather than manual testing (Hooks and Jansen, 1984; Herrick and Jones, 2002).

Doing so would assist in reducing manually generated errors, inconsistencies, and

biases, but would increase sampling expense.

There are other DEM-utilizing soil MC projection techniques. Most notably among

these is the topographic wetness index (TWI; Beven and Kirkby (1979); Sørensen
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Figure 4.18: ForHyM modelled MCPS for ice and water combined, in relation to soil
moisture retention at field capacity (top) with spatially projected MCPS (Eq. 4.14)
and CI (Eq. 4.18) on block 3 (hardwood forest and soil conditions; middle) and
block 4 (softwood forest and soil conditions; bottom).
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et al. (2006)). This index emulates soil wetness to local upslope flow-accumulation

areas and slopes, i.e., TWI = ln (flow accumulation area / slope). Comparative

studies revealed that TWI-inferred MC depends strongly on TWI-cell averaging

(Murphy et al., 2009b; Ågren et al., 2014), while DTW-inferred MC can directly be

related to field-based DTW measurements (Dobbie and Smith, 2006; Murphy

et al., 2009b).

Optimal TWI-based MC interpretations are generated by filling noise-generated

DEM pits, followed by changing the focal search radius for cell-centered mean

elevation differences, slope and TWI (Southee et al., 2012). The resulting MC

correlations with TWI had R2 values ranging from 0.06 to 0.36, with best-results

obtained for the 5 to 10 m cell-size range. Attempts focused on analyzing soil

moisture conditions from spectral surface images tend to produce mixed results,

especially for soils covered by vegetation and vegetation litter (Njoku and

Entekhabi, 1996; Das and Paul, 2015). Best results are generally observed for bare

to open mineral soil surfaces (Jackson, 1993; Engman and Chauhan, 1995; Wang

and Qu, 2009; Das and Paul, 2015).

Further digital soil property mapping improvements can likely be obtained using

LiDAR-generated DEMs at 1 m resolution. Doing so would likely increase the

significance by which projected sand, clay, organic matter, coarse fragments

and bulk density gain significance as MC and CI predictors.

With reasonable soil- and weather-informed MC and CI projections, it is feasible

to generate machine- and load-specific rut depth maps as affected by machine

type, loads, tire dimensions, and number of wood-forwarding passes, as

demonstrated by Vega-Nieva et al. (2009) and Jones et al. (2018). In turn, such

projections can be used to evaluate existing traffic-induced soil disturbance

impacts as demonstrated by Campbell et al. (2013).
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4.4 Conclusion

The above soil MC and CI assessment is limited to forested areas within

northwestern New Brunswick, Canada. The approach taken emulates

block-specific soil MC and CI variations with R2 = 0.61 and 0.40, respectively. The

dominant predictor variable refers to daily soil moisture levels as affected by

weather, DTW, sand, Db, CF, soil depth, stand type (HW or SW) and sampling

location, inside or away from harvest tracks). Other potentially important MC

and/or CI contributing variables yet to be addressed refer to the presence and

extent of stumps and roots, depth of local forest litter accumulations, local

variations in micro-topography pertaining to mounds and pits, and the number

of passes per track. Implicitly addressed are the variations in soil OM due to

general association between OM, Db and soil pore space via Equations 4.3 to

4.6. The effect of brush-matting on MC and CI was found to be too variable to

make significant contributions to the best-fitted MC and CI regression results. The

lack thereof is likely related to branch-specific soil compaction and

displacement variations at the centimeter scale.

4.5 Acknowledgments

This research was supported by an NSERC-CRD supported Forest Trafficability

project, with further support by J.D. Irving, limited. Special thanks go to the Forest

Watershed Research Center at UNB for field sampling (Doug Hiltz, Mark

Castonguay, Clara Ndekuringe Dennis, and Tanner Sagouspe).

121



Chapter 5

Soil Trafficability Forecasting

Marie-France Jones and Paul Arp

Faculty of Forestry and Environmental Management,

University of New Brunswick, Fredericton NB, Canada E3B 6C2

Email: arp2@unb.ca

Foreword:

The following chapter is a published article within the Open Journal of Forestry. It

was submitted on July 10, 2019 and accepted for publication on July 23, 2019.

Publication permission can be found in Appendix D.1.

Citation:

Jones, M.-F., Arp, P.A. (2019) Soil Trafficability Forecasting. Open Journal of

Forestry. Approved for publication.

122



Abstract
This chapter introduces and evaluates a Soil Trafficability Model (STRAM)

designed to estimate and forecast potential rutting depth on forest soils due to

heavy machine traffic. This approach was developed within the

wood-forwarding context of four harvest blocks in Northern and Central New

Brunswick. Field measurements used for model calibration involved determining

soil rut depths, volumetric moisture content, bulk density, soil resistance to cone

penetration (referred to as cone index, or CI), and the dimensionless nominal soil

cone index NCI defined by the ratio of CI over wheel foot print pressure. With

STRAM, rut depth is inferred from: (i) machine dimensions pertaining to estimating

foot print area and pressure; (ii) pore-filled soil moisture content and related CI

projections guided by year-round daily weather records using the Forest

Hydrology Model (ForHyM); (iii) accounting for within-block soil property

variations using multiple and Random Forest regression techniques. Subsequent

evaluations of projected soil moisture, CI and rut-depth values accounted for

about 40 (multiple regression) and 80 (Random Forest) percent of the

corresponding field measured values.

Keywords

Soil trafficability, forecasting, rutting, soil moisture, density, cone index, wood

forwarding, regression comparisons, depth-to-water index.
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5.1 Introduction

With the wide-spread use of modern mechanized harvest machinery, forest and

agricultural planners have to deal with the effects of heavy machine loads on soil

rutting, compaction, erosion, and subsequent reductions in crop yields (Brady

and Weil, 2008). Increased soil compaction reduces soil porosity, increases soil

runoff, damages and crushes roots, and leads to reduced root growth due to

decreased soil oxygen levels (Grigal, 2000; Horn et al., 2004; Bassett et al., 2005;

Singer and Munns, 2006; Chen and Weil, 2011). Rutting results from combined soil

compaction and soil displacement. Soil displacement occurs when the soils

within depressions and along slopes are moist to wet above field capacity

(Raper, 2005; Naghdi et al., 2009). Depending on their slope orientations, ruts

can increase, decrease, or collect run-off (Sutherland, 2003; Antille and Godwin,

2013; Poltorak et al., 2018).

A measure of soil strength, known as cone index (CI) is used to understand soil

compaction and rutting. This strength and related CI measurements varies from

weak to strong as soil moisture content decreases, and this is particularly so in

fine-textured soils. In contrast, sandy soils remain friable from wet to dry (Earl,

1997; Vaz, 2003; a.R. Dexter et al., 2007; Tekeste et al., 2008; Vaz et al., 2011;

Kumar et al., 2012; Jones and Arp, 2017).

To enhance compliances towards best forest management practices, various

jurisdictions have established criteria as to what constitutes a rut. For example,

the Province of British Columbia (Canada) classifies ruts >15 cm deep to be a

hazardous disturbance. The Province of Alberta considers any soil disturbance

track deeper than 10 cm as ruts (Alberta Forest Products Association, 1994; Van

Rees, 2002). The Pacific Northwest region of the USA defines ruts to be at least 15

cm deep (Page-Dumroese et al., 2000). Images of what constitutes minor to

severe soil disturbances including rut depths are presented in Table D.1.
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As summarized in Table 5.1, the earlier rut-depth prediction models by Maclaurin

(1990) and Rantala (2001) focused on regression-related rut depth as caused by

single wheel and single machine passes to the ratio of tire footprint pressure over

soil resistance to penetration, also referred to as nominal cone index, or NCI.

Scholander (1974) and Saarilahti (2002b) extended this approach towards

multiple passes. Vega-Nieva et al. (2009) modified the NCI-based multi-pass

regression model by examining the experimental wood-forwarding rut-depth

data by Meek (1996) for a sandy and a clay loam soil at varying moisture

content, and with a suggestion to correct for coarse fragment content. A recent

study by Sirén et al. (2019a) also related rut depth to number of machine passes,

volumetric soil moisture content, and CI. All these studies, however, captured

only a small portion of the field determined rut depth variations whether these

were based on fixed or fixed plus random effects regression models.

Table 5.1: Historical rut depth model.

Rut Depth
Parameter Study Citation Rut Depth Equation R2

First wheel pass (Maclaurin, 1990) Z = d× 0.224
NCI1.25

0.10

First cycle pass (Rantala, 2001) Z = −0.026 + 0.629
NCI 0.11

Multi-pass (Scholander, 1974) Z = Z1 × n
1
a 0.23

(Saarilahti, 2002b) Zn = (Zann−1 + Zab1 )
1
an 0.10

(Vega-Nieva et al.,
2009) Z0

n = r1
NCI0

n
1

p1(NCI0)
p2 (1 − CF )2 0.25

(Sirén et al., 2019b)
logZ = b0 + b1 ×M + b2 ×
MCv + b3 × CI + utm + etm

NR

z = rut depth; bn = parameter coefficients; D = wheel diameter; CI = cone index; n = number of
passes; NCI = nominal cone index; CF = coarse fragment; MCv = volumetric moisture content; M =
cumulative machine mass; a = multi-pass coefficient (a=0.3× CI; a= 1.5×NCI0.7); p1, p2, and r1 =
site specific calibration parameters; utm = random line effect; etm = pass effect.

This chapter reports on the extent of improving wood-forwarding rut depth

modelling based on:
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i. using field-determined data for soil density, texture, organic matter, coarse

fragment and weather-inferred ridge-to-valley soil moisture, CI, and

machine-specific NCI variations for the rut depth projection purpose;

ii. employing fixed and random forest regression techniques for optimizing

these projections;

iii. selecting four of the eleven harvest blocks described in Jones and Arp

(2019a) for this purpose; these blocks involved wood forwarding from

shelterwood cutting (2) and from commercial thinning (2) in Northern and

Central New Brunswick, Canada.

5.2 Materials and Methods

5.2.1 Block Descriptions

Details regarding the wood-forwarding operations within the four harvest blocks

chosen for this study are presented Figure 5.1 and 5.2 by location, and in Table

5.2 by block-specific attributes. These blocks are a subset of the 11 blocks used

by Jones and Arp (2019a) for their on- and off-track soil moisture and CI study.

Blocks 1 and 2 are within 1 km of each other, and share similar site characteristics.

They are located within the Western reach of the Chaleaur uplands. Both Blocks

are white spruce (Picea glauca (Moench) Voss) plantations. Block 2 covers a 2

ha area and block 3 covers 20.8 ha, but sampled in a 3.5 ha area. The region has

an annual temperature of 3.8 °C, ranging between -11.5 °C and 18.2 °C in

January and July averages, respectively. Mean precipitation is roughly 1110 mm

with 300 mm as snow (Department of Environment and Climate Change

Canada, 2016a). Surficial topography is mainly morainal sediment, including

loamy lodgment tills, and is underlain by late Ordovician deep water marine

clastics rocks.
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Block 3 is a 20.9 ha shelterwood cut located in the southern reach of Notre Dame

Mountains, within the Appalachians Mountain range. The area has a mean air

temperature of 3.5 °C, ranging from -12.9 °C to 17.6 °C January and July

averages, respectively. It has a mean precipitation of 1140 mm, with 310 mm as

snow (Department of Environment and Climate Change Canada, 2016a). The

block is composed moderate to intolerant hardwood/mixedwood rich in red

maple (Acer rubrum L.), yellow birch (Betula alleghaniensis Britt.) and balsam fir

(Abies balsamea L.). Geology of the area is later late Ordovician deep water

marine clastics rocks, with topography ranging from gentle, rolling plateaus to

steep valleys of hummocky ablation moraines.

Block 9 is a 25.5 ha shelterwood cut located in the Southern tip of the Miramichi

highlands. It is roughly 50 km from the Fredericton, the provincial capital. The

area has a mean air temperature of 5.5 °C, with a range of -9.4 to 19.4 °C,

respectively for January and July, and roughly 1100 mm of annual precipitation,

with 250 mm as snow (Department of Environment and Climate Change

Canada, 2016a). The block is comprised of natural mixedwood and tolerant

hardwood, including Eastern hemlock (Tsuga canadensis L. Carrire), yellow birch,

sugar maples (Acer Saccharum Marsh.), beech (Fagus grandifolia Ehrh.), with

some balsam fir, Eastern white cedar (Thuja occidentalis L.), and black spruce

(Picea mariana Mill). The terrain of the region consists of morainal sediment

(ablations and boulder tills) underlain by early Devonian mafic volcanic rock and

late Ordovician deep water marine clastic rocks.
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Figure 5.1: Map showing block locations (Blocks 1 to 11), with Blocks 1, 2, 3, and
9 selected for rut depth determinations following wood forwarding and a grapple
skidder.
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Figure 5.2: Plot specific location including machine tracks, field plot locations
(top), and photos from within the blocks (bottom).

5.2.2 Wood Forwarding

Three GPS-tracking wood-forwarding machines were used: a John Deere 1510E

forwarding Blocks 1 and 2, a John Deere 1110E forwarder in Block 3, and a

Tigercat 635D in Block 4 (Table 5.3). The resulting GPS data were processed to

determine the number of passes per same track using point buffering and

overlapping tools (Buja, 2012). Studies have shown that the number of

wood-forwarding passes affects soil structure, compaction, and rut depth

(Eliasson, 2005; Ampoorter et al., 2007; Farzaneh et al., 2012; Jones et al., 2018).

Some studies have looked at mitigating multiple-pass soil rutting using brushmats

(McDonald and Sexias, 1997; Labelle et al., 2015). Brushmats were not found

along the forwarding trails in Blocks 3 and 9, but were present to varying degree

in Blocks 1 and 2 as part of the commercial thinning operation. Machine footprint

is related to the amount of disturbance on a harvested site. Studies have shown

that with increasing tire pressure there is a lower overall tire footprint which

increases rutting (Raper et al., 1995; Saarilahti, 2002c; Jun et al., 2004; Affleck,

2005; Sakai et al., 2008). Lower pressured tires are used in wetter or sensitive areas
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for this reason.

Table 5.3: Machine specifications (Jones et al., 2018).

Machine Specs
JD1110E JD1510E TC635D

Front Rear Front Rear Front Rear

Vehicle Weight (ton) 16.5 17.3 21.4

Full Load Weight (ton) 11.0 12.0 15

Chassis Clearance (cm) 60 60.5 63.5

Wheel Rim (cm) 67.3 67.3 81.3

Number of Wheels 4 4 4 4 2 4

Tire Type 710/45-26.5 710/45-26.5 35.5Lx32 30.5Lx32

Accessories Chains Tracks Tracks Tracks Chains Tracks

Diameter (cm) 134.1 134.1 201.2 184.4

Section Height (cm) 33.4 33.4 59.9 51.6

Width (cm) 71.1 71.1 90.2 77.5

Pressure (max, psi) 32 32 32

5.2.3 Data Sources

The data needed to process the temporal and spatial modelling of MC, CI, and

soil rutting consists of:

i. Daily precipitation (snow and rain) and mean air temperature data,

needed for the hydrological soil moisture calculations for Blocks 1-3 and

Block 9, were obtained from the airport weather station records at Saint

Leonard and Fredericton, respectively (Department of Environment and

Climate Change Canada, 2016a);

ii. Hydrometric stream discharge data is needed to calibrate ForHyM from the

nearby Black Brook Watershed group for Blocks 1-3 (Black Brook Watershed

Research site, 2014), and Nashwaaksis stream data for Block 4 (Department

of Environment and Climate Change Canada, 2016a);
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iii. LiDAR-generated bare-ground elevation data were downloaded from

geoNBs website at 1 m resolution (GeoNB, 2015b);

iv. Digital soil maps (DSM layers) for soil texture (sand, silt and clay content),

bulk density, coarse fragments, and soil organic matter for top 30 cm of soil

were downloaded from the Forest Watershed Research web-site server

(Furze, 2019).

v. GPS-recorded machine-clearance pattern spaced at 10 sec intervals along

each wood-forwarding track (Jones et al., 2018).

5.2.4 Field Measurements

Soil samples as well as volumetric soil moisture (MCv) and cone index (CI)

readings were obtained from the top 15 cm layer of undisturbed mineral soil

across Blocks 1 to 11, as described in Jones and Arp (2019a) in the Fall of 2014

after the wood-forwarding operations (Table 5.2). The samples were analyzed for

texture (sand, silt and clay %), coarse fragments (%), organic matter content (%),

and bulk density (g/cm3). Wood-forwarding rut depths were determined at

GPS-recorded intervals along the tracks. The number of passes along the tracks

were obtained from the GPS-tracked wood-forwarding machine-clearance

records (Jones et al., 2018) through counting the number of passes per same

track using digital point buffering and overlapping tools (Buja, 2012).

5.2.5 Soil Moisture Modelling

The Forest Hydrology Model ForHyM was used to estimate daily variations in

pore-filled soil moisture content (MCPS) on the well-drained soils in each block.

The MCPS output so generated then served to determine how MCPS would have

varied at the time of wood forwarding across the terrain of each block

according to season- and weather- affected flow channel locations by way of
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cartographic depth-to-water (DTW) modelling (Murphy et al., 2009a; White et al.,

2012). This process is conceptualized and illustrated in Figure 4.3 and 4.4.

The cross-terrain MCPS projections were originally based on Vega-Nieva et al.

(2009) and Jones and Arp (2019a):

MCPS,DTW = 100 − [100 −MCPS,top] ×
[

1 − exp(−kmc ×DTW )

1 − exp(−kmc ×DTWtop)

]pmc

(5.1)

where MCPS,top refers to the pore-filled soil moisture content, and DTWtop refers to

at the DTW at highest elevation in each block. Also, kmc and pmc are

block-specific calibration parameters (0.5 and 1.5), and MCPS,DTW = 100 % along

water-filled flow channels where DTW = 0 m by definition (Table 5.4). As indicated

by Jones and Arp (2019a), the MCPS projections were augmented via multiple

regression analysis inside and outside wood-forwarding tracks to account for

terrain changes in response to changes in elevation, forest cover type

(hardwoods, softwood, open areas), and soil organic matter content (OMDSM) as

follows:

MCPS = 70.88 + 0.26 ×MCPS,DTW − 2.76 × log10DTWFIA − 0.98 ×OMDSM

− 0.10 × Elevation+ 10.22 ×HW + 4.09 × Track

R2 = 0.46

(5.2)

with log10DTWFIA referring to the logarithm of the rasterized depth-to-water index

adjusted to the upslope flow initiation area (FIA) at the time of wood forwarding.

In addition, OMDSM is the digitally derived soil organic matter raster (Furze 2018; in

%), DEM is elevation in meters, Track = 1 for ruts and 0 otherwise, and HW = 1

refers to locations dominated by hardwood, otherwise HW = 0. The values of

model parameters required for Eqs 1. and 2 are listed in Table 5.4.
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Table 5.4: Model parameters for stands 1, 2, 3, and 9. MCPS (%) refers to the
ForHyM-modelled soil moisture content at highest elevation within each block at
the time of wood forwarding.

Block DTWFIA
(ha)

MCPS,top
(%)

1 1 39.9

2 16 35.3

3 1 39.4

9 0.25 26.4

5.2.6 Cone Index and Rut Depth Modelling

Rut locations and depths were GPS tracked and measured in the fall of 2014

immediately after the wood-forwarding operations, as listed in (Table 5.2).

Volumetric soil moisture, bulk density (Db) and cone penetration measurements

were obtained prior to these operations (for details, see Jones and Arp, 2019).

Once MCPS was rasterized, CI (in MPa) and NCI version were emulated using the

following expression (Jones and Arp, 2019a):

CI = 1.60 − 0.01 ×MCPS + 0.03 ×Depth+ 0.76 × Track + 0.40 × SW

R2 = 0.41

(5.3)

where Depth is the chosen soil depth (cm), Track = 1 signifies presence of track

with Track = 0, is undisturbed soil, and SW = 1 signifies where softwoods are

dominant, otherwise SW = 0.

The normalized cone index NCI (dimensionless) was derived from:

NCI0 =
(100 ∗ CI ∗ d ∗ b)

W
∗
√
δ

h
∗ 1

(1 + 2 ∗ d)
(5.4)

with d as tire diameter (m), b as tire width (m), W as total wheel load (kN) given

by (machine weight + load) / number of tires, h as section height of the tire (m),

and δ is tire deflection (m) given by 0.008 + 0.001 (0.365 + 170/p), with p is tire
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inflation pressure (in kPa).

Machine-induced rut depths was estimated using multivariate regression by

setting:

z = log10Passes× log10NCI × log10DTWFIA

R2 = 0.28

(5.5)

where z is the rut depth, NCI is Eq. 5.4, and DTWFIA is the depth to water at the

chosen FIA to accomodate seasonality. Further non-linear regression was used to

develop:

z =
40.8

NCIadj
× Passes0.071×NCIadj

R2 = 0.32

(5.6)

where NCIadj is Eq. 5.4 which has been adapted for increase proportional

representation of DTW (NCI + 0.48 x DTWFIA), and passes is the number of trail

passes by machinery.

5.2.7 Statistical Analyses

All analyses were performed in R (R Core Team, 2015) after combining the

rasterized data layers into a covariate stack. A correlation matrix was created to

show the general association pattern between the covariates, and was

evaluated by way of factor analysis to determine the general covariate

association pattern. This was followed modelling MCPS, CI, and zn (n = number of

passes) using multivariate regression (MR) and Random Forest (RF) regression

formulations (Breiman, 2001).

The multivariate regression (MR) formulation as detailed above by way of Eqs. 5.1

to 5.6 served to explore the extent of functional dependence of MCPS, CI, and zn

on weather, season, machine-type, and digital soil mapping layers. This include a
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non-linear DTW-based adjustment for Eq. 5.6. The Random Forest formulation

served to explore the extent to which the field-determined MCPS, CI, and zn

values could be replicated using the same specifications. The dataset for

modelling MCPS (n= 394) and CI (n = 372) included all top 15 cm soil sampling

locations inside and outside the tracks in Blocks 1 to 11. The dataset for modelling

rut depth (n = 207) applied to Blocks 1, 2, 3, and 9 only,

The required input for modelling MCPS via Eq. 5.2 refers to MCPS,DTW (Eq. 5.1),

log10DTW, OMDSM, DEM, HW = 1 or 0, and Track = 0 or 1. The required input for

modelling CI via Eq. 5.3 refers to modelled MCPS, Depth, SW = 1 or 0, and Track =

0 or 1. The required input for modelling rut depth via Eq. 5.4 refers to modelled

NCI and number of passes.

The Random Forest analysis was conducted using k-fold cross validation of the

entire dataset using the randomForest R package Liaw and Wiener (2002). The

data training process was limited to optimizing the outcome of 10 fold validation

with 10 replicates. Each analysis utilized optimized variables to decide on

best-fitting MCPS, CI, NCI and rut depth outcomes. Model performance was

determined by evaluating the mean decreased accuracy and variable

importance and then compared to linear regression using RMSE and R2 for the

MCPS, CI, and rut depth evaluation outcomes.

5.2.8 Soil Trafficability Model (STRAM)

The information flow generated from modelling soil moisture, CI and rut depth via

MR and RF was organized in the form of a Soil Trafficability Projection framework

(STRAM), as represented by the flow chart in (Figure 5.3).
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Applying STRAM involves:

i. Initializing and calibrating ForHyM to determine MCPS for specific weather

conditions, by block and stand type.

ii. Projecting MCPS across the terrain based on digital elevation, DTW, and soil

mapping techniques, by block, using Eq. 5.2.

iii. Combining the weather-specific MCPS projections with digitally generated

soil property to generate the CI, NCI and rut depth data layers, by block,

using Eqs. 5.3 to 5.5.

iv. Optimizing these data layers through R-tool regression techniques (fixed

effects, Random Forest) based on actual field observations where

available.

Figure 5.3: Flowchart for the soil trafficability model (STRAM): generating the rut
depth raster for Block 3.

5.3 Results

The basic statistics of the plot-centered rut depth, MCPS, CFDSM, SandDSM, OMDSM,

Db,DSM, CDSM, elevation, DTW, CI, and NCI values are listed in Table 5.5. The
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correlation coefficients and their non-zero significance levels between these

variations in association with block location are compiled in Table 5.6, along with

the corresponding factor analysis. Factor 1 indicates that the rut-depth

determinations relate positively to number of wood-forwarding passes, to sand

and organic matter content, and to soil depth (CDSM), but negatively to NCI, as

to be expected. In addition, rut depth is generally deeper in the hardwood

blocks (Blocks 3 and 9). Factor 2 reflects that the hardwood blocks at the higher

elevation and DTW locations had lower soil density and hence and lower soil

resistance to penetration than the softwood blocks located at the lower

elevations.

The MR-generated results revealed that MCPS increased significantly with

MCPS,DTW as influenced by wet weather and by decreasing DTW from ridge tops

to low-lying areas next to water-filled flow channels. In addition, MCPS was higher

inside than outside the tracks, and higher under hardwood vegetation while

decreasing towards the higher elevation blocks (Table 5.7). CI decreased with

increasing pore-filled soil moisture content, but was noticeable higher within the

softwood blocks and inside the tracks due to cumulative wheel-induced

compaction. As per Eq. 5.5, rut depth increased significantly with number of

forwarding passes (log10Passes) and decreased significantly with increasing

log10NCI. The non-linear DTW-adjustment for Eq. 5.5 improved the MR regression

results and related best-fitted scatterplot, but only to a small extent.

The RF regression process (Table 5.7) selected MCPS, DTW, elevation (DEM) and

OMDSM as dominant MCPS influencing predictors. For CI, RF selected elevation,

MCPS, SandDSM, Depth, and track location as dominant predictors. For rut depth,

RF selected number of passes, NCI, DTW and CF as best predictors. Compared

to MR, the best-fitted RF-generated R2 values for MCPS, CI and rut depth in Table

5.7 were considerably higher. The scatterplots in Figure 5.4 demonstrate the

extent of MR versus FR generated goodness-of-fit: not only much less scatter and
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greater 1:1 conformance of actual versus fitted values generated with RF

compared with MR for MCPS, CI, and rut depth.

Figure 5.4: Comparison between modelled multiple linear regression and Random
Forest for MCPS, CI and rut depth.

The plots in Figure 5.5 shows the conformance extent between actual and best-

fitted STRAM-projected MCPS, CI and rut depth values via MR and RF. In detail the

eight-times-out-of-ten conformances within uncertainty brackets amounts to:

i. ± 14% for pore-filled moisture content, ± 0.7 MPA for CI, and ± 14 cm for rut

depth via MR, and

ii. ± 4% for pore-filled moisture content, ± 0.3 MPA for CI, and ± 4 cm for rut

depth via RF.

Inclusion of additional predictor variables increases the resulting best-fitted R2

and RSME values for MCPS, CI, and rut depth, but with diminishing gains following

the inclusion of 4 or more variables. Using only one continuous predictor variable

for MCPS led to an RF-R2 value of about 0.80, in comparison with MR-R2 value of

about 0.2. For CI and rut depth, MR and FR have about the same low R2 values

using the binary 0, 1 Track variable, and the grouped Passes variable,

141



Table 5.7: Regression results for MCPS and CI from Jones and Arp (2019), regression
results for rut depth and variable importance for Random Forest Model for MCPS,
CI and rut depth.

Regression Models

Dependent
Variables

Intercept &
Predictor
Variables

Para-
meter

#

Regr. SE t-
value p-value R2 RMSE n

MCPS Intercept 70.883 6.326 11.205 <0.0001 0.47 11.69 394
Eq. 5.2 Elevation 4 -0.091 0.013 -6.937 <0.0001

HW Blocks 5 10.224 2.136 4.788 <0.0001
MCPS,DTW 1 0.262 0.073 3.589 0.0003
OMDSM 3 -0.981 0.278 -3.529 0.0005
Tracks 6 4.090 1.233 3.316 0.0010

log10DTW 2 -2.764 0.926 -2.986 0.0030

CI Intercept 1.599 0.159 10.060 <0.0001 0.41 0.571 372
Eq. 5.3 Tracks 3 0.760 0.064 11.910 <0.0001

SW Blocks 4 0.397 0.064 6.200 <0.0001
MCPS 1 -0.011 0.002 -5.980 <0.0001
Depth 2 0.025 0.002 9.900 0.0583

Rut Depth Intercept 18.880 6.592 2.864 <0.0001 0.28 9.094 207
Eq. 5.5 log10Passes 1 14.327 1.856 7.721 <0.0001

log10NCI 2 -22.213 10.625 -2.091 0.038
log10DTWFIA 3 -2.669 1.071 -2.492 0.014

Eq. 5.6
a/NCIadj x

PassesbNCIadj
0.32 9.000 207

a 40.886 3.275 12.728 <0.0001
b 0.072 0.007 9.676 <0.0001

Random Forest Models

Dependent
Variables

Variables
Para-
meter

#

% Mean
Decrease
Accuracy

Variable
Importance R2 RMSE n

MCPS MCPS,DTW 1 191.04 5332.12 0.91 4.962 394
Elevation 2 180.54 32079.21
OMDSM 3 38.17 16292.63

CI Tracks 1 0.224 33.20 0.88 0.263 372
Depth 2 0.159 37.43

Elevation 3 0.108 49.27
MCPS,RF 4 0.097 47.64
SandDSM 5 0.070 36.86

Rut Depth Passes 1 71.77 7121.22 0.84 4.307 207
NCIRF 2 24.26 5744.51

DTWFIA 3 11.35 5971.05
CFDSM 4 0.65 3813.68
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respectively. While the predictive CI and rut-depth outcomes using these

variables is low to modest, they serve in MR and especially so in RF to resolve the

otherwise unresolved scatter associated with using the continuous predictor

variables alone. The field-determined and projected MCPS, CI, and rut depth

were evaluated into cumulative conformance plots in Figure 5.6. 80 %

conformance of the difference from actual to measured values ranged from 4 to

14 % for MCPS, 0.4 to 0.7 MPa for CI, and 4 to 14 cm for rut depth, using RF and MR

respectively.

Figure 5.5: Best-fitted RF- and MR- R2 and RSME value achieved using predictor
variables in the order of decreasing numerical significance or influence.

The GPS-tracked wood forwarding tracks across Blocks 1, 2, 3, and 9 are overlaid

on the delineated DTW <1m and hill-shaded DEM background, also showing the

number of passes (top) and field-measured rut depths (bottom) at each location

(Figure 5.7). Among these, Block 3 reveals a close association between deeper
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Figure 5.6: Cumulative conformance probability for differences in MCPS, CI, and
rut depth for RF and MR.

rut depths and DTW, followed by Block 9 and Block 2. Block 1 had no association

between rut-depth and pass number. Rutting was deepest in Blocks 3 and 9

along multi-pass tracks across streams and wet-areas.

Figure 5.8 provides a closer look about the extent of track rutting in Block 9 in

relation to the DTW <0.5 m delineation through overlay on the

hillshaded-DEM(top) and the surface-image (bottom) backgrounds. This image

was generated a year after the wood-forwarding operations. At this time, the

extent of rutting had faded to some extent but remained prominent in the lower

left corner of the block. Rutting >40 cm deep occurred along multiple pass

tracks where DTW <0.5m.

5.3.1 MCPS, CI, and rut-depth projections

Figure 5.9 presents the MR-and RF-generated projections and data points for

MCPS (top) and CI (bottom) for Blocks 1, 2, 3, and 9 with the latter more detailed

than the former. In addition, there is also a considerably greater point to RF- than

MR- projection conformance, as to be expected from the scatterplots in Figure
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Figure 5.7: Field-measured rut-depth locations with number of passes along rut
tracks (top) and rut depth (bottom) across Blocks 1, 2, 3 and 9, also showing
the block-specific weather-affected DTWFIA assignments, i.e. FIA = 1, 16, 1, 0.25,
respectively. For A and B close-ups, see Figure 5.8.
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Figure 5.8: Close-ups A and B from Figure 5.7 showing rut-depth measurement
locations in Block 9 overlaid on a 10 cm resolution hill-shaded DEM and a high-
resolution surface image one year after field operations. Also shown is the
DEM-generated DTW 1 m extent (top; blue-shaded, 50% transparent) and its
corresponding DTW = 0.5 m contour (bottom; red). The 10 cm DEM (top) was
generated from scanned optical AUV surface images (bottom; Phantom 4)
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5.4, and from the results listed in Table 5.7. Among them, Block 9 is shown to be

the wettest, on account of 70 mm rain event two days before prior to the day of

wood forwarding, and as reflected by the a consequential use of the DTWFIA =

0.25 ha data layer as dominant MCPS predictor in Eq. 5.4. In contrast, Block 1 was

found to be excessively dry, such that the DTWFIA = 16 ha projection was found to

best representative of the field-determined MCPS values for this block outside the

tracks. For Blocks 2 and 3, the MCPS were best presented using the DTWFIA = 1 ha

assignment to reflect the May and June soil moisture conditions at the time of

wood forwarding. Although Blocks 2 and 3 use the same DTWFIA = 1ha

assignment, they differed in terms of CI-measured soil strength which was weaker

for the hardwood block (Block 3) than for the softwood softwood block (Block 2).

Typically, shallow-rooting softwood forests are found on coarser and stonier soils

with lower organic matter accumulations than deeper-rooting hardwood forests.

Figure 5.10 presents the overlay of rut depth points on the corresponding MR

(top) and RF (bottom) projections for Blocks 1, 2, 3, and 9 after 1, 10 and 50

passes, with better and more resolved RF than MR data-to-projection

conformances. These plots confirm that the spatial variations in soil moisture and

increasing number of passes are important rut-depth predictor variables. Actual

rut depth, however, also depend on machine weight/load and soil properties,

and load as quantified by way CI and NCI in general and by the variables listed

in Table 5.7.
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Figure 5.9: Measured MCPS and CI values at 15 cm soil depth overlaid on the
corresponding Eq. 5.2 and Eq. 5.3 map projections for Blocks 1, 2, 3 and 9, using
FIA = 1, 16, 1, 0.25, respectively.
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Figure 5.10: Random Forest modelled 2- and 10-pass rut depths for Blocks 1, 2, 3, 9
with machines carrying full loads, with the field plot results overlaid, using FIA = 1,
16, 1, 0.25, respectively.
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5.4 Discussion

While RF produces a considerably better results between the field-measured

values for MCPS, CI and rut depth, it still needs literature- and theoretical

MR-based guidance to interpret to results so generated. For example, moist to

wet soils have lowered physical strength due to water filling pores and reducing

particle cohesion (Kumar et al., 2012), and many studies have shown that there is

a correlation between soil disturbance and soil moisture (Sutherland, 2003; Han

et al., 2006; Nikooy et al., 2016; Jones and Arp, 2017). To illustrate, Block 3 shows

deeper ruts within the wetter DTWFIA = 1 ha marked area next to a stream. Block

1 with no significant rut-depth observations was cut following dry weather

conditions during mid-June of 2014, at which the overall soil moisture levels best

conformed to a DTWFIA - 16 ha flow-channel pattern, and rut depths remained

low. In contrast, deep ruts were encountered across Block 9 due to field

operations in October 2014 following a heavy rain event of 70 mm.

In terms of other soil properties, studies have shown that measured rut depth is

also positively correlated to increased levels of OM in the soil (Sutherland, 2003;

McFero Grace et al., 2006). For example, Block 9 due to its deeply rooting

hardwood composition, positively correlated rut depth with OM as revealed by

the factor analysis in Table 5.6. High sand content also contributes to low CI, NCI

and therefore to increased rut depth, mainly due to low particle-to-particle

cohesion (Balland et al., 2008; Brady and Weil, 2008; Kumar et al., 2012). In

contrast, high coarse fragment content should increase CI and lower rut depth,

but the overall CF variations within and across the blocks would not register this

effect in a major way by way of MR, and only weakly so by RF. Typically, soils with

high soil strength (high CI and NCI values) minimize soil disturbance (Antille and

Godwin, 2013).
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Significant and influential on the MR and RF results was the significant result (p =

<0.0001) between rut depth and number of passes. This effect, however,

decreases non-linearly due to gradually increasing soil compaction as quantified

above via Eq. 5.6 and as reported by Eliasson (2005), Eliasson and Wästerlund

(2007), Botta et al. (2009) and Jones et al. (2018). This is especially so for high

traffic areas such a wood landing sites and tracks subject to hundred passes or

more (Carter et al., 2007; Taghavifar and Mardani, 2014; Jones et al., 2018).

Given the above moderate (MR) to strong (FR) data-to-projection conformances

across Blocks 1, 2, 3, and 9, it should be possible to forecast soil trafficability by

way of the modeling flow chart in Figure 5.3. Fundamental for this effect is

combining preceding and forecasted weather conditions with spatial soil

property, drainage (DTW) and CI maps (Figure 5.9) to be informed about daily to

seasonal variations in soil wetness as these may vary from year to year. Figure

5.11 presents an example of how trafficability affecting soil conditions would vary

on average and by month in Block 1, summer through winter for a period of 14

years. Generally, soil trafficability conditions within this block would be best on

solidly frozen ground, but worst during snow melt when soils tend to be equally

wet across the land. In detail, April and November would be the wettest months.

During spring, summer and fall, soil trafficability would vary on account monthly

variations in precipitation and related extent of evapotranspiration as primarily

affected by canopy leaf area. According to Figure 5.11, the driest summer

occurred in 2005, while the wettest summer occurred in 2003. Soil trafficability

would also have been poor during the essentially low snowpack and frost-free

soil conditions in the winter of 2010.

A practical guide to forecast soil trafficability would establish whether the

monthly soil conditions are frozen, partially thawed, wet, moist or dry. For the wet

to dry conditions, it is important to decide likely block-specific upslope flow

initiation areas as suggested in Table 5.8. To some extent, these suggestions
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would need to be modified by soil texture, coarse fragment content: higher FIA

numbers for well drained and rocky soils, and low FIA numbers for loamy and

clayey soils. Extended droughts would also increase FIA, therefore increasing the

areas available for off-road traffic. However, care needs to be given to not drive

along or across established flow channels, because traffic induced disturbances

in the channels would aggravate subsequent flooding effects by, e.g.,

accelerating stream bank erosion, and by partially compacting well aggregated

soils that would reduce soil infiltration and hence increase soil erosion overall. An

example of yearly soil trafficability forecasting by month and related

weather-imposed DTWFIA assignments following the flowchart in Figure 5.3 is

provided in Figure 5.12, with focus on 2 passes.

Figure 5.11: Historical weather for Block 1 from 2000 to 2015 showing cumulative
precipitation (left-bottom), historical snowpack and modelled frost depth (left-
top), and temperatures (right-top), as well as ForHyM-modelled weekly modelled
average A & B horizon MCPS (right-bottom).
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Table 5.8: Monthly region-specific DTWFIA choices useful for forecasting soil
trafficability across Blocks 1, 2, 3, and 9 and northwestern New Brunswick in
general.

Month
FIA

16 ha 4 ha 1 ha 0.25 ha

January Frozen - - Partial Thaw
February Frozen - - Partial Thaw

March Frozen - - Partial Thaw
April Frozen - - Very Wet
May Very Dry Dry - Very Wet
June Very Dry Dry Moist Wet
July Very Dry Dry Moist Wet

August Very Dry Dry Moist Wet
September Very Dry Dry Moist Wet

October - Dry Moist Wet
November - Dry Moist Wet
December Frozen Dry Moist Wet

Soil trafficability: poor when soils are wet, and worst when partially thawed;
intermediate when moist, and best when dry or very dry.

Figure 5.12: Year-round RF-generated soil trafficability projections by month for
Block 1, with focus on 2 passes and 2014 weather-affected DTWFIA assignments.
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5.5 Concluding Remarks

While this research has shown how soil trafficability can be assessed and

forecasted based on coupling block-based soil surveys with temporal and spatial

modelling techniques, there are ways by which this research can be improved.

Traditional in-field data collection as done above is limited by high sampling

costs. Area-systematic rut surveys can now be conducted by, e.g., equipping

off-road vehicles with GPS-tracking LiDAR-based rut depth sensors (Salmivaara

et al., 2018). Similarly, Giannetti et al. (2017) proposed terrestrial portable laser

scanners and Haas et al. (2016), Pierzchała et al. (2016) and Launiainen et al.

(2017) used unmanned airborne vehicles (UAVs) for stereo imaging and

evaluating rut depth and length based on the underlying terrain conditions. In

combination, advances in weather-affected digital soil property mapping will

further assist soil trafficability forecasting, and the validity of these forecast can

then be checked using systematically retrieved block post-operational rut depth

data. In addition, the MR and RF techniques can be used to enable the overall

soil trafficability forecasting from theoretical considerations and for numerical

model validation. In this regard, MR-generated forecast would allow generalizing

beyond the immediate survey areas, whereas the RF forecast, although more

precise and accurate, would - for the most part - be restricted to the survey area.
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Chapter 6

Conclusion

6.1 Thesis Summary

This chapter summarizes the main developments of this dissertation and creates

a fluid connection between the published articles. Key findings are correlated to

the STRAM model.

i. Chapter 2: A 23 week field analysis was conducted, focusing on measuring

the relationship between soil moisture (MC) and soil strength (cone index,

CI). Site location, species composition and soil property variability were

analyzed to model weather- and soil-dependent changes in soil moisture

and penetrability conditions. The study focused on three locations across

Fredericton, NB. The study results validated the use of ForHyM to predict MC

and CI over time. By validating the predicted MC over time, ForHyM can be

used to model temporal changes and then applied spatially through the

use of the STRAM model introduced in Chapter 5. Without the ForHyM

model, STRAM would only be a spatial trafficability model. Validated

temporal soil MC (R2 = 0.76) and CI (R2 = 0.76), are the corner stone in

modelling temporal effects of trafficability.

ii. Chapter 3: Three heavy forest operation machines equipped with ultrasonic

distance sensors and GPS trackers provided 4.2 million data points (at 10
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second intervals across 54 harvest blocks) in an effort to understand how

and where machines cause soil disturbances. It was found that the

clearance data needed to be processed by block in order to isolate where

single - to multiple-pass rutting occurred due to terrain and weather

conditions. Machine clearance was primarily found to be an issue within the

first pass and machine speed increased on drier sites over wet areas. The

sensor data was used to help enumerate machine passes and overall

effects on the blocks used in chapters 4 and 5. Number of passes was a

significant factor in the STRAM model, given that understanding how many

times a machine passes over a single area of land can signify greater soil

disturbance. Given the issues (brushmat and general obstruction) with the

clearance sensors, machine pass was the main output used for modelling.

iii. Chapter 4: Inside and outside track measurements pertaining to soil

moisture and penetrability were related to the terrain, soil and weather

conditions at the time of wood forwarding operations by way of multivariate

analyses. For continuity, the 11 harvest blocks monitored were from harvest

blocks sampled in Chapter 3 for the machine sensor data. The multivariate

analysis for soil MC was applied to field determined soil parameters

(R2=0.51-0.61) as well as digitally derived DMS-based soil parameters

(R2=0.46-0.48). Soil CI was similarly modelled with field-determined

regression (R2=0.39) and DSM-based soil parameters (R2=0.41). It was found

that the resulting expression would predict soil moisture and soil penetrability

with an uncertainty range of 15 % and 1.5 % eight times out of 10.

iv. Chapter 5: Due to the less than ideal performance of the regression results

from Chapter 4, a new analysis was conducted in the form of machine

learning algorithm Random Forest. This new model was applied to the soil

MC and CI measurements across 11 harvest blocks, as well as the rut depth

measurements from 4 blocks (2 hardwood and 2 softwood blocks). The MC

RF model R2 improved from 0.47 to 0.91, while CI improved from 0.44 to 0.88.
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The soil moisture and penetrability results led to reasonable

wood-forwarding rut depth projections by weather, block and machine

specific Soil Trafficability Model (STRAM) projections. These projections

captured 40 % and 80 % of the rut-depth variations when based on

multivariate and Random Forest regression analysis, respectively.

Overall, the chapters outline a procedure created to validate temporal moisture

and soil strength predictions, and extrapolate the temporal predictions spatially

with rut depth through the use of machine learning algorithm Random Forest.

6.2 Original Contribution

6.2.1 Temporal Cone Index

This project developed an in-depth analysis of the importance of daily to

seasonal soil moisture variation on soil strength. Using the results of a 23 week field

analysis, relationships were solidified between soil strength (CI) and soil moisture,

porosity, and coarse fragments. This analysis is a contribution to the

understanding of temporal changes in soil moisture and strength over time,

comparing results across the three research sites within Fredericton, NB. The

validated model was then applied to operational blocks to help model rutting

over time which can be used to better manage harvest operations in the future.

6.2.2 Sensor Analysis

GPS units and ultrasonic distant sensors were installed on 3 machines and their

sensor readings helped support the connection between heavy forest machinery

and soil displacement. The project provided valuable outputs to connect spatial

terrain changes and temporal machine movement, especially in connection with

high-resolution wet-areas mapping using the cartographic depth-to-water index,

and how this would vary by antecedent to current weather conditions.
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6.2.3 STRAM Model

The STRAM model is entirely original in its development and its function as soil

trafficability projection tool. Through its multivariate formulation, this tool allows for

area-wide generalizations based on generating a database of the model

identified predictor variables. Its Random Forest formulation would use the same

data base but would require further testing and training to achieve similar actual

to prediction conformance as reported here.

6.3 Suggestions for Future Work

6.3.1 Machine Compressed Snowpack Module

The mitigating snowpack effect on machine-caused soil disturbance is not yet

part of the STRAM formulation. With regard to snow pack accumulations, ForHyM

quantifies (i) the progressive effects of changing winter weather conditions effect

on snow density and snowmelt (Balland, 2002; Balland et al., 2006) and (ii) the

depth and thawing extent of soil frost based on variable snowpack depth. In

general, snowpack-induced mitigation of soil disturbance impact is related to

snowpack compaction and subsequent ice formation (Brun and Rey, 1986;

Jellinek, 1957). Consequences of this formation refer reducing thawing delay and

snowmelt infiltration into the soil (Singh et al., 2000). Currently, STRAM projects zero

soil penetrability when the top soil is partially to completely frozen.

6.3.2 Machine Mounted Sensors 2.0

Mounting an ultrasonic distance sensor and an inclinometer provided a useful

insight on the effects of machinery on the terrain (Chapter 3). This research effort

should be expanded by routinely tracking machine rutting through e.g., laser light

scanning or stereo-scanning using optical or infra-red cameras to allow a clear

digital ground conditions quantification and separation between ruts, displaced

soil, rocks, stumps, and other woody debris. This scanning should be coupled with
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machine location, speed, tire pressure, wheel rounds per minute, etc. The latter

would inform about slippage-induced extent of soil displacement in wet areas

and along slopes.

6.3.3 Integrating Real-Time Weather Forecasts

The STRAM formulations needs to be adapted to practical real-time application

purposes by automatically incorporating antecedent weather reports and current

forecasts, to allow for weather-informed soil trafficability update Glahn and Lowry

(1972). In the absence thereof, STRAM can be used to assess overall changes in-

soil trafficability based on monthly weather assessments, as detailed in Chapter

5.

6.3.4 Model Adaptability: External Validation

The STRAM model has been calibrated for use within Northern and Central New

Brunswick, Canada. It would be instructive to determine whether the model

projections so generated are also applicable elsewhere, either directly, or

through further calibrations.

6.3.5 Model Adaptability: Agriculture

Apart from the wood-forwarding application, STRAM can, in principle, be

adapted to other off-road applications, whether this related to, e.g., forestry,

gardening, or recreation, including trail building and maintenance. For example,

agriculture machinery can cause similar damage to soil, with the added

disadvantage of reduced root structures, coarse fragments, or brush piles

(Hamza and Anderson, 2005; Chan et al., 2006). Agriculture practices tend to

create homogeneous soil profiles that are prone to erosion and susceptible to

compaction (Gill, 1971). In detail, STRAM generated data layers for soil moisture,

cone penetrability and potential rut depths could be useful to optimize crop

placement and related yield expectations by way of in-field zonations.
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Garcia, M., Özdogan, M., and Townsend, P. A. (2015). Impacts of forest harvest

on cold season land surface conditions and land-atmosphere interactions in

northern Great Lakes states. Journal of Advances in Modeling Earth Systems,

6(3):923–937.

GeoNB (2015a). GIS Bare-earth digital elevation model. Technical report,

Fredericton, NB.

GeoNB (2015b). GIS Soils of New Brunswick. Technical report, Fredericton, NB.

GeoNB (2018). GIS Ecological Land Classification. Technical report.

Giannetti, F., Chirici, G., Travaglini, D., Bottalico, F., Marchi, E., and Cambi, M.

(2017). Assessment of Soil Disturbance Caused by Forest Operations by Means

of Portable Laser Scanner and Soil Physical Parameters. Soil Science Society of

America Journal, (June):1–23.

Gill, W. R. (1971). Economic Assessment of Soil Compaction. In Compaction of

Agricultural Soils, pages 432–456. American Society of Agricultural Engineers, St.

Joseph, Michigan.

Glahn, H. R. and Lowry, D. a. (1972). The Use of Model Output Statistics (MOS) in

Objective Weather Forecasting.

Grady, T. R. (1982). The effects of snow compaction on water release and sediment

yield. Masters thesis, Montana State University.

Grahn, M. (1991). Prediction of sinkage and rolling resistance for off-the-road

vehicles considering penetration velocity. Journal of Terramechanics, 28(4):339–

347.

167



Gregory, J., Dukes, M., Jones, P., and Miller, G. (2006). Effect of urban soil

compaction on infiltration rate. Journal of Soil and Water Conservation,

61(3):117–124.

Grigal, D. F. (2000). Effects of extensive forest management on soil productivity.

Forest Ecology and Management, 138(1-3):167–185.
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B.2 Percent frequency of normalized clearance
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Figure B.1: Percent frequency of normalized clearance for the JD 1110E by block.
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Figure B.2: Percent frequency of normalized clearance for the JD 1510E by block.
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Figure B.3: Percent frequency of normalized clearance for the TC 635D by block.
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B.3 Normalized Clearance by Block

Figure B.4: Normalized Clearance by block for pass number, speed class, and DTW
class for the JD 1110E.
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Figure B.5: Normalized Clearance by block for pass number, speed class, and DTW
class for the JD 1510E.
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Figure B.6: Normalized Clearance by block for pass number, speed class, and DTW
class for the TC 635D.
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B.4 ForHyM Site Results

Figure B.7: Daily variations in air temperature and precipitation, with modelled
stream discharge, volumetric soil moisture content including field capacities and
snowpack depth, frost depth, and volumetric soil moisture content for the wider
NWU areas.

189



Figure B.8: Daily variations in air temperature and precipitation, with modelled
stream discharge, volumetric soil moisture content including field capacities and
snowpack depth, frost depth, and volumetric soil moisture content for the wider
MWU+LL areas.
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C.2 Chapter 4 Appendices

Table C.1: Soil association, landform and lithology for blocks 1-11.

Landform Lithology Soil
Association

Block #
Associated

Colluvium and
water
re-worked till

Non-to weakly calcareous
sandstone, shale, quartzite

Victoria 1, 2

Metamorphosed non- to
weakly- calcareous slate,
quartzite, argillite, sandstone

McGee 4

Ablation till

Granite, quartzite, gneiss,
argillite, volcanics and some
sandstones

Juniper 8

Metamorphosed rhyolite,
andesite, schist, slate, granite

Jacquet
River

6, 7

Basal till
Mafic volcanics, gabbro, diorite Kingston 11

Metamorphosed rhyolite,
andesite, schist, slate, granite

Popple
Depot

10

Strongly metamorphosed slate,
quartzite, volcanics

Long Lake 9

Ablation/Basal
till

Metamorphosed non- to
weakly- calcareous slate,
quartzite, argillite, sandstone

Glassville 3, 5
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Table C.2: Soil physical and moisture properties by block.

Block (n) Sand
(%)

Silt
(%)

Clay
(%)

OM
(%)

CF
(%)

Db

(g/cm3)
PS
(%)

MCg

(%)
MCv

(%)
MCps

(%)
CI1

(MPa)

1 Min 2.2 1.1 0.7 3.6 1.0 0.34 47 17.3 19.9 30.9 0.8
(56) Max 44.0 26.9 24.1 43.9 73.0 1.42 86 231.1 95.2 100.0 4.4

Mean 27.1 12.4 6.5 11.6 42.4 0.92 65 49.3 41.0 62.1 2.4
SD 9.0 6.0 3.7 7.2 13.9 0.19 7 32.7 15.3 18.6 0.9

2 Min 4.6 1.7 1.7 5.1 27.0 0.61 50 26.4 32.8 45.3 0.6
(28) Max 34.4 32.1 12.3 18.8 79.0 1.30 76 105.9 70.9 100.0 3.2

Mean 16.7 12.7 6.8 11.4 52.3 0.91 65 50.0 44.2 68.2 1.9
SD 7.4 6.9 2.9 3.7 12.9 0.15 5 14.9 9.1 13.7 0.7

3 Min 9.6 3.7 2.4 4.3 26.0 0.56 51 23.3 27.1 41.5 1.0
(80) Max 43.7 17.1 12.7 21.6 73.0 1.37 77 85.8 68.4 100.0 3.5

Mean 25.5 10.6 5.4 10.3 48.2 0.96 64 43.8 40.1 62.8 2.0
SD 7.8 3.7 2.4 5.1 9.9 0.19 7 13.8 8.3 12.5 0.6

4 Min 11.8 5.2 1.4 4.0 34.0 0.61 52 17.9 16.7 22.2 0.5
(46) Max 38.3 14.7 6.9 18.5 69.0 1.39 75 60.3 46.2 72.6 3.6

Mean 25.5 9.2 3.4 9.4 52.5 0.98 6 32.4 31.1 49.5 1.8
SD 8.5 3.1 1.4 3.3 10.6 0.16 5 8.7 6.8 11.3 0.8

5 Min 0.0 0.0 0.0 5.7 11.0 0.57 52 9.5 9.7 12.3 1.7
(33) Max 42.5 28.6 12.9 21.7 91.0 1.23 78 49.8 39.3 60.7 3.5

Mean 8.6 5.5 2.2 12.5 72.5 0.91 67 20.0 17.8 26.9 2.5
SD 13.7 9.4 3.8 4.9 24.9 0.16 6 8.1 6.8 10.6 0.5

6 Min 12.2 5.6 3.2 3.2 19.0 0.42 8 24.5 28.3 45.2 0.7
(26) Max 37.1 22.2 14.8 33.4 61.0 1.44 82 98.6 60.2 100.0 3.6

Mean 22.5 11.0 7.1 14.6 44.8 0.90 65 56.0 44.5 69.3 1.7
SD 10.1 5.8 3.9 11.3 13.4 0.33 11 22.7 10.3 21.8 0.8

7 Min 13.3 3.7 1.4 4.0 19.0 0.59 50 25.5 23.8 32.9 0.4
(43) Max 49.5 16.4 10.2 19.7 68.0 1.34 76 86.5 87.7 100.0 3.7

Mean 30.1 11.5 4.7 9.0 44.7 0.99 62 42.4 42.1 65.7 1.5
SD 8.0 3.2 2.3 3.7 10.6 0.17 6 12.2 14.2 19.0 0.7

8 Min 3.1 1.3 0.5 0.7 19.0 0.64 40 11.1 12.1 18.2 0.8
(54) Max 51.8 18.0 12.1 16.5 90.0 1.67 73 130.6 100.0 100.0 3.5

Mean 32.5 10.0 5.3 7.3 44.9 1.09 59 43.1 43.9 69.3 1.9
SD 11.6 4.4 2.3 4.3 16.4 0.23 8 24.2 19.5 21.5 0.7

9 Min 8.9 1.8 0.7 15.3 0.0 0.18 48 20.3 19.5 28.0 0.5
(24) Max 57.2 17.5 7.1 32.9 55.0 1.48 87 447.5 100.0 100.0 2.9

Mean 33.6 10.3 4.4 24.1 28.9 0.79 68 118.2 59.8 74.9 1.5
SD 12.9 4.8 1.7 8.8 17.0 0.36 11 125.5 26.8 23.6 0.6

10 Min 0.0 0.0 0.0 4.2 22.0 0.44 47 19.6 14.3 18.0 1.8
(147) Max 26.1 24.5 14.2 32.5 86.0 1.42 83 87.6 61.6 100.0 4.7

Mean 10.8 9.1 5.5 14.4 60.5 0.85 68 34.9 28.8 43.5 2.9
SD 7.9 6.6 4.0 6.3 16.4 0.19 7 12.4 9.6 16.7 0.7

11 Min 0.0 0.0 0.0 10.5 14.0 0.27 61 32.3 24.9 31.0 0.4
(159) Max 37.5 17.7 18.4 36.7 100.0 1.33 84 101.7 51.9 100.0 4.6

Mean 9.4 5.5 4.9 21.2 61.9 0.85 74 51.1 33.4 45.5 2.1
SD 11.7 6.7 6.0 6.2 22.9 0.26 5 13.5 7.1 11.3 1.0

1 Blocks 10 and 11 measured max CI per plot.
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C.3 ForHyM Calibration Site Results

Figure C.1: Modelled vs measured ForHyM generated calibration outputs for
snowpack and stream discharge for Northwestern Uplands (top), Midwestern
Uplands (middle) and Lowlands (bottom).
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D.2 Rut Depth Severity Classes

Table D.1: Rut depth severity classes.

Photo Example Description

Minimal ruts (0-5 cm):
Minor surface abrasions,
slight forest floor
disturbance, little visible
soil damage / root scuffing

Shallow ruts (5-10 cm):
Visible ruts, potential water
retention, minimal effects
on root and soil
productivity

Moderate ruts (10-20 cm):
Visible soil disturbance,
potential water retention,
mineral soil exposed

Deep ruts (20-40 cm ruts):
Damage to roots,
generally thick organic
layers, exposed mineral
soil

Extreme ruts (40+ cm):
Generally found in wet
areas, high organic
matter, machine loading
zones
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D.3 Temporal Soil Moisture Modelling

The Forest Hydrology Model (ForHyM) uses daily temperature and precipitation

(rain and snow) data as well as block-specific area, vegetation, soil horizon

texture, depth, OM, and CF (Table D.2) to predict soil moisture and temperature

fluctuations through the soil (Arp and Yin, 1992; Yin and Arp, 1994; Jutras, 2012).

Calibrating ForHyM consists of comparing actual snowpack and hydraulic flow to

modelled outputs and adjusting the output parameters (Table D.3, Figure D.1).

Table D.2: ForHyM soil profile information used to initialize each stands.

Stand Vegetation Layer Depth Texture OM
(%)

CF
(%)

1 INHW,
deep
rooted

LFH 5 Organic 100 0

A 25 SL 15 20

B 50 SL 5 20

C 100 SL 1 35

2 SW,
shallow
rooted

LFH 10 Organic 100 0

A 10 LS 2 20

B 75 LS 10 24

C 100 SL 1 35

3 SW,
shallow
rooted

LFH 10 Organic 100 0

A 10 LS 2 20

B 75 LS 10 24

C 100 SL 1 35

9 TOHW,
deep
rooted

LFH 5 Organic 100 0

A 55 LS 8 20

B 55 LS 5 20

C 150 SL 1 25
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Figure D.1: Modelled vs measured ForHyM generated calibration outputs for
snowpack and stream discharge for stands 1-3 (top), stand 4 (bottom).
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Table D.3: ForHyM calibration variables for snowpack and saturated soil
permeability.

Blocks 1-3 9

Snowpack
Snow-to-air

temperature gradient
0.16 0.2

Density of fresh snow 0.16 0.2

Saturated
Soil
Permeability

Surface runoff 1 1
Forest floor infiltration 1 1
Forest floor interflow 0.01 0.01

A&B horizon infiltration 1 1
A&B horizon interflow 0.05 0.01

C horizon infiltration 1 1
C horizon interflow 0.1 0.1

Deep water percolation 1 1

199



Vita

Candidate’s Full Name:
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